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Q-RBSA: high-resolution 3D EBSD map generation using an
efficient quaternion transformer network
Devendra K. Jangid 1✉, Neal R. Brodnik 2, McLean P. Echlin 3, Chandrakanth Gudavalli 1, Connor Levenson1, Tresa M. Pollock3,
Samantha H. Daly 2 and B. S. Manjunath 1✉

Gathering 3D material microstructural information is time-consuming, expensive, and energy-intensive. Acquisition of 3D data has
been accelerated by developments in serial sectioning instrument capabilities; however, for crystallographic information, the
electron backscatter diffraction (EBSD) imaging modality remains rate limiting. We propose a physics-based efficient deep learning
framework to reduce the time and cost of collecting 3D EBSD maps. Our framework uses a quaternion residual block self-attention
network (QRBSA) to generate high-resolution 3D EBSD maps from sparsely sectioned EBSD maps. In QRBSA, quaternion-valued
convolution effectively learns local relations in orientation space, while self-attention in the quaternion domain captures long-range
correlations. We apply our framework to 3D data collected from commercially relevant titanium alloys, showing both qualitatively
and quantitatively that our method can predict missing samples (EBSD information between sparsely sectioned mapping points) as
compared to high-resolution ground truth 3D EBSD maps.
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INTRODUCTION
In the pursuit of materials development for extreme environ-
ments, 3D microstructural information is essential input for
structure-property models1. Many engineering materials are
polycrystalline, meaning they are composed of many smaller
crystals called grains, and the arrangement of these grains impacts
their thermomechanical properties. To collect crystallographic
microstructure information, 3D microscopy techniques have been
developed that span lengthscales from nanoscale to mesoscale2.
These experiments require costly or challenging to access
equipment, like synchrotron light sources for high X-ray fluxes3–5,
precise automated robotic mechanical polishing and imaging6,7,
or high-energy ion beams and/or short pulse lasers coupled to
electron microscopes8,9. Recent advances in 3D characterization
have reduced the time required for data collection, but serial
sectioning methods (where material is progressively removed
from the sample between images) are still slow processes that
require expensive microscopes10,11. During serial sectioning for
microstructural information, typical experimental steps might
include material removal and cleanup (mechanical polishing, laser
ablation, focused ion beam milling) and imaging for orientation or
chemical information. As such, any efforts that reduce the total
number of required serial sections in a 3D experiment will
ultimately lead to substantive time and cost savings.
One such 3D material characterization technique is 3D electron

backscatter diffraction, or EBSD. EBSD is a scanning electron
microscope (SEM) imaging modality that maps crystal lattice
orientation by analyzing Kikuchi diffraction patterns that are
formed when a focused electron beam is scattered by the atomic
crystal structure of a material according to Bragg’s law. A grid of
Kikuchi patterns is collected by scanning the electron beam across
the sample surface. These patterns are then indexed to form a grid
of orientations, which are commonly represented as images in
RGB color space using inverse pole figure (IPF) projections. EBSD
maps are used to determine the microstructural properties such as

texture, orientation gradients, phase distributions, and point-to-
point orientation correlations, all of which are critical for under-
standing material performance12. When scaling to 3D, these EBSD
scans must be done sequentially with serial sectioning, which is a
time-consuming and energy-intensive process, often requiring
hundreds of millions of EBSD patterns to be collected per sample.
This cost motivates methods to reduce the number of required
points, such as smart or sparse sampling13–15, or machine learning
super-resolution16. In these methods, missing information can be
inferred using interpolation-based algorithms (bicubic, bilinear, or
nearest neighbor) or data-based learning. Recent progress in
computer vision16–18 has shown that the generation of missing
samples/data with data-based learning outperforms traditional
interpolation algorithms for RGB images. However, unlike RGB
images, EBSD maps carry embedded crystallography, so existing
learning-based methods are not well suited to generate missing
EBSD data.
In our previous work19, we developed a deep learning

framework for 2D super-resolution that utilized an orientation-
ally-aware, physics-based loss function to generate high-resolution
(HR) EBSD maps from experimentally gathered low-resolution (LR)
maps. This approach allowed for significant gains in 2D resolution,
but expansion to 3D remained difficult due to data availability
limitations (3D EBSD is expensive and time consuming to gather).
To address this, here we have designed a 3D deep learning
framework based on quaternion convolution neural networks
(QCNN) with self-attention alongside physics-based loss to super-
resolve high resolution 3D maps using as little data as possible.
Using real-valued convolution for quaternion-based data has been
shown to be inefficient and has loss in the inter-channel
relationship that arise from quaternion vector interdependen-
cies20; which leads to longer training times and larger data
burdens. We demonstrate that a quaternion-valued neural
network is more efficient and produces better results than real-
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valued convolution neural networks such as those used in
previous work19.
The crystallographic information contained in EBSD maps is

generally expressed in the form of crystal orientations spatially
resolved at each pixel or voxel. These orientations, like other
rotational data, can be expressed unambiguously using quater-
nions. They therefore can be incorporated into network archi-
tecture as prior information by using quaternion-valued
convolution for local-level correlation, rather than real-valued or
complex-valued convolution. The basic component in traditional
CNN-based architectures is real-valued convolutional layers, which
extract high-dimensional structural information using a set of
convolution kernels. This approach is well-suited for uncon-
strained image data like RGB, but when convolution kernels fail to
account for strict inter-channel dependencies where present, the
result is greater learning complexity. Some successful efforts have
been made to design lower-complexity architectures by extending
real-valued convolution to complex-valued convolution21,22 and
quaternion-valued convolution23–25 in the field of robotics26,
speech and text processing20, computer graphics27,28, and
computer vision25,29. Although these convolution layers are useful
to learn local correlations, they struggle to learn long-range
correlations, whereas transformer-based architectures have
recently shown significant success in learning long-range correla-
tions in natural language30 and vision tasks18,31. However, the
computational complexity of transformer-based architectures
grows quadratically with the spatial resolution of input images
due to self-attention layers, so transformers alone are not well-
suited for restoration tasks. However, recent work by Zamir18

proposed self-attention across channel dimensions to reduce
complexity from quadratic to linear with progressive learning for
image restorations and showed superior results to convolution-
based architecture alone.
Inspired by this idea, we propose the use of quaternion self-

attention for EBSD super-resolution, using physics-aware

quaternion convolution for orientation recognition, a physics-
based loss function that is sensitive to material crystal symmetry,
and progressive learning to incorporate long-range material
relationships. Physics-aware quaternion convolution follows the
approach of20,21,32, where convolution is depth-wise and uses a
reduced number of interdependent weights whose connectivity is
based on the Hamiltonian. We use a loss function that accurately
measures the crystal orientations in EBSD maps and also accounts
for the hexagonal close-packed symmetry present in α-phase Ti-
6Al-4V and Ti-7Al, the two alloys investigated here. Finally,
progressive learning refers to having variable patch sizes instead
of fixed patch sizes during training, which is relevant for most
engineered material microstructures, where important features
can span across length scales (and patch sizes). The titanium alloys
studied herein are well-known to have many different micro-
structural variants accessible via processing, resulting in varying
grain size and morphology. For the datasets that we consider
specifically, the Ti-6Al-4V variant has smaller equiaxed grains,
while the Ti-7Al alloy has much larger grain size, so applying a
fixed patch size across these two materials would be sub-optimal.
To enforce long-range learning among these grain features, we
used progressive patch sizes starting from 16 to 100 during the
training of the network. Training behaves in a similar fashion to
curriculum learning processes where the network starts with a
simpler task and gradually moves to learning more complex ones.

RESULTS
Deep learning framework
The objective of our framework is to generate missing sample
planes from experimental 3D EBSD data that is sparse along the
z-axis. In this approach, material researchers collect sparsely
sectioned 3D EBSD data (blue planes) as shown in Fig. 1a, due to
the high cost associated with serial sectioning and collecting 3D
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Fig. 1 Q-RBSA EBSD Resolution Enhancement Framework. In the experimental pipeline shown in (a), material researchers collect EBSD
orientation information for each (x,y) coordinate in a given sectioning plane, and then remove material using laser ablation or robotic
polishing to reach the next plane in the z direction to build a 3D volume. In our framework (b), researchers collect EBSD information from a
reduced set of points (blue planes), omitting some planes that would normally be gathered (gray planes). The missing information (green
planes) are then generated in 2D as a series of (x,z) or (y,z) planes by our quaternion-based, physics-informed deep learning framework, shown
in (c). Here, the network takes advantage of orthogonal independence to efficiently generate 3D volumes using less data, as large amounts of
EBSD are costly and the choice of serial sectioning direction has minimal impact on the resultant final volume.
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EBSD data at higher resolution. Ideally, a 3D deep learning
framework would be designed to generate the missing planes
(gray planes), but experimental EBSD data is costly to gather, so
available 3D data is extremely limited. Additionally, 3D neural
networks require more learned parameters, which, with limited
available data, increases the likelihood of overfitting. Instead of a
full 3D architecture, a deep learning network is implemented on
2D EBSD maps orthogonal to the sectioned planes, shown as the
xz or yz planes in Fig. 1c. Our network takes sparsely sectioned xz
or yz EBSD maps as input to generate the missing rows normal to
the z-axis. The generated 2D EBSD maps are then combined into a
3D volume. EBSD collection is a point-based scanning method
that is directionally independent; therefore missing z rows can be
generated from xz or yz EBSD maps, and two 3D volumes can be
formed from each sparsely sectioned dataset.

Network architecture
Although EBSD maps are visualized similarly to RGB images, they
are multidimensional maps with inter-channel relationships,
where crystal orientation is described using Euler angles,
quaternions, matrices, or axis-angle pairs. Our previous work19

demonstrated that quaternion EBSD representation is well-suited
to orientation expression for loss function design, due to its
efficient rotation simplification and avoidance of ambiguous
representation. However, we previously used real-valued convolu-
tion layers to learn features, which is sub-optimal for EBSD
orientation maps where orientations are represented as unit-
vector quaternion rotations. Generally speaking, convolution
networks provide local connectivity and translation equivariance,
which are desirable properties for images, but if additional feature
correlations are going to be learned efficiently, it is critical to
encode relevant structural modalities into the network architec-
ture and loss function. Real-valued convolution can still learn unit
quaternion inter-channel information, but it requires extra net-
work complexity, and by consequence, additional data to inform
that complexity. Here, the use of quaternion convolution
efficiently encodes prior orientation information into kernels,
and also has the advantage of reducing the number of trainable
parameters by 4, as explained supplementary.
QCNN33 use basic quaternion convolution operation which

computes the Hamilton product between the input feature maps
and kernel filters rather than just computing correlations between
them, as is done in real-valued convolution34. For instance, if we
consider Pinput as an input feature map of size (4K2 × H ×W), and F
as a quaternion kernel filter of size (4K2 × f × f), where K2 is the
number of kernel filters in the previous layer, H and W are the
height and width of the input feature map (Pinput), and f is the
spatial size of the quaternion kernel filter (F), then we can split the
input feature map (Pinput) into four components (PR, PX, PY, PZ)
along the channel dimension, where each component has a
dimension of (K2 × H ×W). Similarly, the kernel filter (F) can be
divided into four components (FR, FX, FY, FZ) along the channel
dimension, where each component has a dimension of (K2 × f × f).
The quaternion convolution (QConv) of input feature maps (Pinput)
with a single kernel filter (F) is defined as follows

P0quaternion ¼ F � Pinput (1)

P0R
P0X
P0Y
P0Z

2
6664

3
7775 ¼

FR � PR � FX � PX � FY � PY � FZ � PZ
FX � PR þ FR � PX � FZ � PY þ FY � PZ
FY � PR þ FZ � PX þ FR � PY � FX � PZ
FZ � PR � FY � PX þ FX � PY þ FR � PZ

2
6664

3
7775 (2)

Here,⊗ is the Hamilton product, and * represents real-valued
convolution operation34. The output quaternion feature map
(P0quaternion) has a dimension of (4 × H ×W) for a single kernel filter,
where each component (P0R; P

0
X ; P

0
Y ; P

0
Z ) has a dimension of

(1 × H ×W). H and W are the height and width of the output
feature maps. For a better understanding of quaternion convolu-
tion, please refer to the Supplementary Figs. 1, 2, 3 as provided in
the supplementary section.
Introducing non-linearity through an activation function is not

straightforward for quaternions, as the only functions that satisfy
the Cauchy-Riemann-Fueter equations in the quaternion domain
are linear or constant32. However, locally analytic quaternion
activation functions have been adapted for use in QNNs with
standard backpropagation algorithms35,36. There are two classes
of these quaternion-valued activation functions: fully quaternion-
valued functions and split functions. Fully quaternion-valued
activation functions are an extension to the hypercomplex domain
of real-valued functions, such as sigmoid or hyperbolic tangent
functions. Despite their better performance37, careful training is
needed due to the occurrence of singularities that can affect
performance. To avoid this, split activation functions37,38 have
been presented as a simpler solution for QNNs. In split activation
functions, a conventional real-valued function is applied
component-wise to a quaternion, alleviating singularities while
holding true the universal approximation theorem as demon-
strated in38. We have used the split ReLU function which is defined
as follows:

ReLUðP0quaternionÞ ¼

ReLUðP0RÞ
ReLUðP0XÞ
ReLUðP0YÞ
ReLUðP0ZÞ

2
6664

3
7775 (3)

Our network architecture shown in Fig. 2 consists of three parts:
a shallow feature extraction module, a deep feature extraction
module, and an upsampling and reconstruction module.
Shallow Feature Extractor module uses a single quaternion

convolution layer (QConv), explained in Eq. (2), to reduce the
spatial size of sparsely sectioned EBSD maps, while extracting
shallow features.

F0 ¼ HSFðILRÞ (4)

Here, ILR is a sparsely sectioned 2D EBSD map and HSF(. ) is a single
quaternion convolution layer of kernel filter size 3 × 3, which has 4
input channels and 128 output channels. The generated shallow
features (F0) are given to the deep feature extractor module (HDF).
To learn from sparsely sectioned EBSD maps, our deep feature

extractor module uses stacked quaternion residual self-attention
(QRSA) blocks to extract high-frequency information and long skip
connection to bypass low-frequency information. Residual blocks
allow for a deeper network architecture, which provides a larger
receptive field and better training stability. In our QRSA module,
we use both CNN and transformer ideas to combine the
effectiveness of the locality of CNNs with the expressivity of
transformers that enables them to synthesize high-resolution
EBSD maps. The CNN structure offers local connectivity and
translation equivariance, allowing transformer components to
freely learn complex and long-range relationships. Each quater-
nion residual self-attention (QRSA) block consists of two
quaternion convolution layers and a piece-wise ReLU activation,
explained in Eq. (3), between them, and a quaternion transformer
block. The quaternion convolution layers with piece-wise ReLU
activation help in learning the local structure of extracted shallow
features, while the quaternion transformer block captures long-
range correlations among features. The short-skip connection is
useful to bypass low-frequency information during training.

FDF ¼ HDFðF0Þ (5)

HDF ¼ QRSA1 � QRSA2 � :::QRSAi::: � QRSA10 � QConv þ I (6)
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where, HDF(. ) is a deep feature extractor module, and FDF is a 128
channels feature map which goes to the upscale and reconstruc-
tion module. QConv is a quaternion convolution layer as explained
in Eq. (2), QRSAi is a ith quaternion residual self-attention (QRSA)
block, and I is an identity feature maps.
The standard transformer architecture30 consists of self-attention

layers, feedforward networks, and layer normalization. The original
transformer architectures30,39 are not suitable for restoration tasks
due to the requirement of quadratic complexity of spatial size
OðW2H2Þ, where W, H is the spatial size of images or EBSD maps.
Similar to the approach of18 and as shown schematically in Fig. 3,
we compute attention maps across the features dimension, which
reduces the problem to linear complexity. However instead of
depthwise convolution, we use quaternion convolution as
explained in Eq. (2), which can be considered as a combination
of depthwise convolution and group convolution, but with four-
dimensional quaternion constraints. We have also incorporated an
equivalent quaternion-based gating mechanism into the feedfor-
ward network within the transformer, and the traditional convolu-
tion used in18 has been replaced with quaternion convolution
layers as explained in Eq. (2) to account for EBSD data modalities.
Layer normalization plays a crucial role in the stability of training in
transformer architectures. The quaternion layer-normalization is
equivalent to the real-valued one by computing normalized

features across each component of the quaternion separately,
and allows the building of deeper architectures by normalizing the
output at each layer. From the normalized features, the quaternion
self-attention layer first generates query (Q), key (K) and value (V)
projections enriched with the local context. After reshaping query
and key projection to reshaped query (Qr) and reshaped key (Kr), a
transposed attention map (A) is generated. The refined feature
map, which has global statistical information, is calculated from the
dot product of the value projection (Vr) and the attention map (A).

Transposed Attention Map (A) ¼ Softmax Kr :
Qr

α

� �
(7)

Quat-SelfAttentionðQr ; Kr ; VrÞ ¼ Vr :A (8)

GatingðX2Þ ¼ GeLU ðW1ðX2ÞÞ �W2ðX2Þ (9)

Where ⨀ represents elementwise multiplication, α is a learnable
scaling parameter to control the magnitude of the dot product of
Kr and Qr before applying softmax function and GeLU is Gaussian
Error Linear Units activation function40, and Wi (i= 1,2) is a
combination of quaternion convolution layers with kernel size 1
and 3, respectively.
The upsampling and reconstruction module has 1D pixelshuffle

layers and quaternion convolution layers of kernel size 3.
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Fig. 2 Quaternion Residual Block Self-attention (QRBSA) network. A sparsely sectioned 2D EBSD map is given to the QRBSA network (a) to
generate a high-resolution 2D EBSD map. QRBSA consists of three parts: a Shallow feature extractor, a Deep feature extractor, and Upsampling
and Reconstruction. The deep feature extractor uses a residual architecture (b) where residual self-attention blocks (c) are modified with
quaternion convolution layers and transformer blocks (d) to efficiently handle orientation data. Quaternion convolution is used to learn local-
level relationships, while quaternion transformer blocks learn the global statistics of feature maps. Pixelshuffle layer, modified for
1-dimensional upsampling, is used in the upsampling and reconstruction block to upsample feature maps.
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The original pixelshuffle layer41 is designed for 2D upsampling,
but we have modified it for 1D upsampling in our framework that
generates information in z dimension. Each block of the
upsampling and reconstruction module upsamples deep features
by a factor of 2, with the number of blocks depending on the
scaling factors.

F" ¼ H"ðFDFÞ (10)

ISR ¼ HRðF"Þ (11)

Where, each upsampling block (H↑) of the module has a
quaternion convolution layer of kernel size (3 × 3) as explained
in Eq. (2), and a 1D pixel-shuffle layer. The reconstruction block
(HR) is a quaternion convolution layer of kernel size (3 × 3).

2D to 3D
The output of the QRBSA network is a 2D high-resolution EBSD
map from a sparsely sectioned 2D EBSD map in the z direction.
The 2D high-resolution EBSD maps are then combined to make a
3D volume. The missing z rows, as in Fig. 1c, can be generated
either from xz plane (ynormal) or yz plane (xnormal). Therefore, there
are two ways to form the 3D volume. In this work, we generated
both 3D volumes separately, but we plan to design an algorithm
in the future to combine the xz plane and yz plane information to
make a single 3D volume.

Qualitative output comparison
The sparsely sectioned 3D EBSD data is downsampled by scale
factors of 2, 4 in the z dimension by removing the xy planes
(znormal) to reflect how EBSD resolution would be reduced in a
serial sectioning experiment. Our network QRBSA is trained on 2D
orthogonal planes (xnormal and ynormal) of paired sparsely sectioned
EBSD maps and high-resolution EBSD maps, generating the high-
resolution 2D maps in z dimension shown in Fig. 4. The most
noticeable visual defects in 2D appear as pixel noise or short
vertical lines, particularly around small grain features and high-
aspect-ratio grains whose shortest axis is aligned with the
z-direction. In addition to planar output analysis, we can also
create 3D volumes from the sparsely sectioned xz planar (ynormal)
or yz planar (xnormal) EBSD maps, and then sample the xy planes
(znormal) from these volumes, as represented by the black arrows in
Fig. 5, to evaluate how well the QRBSA is inferring missing
z-sample planes. Note that the planes visualized in Fig. 5 are not
immediately adjacent to any ground truth planes. We can observe
that our deep learning framework is able to completely predict
omitted xy planes, comparably to the ground truth xy plane, with
the exception of some shape variations around grain boundaries,
particularly in Ti-6Al-4V. We capture these errors in Fig. 5 in the
column labeled misorientation angle map, which is contrast scaled
such that all misorientation errors greater than 3∘ appear as white.
Looking at this map, most of the high misorientation errors are at
grain boundaries with the exception of some specific small grains
in Ti-6Al-4V. Observations of this difference map indicate that if
the xy plane in Fig. 5 had been omitted during experimental data
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Fig. 3 Quaternion Self Attention. Self-Attention in (a) is computed using quaternion convolution across feature dimension instead of spatial
dimension to reduce computational complexity to linear. A transposed attention map (A) is calculated from reshaped query (Qr) and reshaped
key (Kr). A quaternion self-attention is computed from the transposed attention map (A) and reshaped value (Vr). QUATERNION FEED
FORWARD NETWORK: Shown in (b), performs controlled feature transformation to allow useful information to propagate further using gated
quaternion convolution.
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collection, our framework would have estimated it with reason-
able accuracy.

Quantitative output comparison
The pixel-wise distribution of minimum misorientations between
network output and ground truth, referred to as misorientation
error, is shown in Fig. 6. The x-axes of the histograms are
thresholded and separated at 3∘, such that misorientation error of
magnitude less than 3∘ is shown in Fig. 6a, and error greater than
3∘ is shown in Fig. 6b, c. These histograms show that the majority
of network error is relatively unimodal and smaller in magnitude
than about 0.4∘, meaning that it will fall primarily within the dark
regions of the grains in the difference maps in Fig. 5, which
correspond to small intragranular misorientation errors. On the
other hand, most of the high misorientation errors in Fig. 5 are
much larger than 3∘, which mostly correspond to errors in
predicted grain boundary location, or small grains that were ill-
defined in the low resolution input. While these errors are much
larger in magnitude, Fig. 6b shows that these represent a very
small fraction of network error. A more detailed inspection of this
error in Fig. 6c shows that this larger error is relatively random and

uniform, with the exception of a spike around 30∘, which can be
seen in all three datasets. This spike in error around 30∘ may be
related to the hexagonal symmetry of the titanium materials, as
30∘ is a high symmetry rotation within the 6/mmm point group,
but even so, these errors represent less than 2% of the total.
The peak signal to noise ratio (PSNR) of misorientation angle

between ground truth and experimental EBSD data is shown in
Table 1 to quantitatively evaluate the performance of the QRBSA
network for scale factors 2 and 4 for all three materials. Higher
PSNR values represent more similarity with the ground truth. The
PSNR of Ti-6Al-4V is lower compared to Ti-7Al datasets due to its
higher texture variability, wider range of orientations, and
generally smaller grain features. We performed this same analysis
on four different network architectures with different computa-
tional complexity, as shown in Table 1.
When considering the relationship between network com-

plexity and performance for this use-case, a simpler deep
residual architecture (EDSR)42, outperforms a more complex
holistic attention network (HAN)43 on EBSD data despite having
significantly lower computational complexity. The amount of
available EBSD data in this case is significantly lower than

Sparsely Sectioned
EBSD Maps

Network Output Ground Truth

Ti-6Al-4V

Ti-7Al 1%

Ti-7Al 3%

340.6 um

400.4 um

462 um

(a)

(b)

(c)

Fig. 4 Visual comparison of network output for example 2D EBSD maps with a scale factor of 4. The predicted EBSD maps (Network
Output) from the QRBSA network are similar to the ground truth EBSD maps in for both the Ti-6Al-4V dataset (a) and both Ti-7Al datasets (b)
and (c). The black rows correspond to the missing data in the sparsely sectioned input EBSD maps. In this case, one row of EBSD data is used
for every three rows of missing EBSD data.
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open-source RGB image datasets, so simply increasing network
complexity does not improve performance, as this added
complexity demands additional training information and does
not meaningfully consider relevant data modalities. QEDSR
incorporates quaternion considerations in a similar architecture
to EDSR, which greatly reduces in the number of network
parameters, but also causes a slight drop in performance due to
overall lack of complexity. We take advantage of this reduction
in complexity to add in additional self-attention for better
recognition of long-range patterns and global statistics. This
QRBSA network demonstrates the best performance on EBSD
map restoration, while still maintaining lower complexity
than state-of-the-art residual architectures for single-image
super-resolution tasks.

DISCUSSION
Both quantitative and qualitative results demonstrate that this
physics-based deep learning framework can accurately estimate
the missing xy planes (znormal) of 3D EBSD data for multiple
variants of titanium alloys, both with a coarser polycrystalline
structure (Ti-7Al) and finer structure with stronger texture (Ti-6Al-
4V). In 2D inferred EBSD planes show noise around small features,
mostly in the form of point and line defects in the z-direction
associated with grains whose overall shape information was lost
due to omission of sample planes in low resolution. It is possible
that a downsampling approach incorporating anti-aliasing could
prevent this shape information loss44, but this approach would not
be reflective of actual experimental downsampling in 3D EBSD.
This general shape loss effect, along with a larger number of small
grains, varying local crystallographic texture, and a wide range of
represented crystal orientations, made the Ti-6Al-4V the most
difficult dataset for inference. This is further evidenced by a larger
number of grain boundary differences for Ti-6Al-4V in Fig. 5, as
well as a lower PSNR score in Table 1. Additional noise analysis for

generated xy planes is shown in the supplement, and there is
ongoing work to improve performance using 3D architectures and
grain shape information45 with adaptive multi-scale imaging in z
dimension as more of this type of data becomes available.
The limiting factor when using the network approach presented

here on serial-sectioned 3D microstructures is the ratio of serial
sectioning spacing in the low-resolution input relative to the size
of the microstructural features being imaged. For example, if the
serial section spacing is large enough to skip entire grains or
microstructural features in a material, those features will never be
resolvable with super-resolution. Therefore, an informed super-
resolution scaling factor choice must be made prior to any
experiment to ensure that the low resolution input contains
enough information for meaningful inference. Beyond this section
depth limitation, the approach shown here is directly applicable to
any serial sectioning technique for gathering 3D EBSD informa-
tion, including FIB sectioning, laser ablation, and robotic serial
sectioning6,7. Further, data from other 3D grain mapping
techniques that rely on synchrotron X-ray sources such as
diffraction contrast tomography (DCT)5 or high energy diffraction
microscopy3,4 may also be applicable for the infrastructure
presented here. Similar approaches to this may be particularly
useful in lab source DCT experiments46,47, where the X-ray source
constraints limit grain mapping resolution in comparison to
synchrotron sources. For example, one could use difficult
to acquire synchrotron X-ray mapping experiments as HR data
to train a network to inform LR X-ray mapping experiments
collected more routinely at the laboratory.
In summary, we have designed a quaternion-convolution-based

deep learning framework with crystallography physics-based loss
to generate costly high-resolution 3D EBSD data from sparsely
sectioned 3D EBSD data while accounting for the physical
constraints of crystal orientation and symmetry. Alongside this,
an efficient quaternion-based transformer block was developed to
learn long-range trends and global statistics from EBSD maps.

Material Estimated XY Plane (Z Normal) Experimental XY Plane (Z Normal)
(a) Ti-6Al-4V

213 um
262.6

 um
310.7

 um

(b) Ti-7Al 1%

(c) Ti-7Al 3%

Misorientation
Angle Map (Z Normal)

Fig. 5 Neural network output vs. ground truth with difference map. The deep learning framework is able to estimate the missing xy planes
due to sparse z-sampling (gray) with data that looks similar to the ground truth for Ti-6Al-4V in (a) and Ti-7Al in (b) and (c). The misorientation
angle map column shows the minimum possible misorientation between ground truth and estimated EBSD maps with 3∘ thresholded
maximum to better show low magnitude errors. This map indicates that learning grain shapes for Ti-6Al-4V is more difficult than for Ti-7Al,
likely due to smaller grain size and more grain boundary regions.

D.K. Jangid et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2024)    27 



Using quaternion convolution instead of regular convolution is
critical for crystallographic data, both in terms of output quality
and neural network complexity, as reducing the number of
trainable parameters enables transformer addition without major

complexity burden (see Table 1). This framework can be directly
applied to any experimental 3D EBSD approaches that rely on
serial sectioning techniques to collect orientation information.

METHODS
EBSD datasets
EBSD maps represent crystal orientations collected at each
physical pixel location in crystalline materials, which are funda-
mentally anisotropic and atomically periodic. Orientations for each
pixel within the network learning environment are expressed in
terms of quaternions of the form q ¼ q0 þ îq1 þ ĵq2 þ k̂q3. The
quaternions are suitable to design a physics-based loss function
for deep learning framework19. To avoid redundancy in quater-
nion space (between q and− q), all orientations are expressed
with their scalar q0 as positive. For visualization according to
established conventions, quaternions are reduced to the Rodri-
gues space fundamental zone based on space group symmetry,
converted into Euler angles, and projected using IPF projection
using the open-source Dream3D software48, as shown in our
previous work19. Ground truth 3D EBSD datasets were

*1e6 *1e6 *1e6Ti-6Al-4V

*1e6 *1e7 *1e7

Ti-7Al 1% Ti-7Al 3%(a)

(b)

(c)

Fig. 6 Histogram of Misorientation Angle for Ti-6Al-4V, Ti-7Al 1%, and Ti-7Al 3%. In (a), histograms of misorientation differences between
predicted and ground truth are shown, where all values greater than 3∘ are clamped to 3∘. For all materials, most network error in predicted
misorientation is lower than 0.5∘ in magnitude. In (b), the same error histograms are displayed, but now misorientation values less than 3∘ are
clamped to 3∘. Because larger magnitude errors occur far less frequently than smaller errors, (c) contains a zoomed inset of misorientation
angles greater than 3∘ to better show their distribution.

Table 1. PSNR: comparison of PSNR of misorientation angle and
complexity for different networks for scale factors 2 and 4.

Network Trainable
Parameters

Ti-6Al-4V x2/
x4

Ti-7Al 1%
x2/x4

Ti-7Al 3%
x2/x4

HAN 63,315,578 26.12/25.64 33.67/33.55 35.10/34.36

EDSR 6,355,460 26.70/26.25 34.39/34.25 36.19/36.05

QEDSR 1,593,092 26.62/26.16 34.23/34.10 35.56/35.44

QRBSA 5,952,782 27.71/27.29 35.29/35.13 36.64/36.52

Columns represent number of trainable parameters and PSNR for different
titanium datasets. A larger number is desired for both PSNR.
Bold values indicate highest PSNR for all three materials: Ti-6Al-4V, Ti-7Al
1%, Ti-7Al 3%.
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experimentally collected from titanium alloy samples: Ti-6Al-4V
and Ti-7Al (one Ti-7Al sample deformed in tension to 1%, and one
to 3%), using a commercially-available rapid-serial-sectioning
electron microscope referred to as the TriBeam8,10. More details
of these datasets and their reconstruction are located in the
supplemental material. Sparsely sectioned EBSD datasets are
created by removing xy (znormal) planes from the high-resolution
ground truth with a downscale factor of 2 and 4 (LR = 1

4HR or LR =
1
2HR). This is done to imitate the skipping of collection planes that
would occur in a 3D experiment with more sparsely sectioned
EBSD data (i.e., thicker section depth), which would not influence
the electron beam-material interaction volume associated with
the EBSD mapping process. More information about dataset pre-
processing are given in the supplementary material.

Network implementation and output evaluation
We use a learning rate of 0.0002, an Adam optimizer with β1= 0.9,
β2= 0.99, ReLU activation, batch size of 4 and downscaling factor
of 2 and 4. The patch size of HR EBSD maps is selected from
{16, 32, 64, 100} during training of the network. The framework is
implemented in PyTorch and trained on NVIDIA Tesla V100 GPU
for 2000 epochs, which took approximately 100 h. Once training is
completed, inference time for a given 2D LR EBSD map is on the
order of less than one second for an imaging area that would
normally take about 10 min to gather manually.

Loss
The QRBSA network is trained using a physics based loss
function19, which uses rotational distance approximation loss
with enforced hexagonal crystal symmetry. Rotational distance
loss computes the misorientation angles between the predicted
and ground truth EBSD map in the same manner that they would
be measured during crystallographic analysis, with approxima-
tions to avoid discontinuities at the edge of the fundamental zone.
The rotational distance θ between two unit quaternions can be
computed as the following:

q1 � q2 ¼ cosðθÞ �! θ ¼ 4sin�1 deuclid
2

� �
(12)

where, deuclid= ∥q1− q2∥2. While deuclid is Lipschitz, the gradient
of θ goes to ∞ as deuclid→ 2. To address this issue during neural
network training, a linear approximation was computed at
deuclid= 1.9, and utilized for points > 1.9.

Progressive Learning
In our previous work19, we used a fixed patch size of dimension
64 × 64 for training the CNN based architectures which help in
learning local correlations. However, self-attention is required to
have larger patch sizes, which aids in learning global correlations.
Inspired from the work of Zamir18, we use progressive patch
samples from sizes of {16, 32, 64, 100} in the training process to
learn global statistics. We start from a smaller patch size in early
epochs and increase to a larger patch sizes in the later epochs. The
progressive learning acts like the curriculum learning process
where a network starts with a simple tasks and gradually moves to
learning a more complex one.

DATA AVAILABILITY
QRBSA inference module is publicly available through the BisQue cyberinfrastructure
at https://bisque2.ece.ucsb.edu. Users would need to create an account at BisQue to
use this module. Material datasets will be available by request at the discretion of the
authors.

CODE AVAILABILITY
Architecture code is publicly accessible through GitHub (https://github.com/UCSB-
VRL/Q-RBSA).
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