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Machine learned force-fields for an Ab-initio quality
description of metal-organic frameworks
Sandro Wieser 1 and Egbert Zojer 1✉

Metal-organic frameworks (MOFs) are an incredibly diverse group of highly porous hybrid materials, which are interesting for a
wide range of possible applications. For a meaningful theoretical description of many of their properties accurate and
computationally highly efficient methods are in high demand. These would avoid compromises regarding either the quality of
modelling results or the level of complexity of the calculated properties. With the advent of machine learning approaches, it is now
possible to generate such approaches with relatively little human effort. Here, we build on existing types of machine-learned force
fields belonging to the moment-tensor and kernel-based potential families to develop a recipe for their efficient parametrization.
This yields exceptionally accurate and computationally highly efficient force fields. The parametrization relies on reference
configurations generated during molecular dynamics based, active learning runs. The performance of the potentials is
benchmarked for a representative selection of commonly studied MOFs revealing a close to DFT accuracy in predicting forces and
structural parameters for a set of validation structures. The same applies to elastic constants and phonon band structures.
Additionally, for MOF-5 the thermal conductivity is obtained with full quantitative agreement to single-crystal experiments. All this
is possible while maintaining a very high degree of computational efficiency. The exceptional accuracy of the parameterized force
field potentials combined with their computational efficiency has the potential of lifting the computational modelling of MOFs to
the next level.
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INTRODUCTION
Metal-organic frameworks (MOFs) are highly porous hybrid
materials consisting of inorganic metal oxide nodes connected
by organic linkers. Since their first realization, a wide range of
potential applications has been discussed including catalysis1–3,
gas storage and separation4–6, electronic devices7–9, as well as
drug encapsulation and delivery10,11. In view of the seemingly
limitless number of possible MOFs, finding the material with
properties best suited for a specific application is a sizable
challenge. The situation is further complicated by the frequently
encountered difficulties when trying to measure the relevant
materials parameters, e.g., due to often small crystallite sizes or the
inclusion of foreign molecules in the MOF pores. Therefore,
computational methods provide an excellent tool to not only
predict properties but also to support the development of
dependable structure-to-property-relationships. Due to the large
number of atoms in MOF unit cells compared to conventional
crystalline materials, ab-initio methods like density-functional
theory (DFT) are frequently too computationally expensive for
that task. This is particularly true when modelling properties at
elevated temperatures or for properties that depend on the
dynamics of the MOF constituents, like thermal expansion or
thermal conductivity. Then it is necessary to resort to lower levels
of theory, like classical force field potentials (FFPs), which can
speed up calculations by many orders of magnitude12–16, albeit at
the price of a significantly reduced accuracy.
The most commonly applied and most easy to use force field

potentials are transferable force-fields, which can be straightfor-
wardly applied to modelling the majority of the elements in the
periodic table. These include the Dreiding17 force field or the
universal force field (UFF)18, where for the latter a variant exists

that is specifically adapted for the description of MOFs
(UFF4MOF)19–21. Especially UFF4MOF has been frequently used
in literature for modelling MOFs22–25, as it is readily available and
particularly convenient for rapid structure prediction20. Such
highly transferable potentials are, however, not designed for an
accurate description of dynamical properties20 and usually result
in sizable errors. In the case of MOFs, poor agreement between
UFF4MOF-based simulations and DFT-based methods were
explicitly demonstrated, for example, for the elastic properties of
MIL-5326 and for the thermal conductivity of MOF-5. In the latter
case, UFF4MOF overestimated the single-crystal derived experi-
mental data by a factor of 2.627. More advanced potentials focus
on a more accurate description of a particular materials class, like
GAFF28 or COMPASS29 for organic molecules or BTW-FF13 for
MOFs. However, even these potentials with reduced transferability
tend to have difficulties in accurately predicting vibrational
properties30, which are notoriously challenging to describe31,
but which crucially influence many materials parameters.
A higher degree of accuracy (at the price of a further reduced

transferability) is observed for potentials individually parameter-
ized for specific molecular fragments. This, for example, applies to
part of the MOF-FF family of potentials, which are parameterized
for specific organic and inorganic MOF building blocks12,32.
Potentials like MOF-FF12,27,33 or QuickFF15 can also be parameter-
ized fully system-specifically giving up on transferability to achieve
an even higher degree of precision. The functional form of these
force fields is designed relying on chemical intuition, for example,
distinguishing between bonding and non-bonding interactions,
which is not always ideal for MOFs, in which the dynamic
adsorption and desorption of guest molecules can be important.
This triggered the development of more flexible potentials like
ReaxFF34, but often at the price of an overall reduced accuracy
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combined with problems regarding energy conservation and
thermal stability35. Another (major) disadvantage that we experi-
enced when system-specifically parametrizing classical force fields
like MOF-FF was that for achieving the required level of accuracy
(compared to DFT and experimental data) a careful tailoring of the
chosen set of potential terms, reference data, and fitting
algorithms is often crucial27,33. This makes the parametrization
process extremely cumbersome.
With increasing computational power and advances in machine

learning approaches, more convenient to use and often more
accurate machine learned potentials (MLPs) emerged. In recent
years, they started to see widespread use for successfully
describing many materials36–39. So far, for MOFs, MLP approaches
have been largely limited to neural network potentials, which
already show a promising performance in terms of preci-
sion26,40–46. They were employed to reliably describe computa-
tionally expensive quantities like the thermal conductivity of
several MOFs44. However, many of the said investigations required
a relatively large number of DFT reference data for training40,45

and neural network potentials are still computationally less
efficient than traditional FFPs when tested on the same computer
architecture40,47. In this context it should be noted that some of
the implementations of these potentials like GPUMD48 and
DeePMD-kit49 feature parallelization on graphical processing units,
making them also an attractive option for large simulations44,48.
Other types of machine learned potentials like Gaussian approx-
imation potentials (GAPs)50 or moment tensor potentials (MTPs)51

have seen widespread use for conventional materials52–54, but
their performance has, to the best of our knowledge, not yet been
evaluated systematically for MOFs. Importantly, the sizable
amount of DFT reference data required for machine learning
based approaches can be cut down significantly by either only
training molecular fragments of a system40,41,55 or by employing
strategies to more efficiently sample phase space26,56.
This raises the questions, how machine learned potentials can

be most efficiently used for modelling MOFs, how they can be
efficiently parametrized, how they perform for describing elastic
and phonon-related properties, and to what extent their more
complex form slows down the computations compared to
traditional force field potentials. To answer these questions, we
employed existing implementations of machine learned poten-
tials. This makes the presented approach as widely applicable as
possible, as these tools can be used essentially out-of-the-box with
little human development effort required. In particular, we will
focus on the kernel-based potentials (derivatives of GAPs)
available within the wide-spread Vienna ab-initio Simulation
Package (VASP)57, which we will refer to as VASP MLPs, and on
the MTPs implemented within the freely available MLIP58

(machine learning interatomic potential) package. By efficiently
combining both methods, we will present an efficient strategy for
obtaining machine learned force field potentials, which allow the
description of the structural and dynamic properties of MOFs at a
level of quality that hitherto has been limited to quantum-
mechanical simulations. In that spirit, the goal of the present work
is not to develop a new type of machine-learned force field, but to
efficiently apply the combination of two particularly promising
approaches described in literature to the materials class of MOFs.
In this way, an easy to implement roadmap is provided for how to
lift the computational modelling of structural and dynamic MOF
properties to the next level.

RESULTS
Overview of the computational approach
In this section, the fundamental aspects of the proposed approach
for generating highly efficient machine-learned potentials for
modelling MOFs are described. It also contains details necessary

for understanding the discussion of the obtained results. The more
technical aspects of the theoretical approaches and details on the
applied procedures that are not of immediate relevance for
understanding the presented results are summarized in the
Methods section, which will, thus, be referred to whenever
appropriate. Further details are provided in the Supplementary
Information.
Active learning approaches are a particularly promising strategy

for sampling phase space to generate reference structures needed
for learning force field potentials. However, there have only been
few applications of such approaches to MOFs26; moreover,
especially in early implementations the training still demanded a
rather high number of DFT calculations45. A strategy that has the
potential to severely cut down the required computational effort
is available in conjunction with a kernel-based MLP in the VASP
code. A detailed description of that approach is provided in
ref. 56,59. In the following, the key elements of the approach shall
be summarized briefly to put the employed strategy into
perspective: the active learning approach in VASP trains a
kernel-based machine learned potential in the course of a
molecular dynamics (MD) run. The potential is built from a basis
set depending on local reference configurations (atoms with their
surrounding neighbourhoods), which is dynamically expanded
during the simulation56,57,60 and which defines the possible
parameters for the potential. When the estimated Bayesian error
of the forces in a specific MD step exceeds a given threshold, the
concurrent force field is not considered accurate enough to
continue the molecular dynamics simulation. In that case, the
energies, forces, and stresses for the current time step are
recalculated using DFT. These DFT calculations are also used to
expand the set of reference data, from which the local reference
configurations for the various atoms are selected, as described in
the Methods section. The accuracy threshold is dynamically
adjusted in the course of the molecular dynamics simulation
based on the average of the 10 previous Bayesian errors estimates
at time steps at which the force field was retrained56. This leads to
larger thresholds at higher temperatures, where the absolute
values of the forces are higher. Such an adjustment is especially
required when training with a temperature gradient, as a fixed
threshold would add too few configurations at low temperatures
and too many configurations at high temperatures. When enough
new reference data have been accumulated, the basis set of the
force field is updated with new local reference configurations, as
explained in more detail in the Methods section. This approach
has already been successfully employed to obtain accurate
potentials for a range of materials56,57,60. A possible drawback is
that Gaussian approximation potentials have the reputation of
being comparably slow47, although, strictly speaking, this has
been shown for other variants than the VASP MLPs used here.
Moreover, advancements in the field of machine learned
potentials occur at a rapid pace potentially also affecting their
computational efficiency. This is exemplified by recent implemen-
tations of VASP (version 6.4.0 and upward), which promise
substantial improvements of the computational efficiency of the
used potentials. As described in the ’Evaluating the efficiency of
the potentials‘ section, the latter is achieved by technical
improvements of the implementation and a reduction of the
computational overhead during production runs compared to the
generation of training data.
Still, the aforementioned moment tensor potentials have been

shown to lead to a particularly high accuracy-to-cost ratio in force-
field based simulations (compared, for example, to GAPs)47.
Therefore, it appears useful to test, whether they could provide
an even improved performance compared also to the latest VASP
MLP variants. To ease the understanding of the later discussions,
the key properties of MTPs are summarized in the following.
Again, more information is provided in the methods section and a
detailed account of the underlying theory of MTPs can be found in
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the seminal paper by Shapeev et al.51. Unlike the VASP MLPs, MTPs
describe the atomic energies based on a fixed basis set with a
static number of parameters independent of the reference data
used. The a priori choice of that basis set allows a more
straightforward adjustment of their accuracy and speed51,58. On
more technical grounds, the basis sets of MTPs are built from
moment tensor descriptors consisting of a radial and an angular
part. The radial part is represented by a series of polynomials up to
a given order, while the angular part is represented by a tensor up
to a certain rank, which primarily determines the many-body
character of the potential. Combinations of those moment tensors
then define the basis functions, for which the parameters are
trained. How many combinations of moment tensors are included
in the potential, and, therefore, to what extent many-body
interactions are considered, is defined by a ’level’ parameter,
which represents the primary way to adjust the speed and
accuracy of an MTP. A second parameter to be chosen by the user
is the radial basis set size, which defines the maximum order of
the used polynomials. Increasing the MTP level and the basis set
size leads to an increased accuracy of the MTP, but this comes at
the price of a reduced computational efficiency. Unfortunately, for
complex systems MTPs are not well compatible with active-
learning strategies, like the one sketched above, as the required
frequent reparameterization of the MTPs in MLIP becomes very
time consuming. This is a consequence of the different
mathematical strategies necessary for determining the parameters
of the potentials (see Methods section). Further details can also be
found in Supplementary Note 2.2.
Another relevant choice regarding the functional form of the

MTPs and VASP MLPs is, how many chemically different species
are considered in their parametrization. The minimum number of
such atom types is given by the number of different chemical
elements present in the material of interest. Larger numbers of
atom types are obtained when also differentiating between
identical elements in different chemical environments. This
separation of atom types increases the number of parameters in
the potential and allows to describe variations in chemical
environments more accurately. However, the computational cost
is adversely affected due to the larger required basis set. This
increase in computational costs is significantly larger for the VASP
MLP than for the MTP, which is related to their functional form, as
discussed in the methods section.
As default approach for generating the data presented below,

we generated separate parameters for atoms in different chemical
environments, and, thus, employed a ‘full’ separation of atom
types with further details provided in Supplementary Note 2. In
selected cases, to better assess the trade-off between perfor-
mance and efficiency, we also performed parametrization runs
choosing only a single atom type per element.

Strategy: parametrization of the potentials
The parametrization of the MTPs and VASP MLPs requires DFT
calculated total energies, forces on atoms, and stresses on unit
cells for a sufficiently large number of reference configurations.
The necessary reference structures were generated employing the
on-the-fly machine-learning force field methodology implemen-
ted in VASP56,59, whose conceptual approach has been outlined in
the previous section. Details of the applied procedure like the
chosen temperature intervals and simulation lengths were
optimized in prior tests based on MOF-561. In short, the 0 K
optimized structures of the respective systems containing
between 54 and 114 atoms in the unit cell were used as starting
geometries. A molecular dynamics (MD) simulation was initiated in
an NPT ensemble using a Parrinello-Rahman barostat62 at zero
pressure in combination with a Langevin thermostat63 starting at
50 K and heating the system up to 900 K over the course of 50,000
time steps of 0.5 fs. Despite the temperature of interest being

around room temperature, we chose a rather high maximum
temperature of 900 K, because including larger atomic displace-
ment amplitudes at higher temperatures in the reference data set
is beneficial for machine learned potentials. This a consequence of
such potentials performing well in an interpolation regime, while
showing a poor ability to generalize to unknown situations58.
To assess a potentially beneficial impact of increasing the size of

the reference data sets, we also created ‘extended reference data
sets’ by performing additional learning runs in an NPT ensemble at
a constant temperature of 300 K for 100,000 time steps starting
from the already obtained potential. Here, the Bayesian error
threshold was fixed at a value of 0.02 eVÅ−1 for all systems, which
is slightly lower than the threshold value at 300 K during the
training runs with continuous heating.
Besides generating reference structures, the above procedure

(either including or excluding the ‘extended reference data set’)
already produces first versions of the VASP MLPs. Nevertheless,
the sampled reference data were used to retrain new VASP MLPs
for the production runs. This was done to increase their level of
accuracy with optimized settings for the selection of local
reference configurations and to increase the computational
efficiency by generating potentials excluding the on-the-fly error
prediction. The exact details regarding the used settings during
the retraining can be found in the Methods section.
In a next step, the DFT reference data generated in the VASP

active learning runs were used to train also moment tensor
potentials51, similar to the approach applied already in ref. 64 to
interfaces. The fitting of the MTP parameters was achieved by
minimizing a cost function built from deviations in energies,
forces, and stresses between DFT and MTP-predicted data and
employing the MLIP package58. Due to the stochastic nature of the
initialization of the MTP fits, we performed several fits for each
data set. The optimal potential for the respective system was then
chosen based on its description of a validation set of reference
structures. The associated technical details and numerical settings
are again provided in the Methods section including a discussion
of the computational cost of the fitting process. A further benefit
of using the same reference data sets for the MTPs and VASP MLPs
is that then one avoids any reference-bias, which allows a more
rigorous comparison of the performance of the different machine
learned potentials.

Strategy: benchmarking of the potentials
To demonstrate that the proposed strategy is truly useful, it is
crucial to benchmark the obtained potentials for a sufficiently
large range of materials and physical properties. Therefore, we
tested the VASP MLP and the MTP approaches on several
complementary MOF structures extensively described in literature
and discussed in more detail in the next section. Here, it should be
mentioned that the focus of the present paper will be on the
properties of chemically stable and homogeneous materials.
Therefore, at this stage, we do not aim at modelling, e.g., chemical
reactions, or the diffusion of guest molecules or solvents. Thus,
quantities of interest for the benchmarking comprise static and
dynamic structural properties of MOFs and derived quantities.
These include unit-cell parameters, energies, forces, stresses on
strained cells, elastic constants, thermal expansion coefficients,
and thermal conductivities. Of major relevance for several of those
properties are phonons, where we will not limit ourselves to the Γ-
point but will rather study phonons in the entire first Brillouin
zone. This is important, as properties like the thermodynamic
stability65, as well as heat and charge-transport properties crucially
depend on off-Γ phonons66.
The benchmarking will be done primarily via a comparison to

reference data generated by DFT and only secondarily via a
comparison to experimental data (e.g., when a quantity of interest
is not accessible to DFT due to its computational complexity). The
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reason for that is that the goal of the present study is to assess the
quality of the parametrization of the potentials and the suitability
of their functional form. A comparison to experiments would
additionally depend on the performance of the specific DFT
methodology used in the simulations. A general DFT benchmark-
ing for MOFs is, however, not in the focus of the present study. In
fact, if alternative DFT-based approaches (relying, e.g., on different
functionals or van der Waals corrections) were found to be more
suitable for describing certain quantities, one could easily adopt
them in the suggested parametrization process, as long as they
were efficient enough for the active learning strategy. Other
complications with experimental data are (i) that for many of the
benchmarked quantities they do not exist and (ii) that at realistic
experimental conditions MOF-based materials contain an often-
unknown concentration of guest molecules and/or defects.
Moreover, they typically consist of crystallites of limited size. This
frequently makes the experimental determination of truly intrinsic
materials properties of pristine MOF materials highly challenging.
To put the obtained agreement between the properties

obtained with machine-learned potentials and with DFT into
perspective, we also include a comparison to results obtained with
UFF4MOF18–20, as an example for an off-the-shelf transferrable
force fields widely used for modelling MOFs. As UFF4MOF has not
been specifically parametrized for the considered materials, larger
errors are to be expected. Still this comparison reveals, what level
of improvement in the results can be expected from machine-
learned potentials obtained via the suggested approach. It will
also answer the question, whether calculating the above-
mentioned quantities with force fields like UFF4MOF is sensible
at all. In order to not ignore system-specifically parametrized
traditional force field potentials, we will also provide a comparison
to properties calculated using a MOF-FF32 potential variant, which
has previously been parametrized for MOF-527 against static DFT
calculations similar to those performed here.

Materials of interest
The systems of interest for the present investigation share two
features: first, they are widely studied due to their high thermal

stability and/or promising properties and, secondly, their unit cells
are small enough that they are accessible to DFT simulations with
properly converged numerical settings on contemporary super-
computers. Moreover, the chosen MOFs fundamentally differ in
their topologies, shapes, dimensionalities, and flexibilities of the
pores, and in the nature of the metal ions. Regarding the latter, we
focus on closed-shell metal ions to avoid spin-order phenomena
as an additional complication. The structures of the systems are
shown in Fig. 1.
The first system is MOF-561 consisting of Zn4O nodes and 1,4-

benzene-dicarboxylate (bdc) linkers. It forms a stable face-centred
cubic structure with space group Fm-3m (225) containing 106
atoms in its primitive unit cell. Being one of the first published
MOFs61, it has been intensively studied in the past, and is also
included here as it is one of the very few MOFs for which reliable,
single crystal thermal conductivity measurement are available67.
The second material is UiO-6668. It consists of 12-coordinated ZrO
based nodes connected by bdc linkers. Despite its different
topology, the system still shows the same general symmetry as
MOF-5 with space group Fm-3m (225). UiO-66 is one of the most
commonly investigated MOFs69 primarily due to its exceptionally
high thermal stability70. Another system of interest is MOF-7471,
consisting of 1D extended metal-oxide pillar nodes connected by
dobdc (2,5-dioxido-1,4-benzenedicarboxylate) linkers. They are
aligned such that a honeycomb structure of hexagonally shaped
1D-extended pores is formed. This leads to a rhombohedral crystal
structure with space group R-3 (148) with 54 atoms in the
primitive unit cell. The system is known for its exceptional CO2

uptake72. MOF-74 exists for various metals including Ca, Mg, Zn,
Mn, Fe, Co, Cu and combinations thereof73. Here, we picked the
prominently investigated Zn variant. MOF-74 is particularly
interesting due to its pronounced anisotropy. The fourth and
final system is MIL-5374, a MOF consisting of metal-oxide node
pillars in an octahedral arrangement connected by bdc linkers in
the perpendicular direction forming a ‘wine rack’ shaped structure.
This MOF is known to occur in two primary phases: a low
temperature ‘narrow’ pore phase and a high temperature ‘large’
pore phase75. The large pore phase is orthorhombic with space
group Imma (74), while the narrow pore phase is a monoclinic

Fig. 1 Atomic structures of the investigated metal-organic frameworks. The following systems are considered: a MOF-5 (Zn), b UiO-66 (Zr),
c MOF-74 (Zn), d large and e narrow pore phase of MIL-53 (Al). For the anisotropic systems MOF-74 and MIL-53 (np) side- and top-views are
provided. The structures were visualized using the VESTA package119. Colour coding: Zn: brown, Zr: green, Al: blue, C: grey, H: white, O: red.
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system with space group Cc (9)74. For the purpose of this work, we
will consider both phases as separate systems, referring to them as
MIL-53 (lp) and MIL-53 (np). MIL-53 has also been synthesized for a
wide range of different metals. Here, we study the Al version of
MIL-53, as one of the most commonly investigated variants76.

Overview of the simulations
All quantities discussed in the following were calculated for all
MOFs with a VASP MLP, with an MTP of level 22 (and a radial basis-
set size of 10). The bulk of the presented data are based on force
fields trained on the initial set of reference configurations. Only
when including the extended reference data had a significant
impact, this will be discussed explicitly. In the main manuscript,
the focus will be on the results for MOF-5 and MOF-74 as
prototypical examples for an isotropic and an anisotropic MOF
with data on other MOFs usually mentioned only briefly. The
entirety of the results for all MOFs and all reference data sets are
provided in the Supplementary Notes 3.1, 3.3, and 3.5.
The reference data required for the training of the machine

learned potentials were obtained using forces, stresses and
energies calculated by density functional theory (DFT), as
described above and in the Method section. This yielded between
739 and 998 reference configurations in the initial training, as
summarized in Table 1 (together with the Bayesian error threshold
at the end of the training). The latter is lower in MOF-5 compared
to the other systems. This indicates a somewhat higher degree of
accuracy when describing the forces for this system, which is
confirmed when observing the evolution of the actual error during
training (see Supplementary Note 2.1). The number of reference
structures is in a similar range as for other machine-learned force
field potentials for MOFs, including available accurate neural
network potentials26,44 that either employ an incremental learning
approach26, or that are trained on structures derived from ab-initio
MD runs44.
Table 1 also contains the number of structures for the ‘extended

reference data set’ discussed above. As can be seen in Table 1, for
MOF-5, where the automatically set Bayesian threshold was
already relatively low after the initial training, only 136 additional
reference structures were added in the extended training run. In
contrast, the number of structures in the datasets increased by a
factor of two to three for the other systems, where the error
threshold was higher initially. Further details on the training
including the time evolution of the error threshold and the errors
of the VASP MLPs compared to the training set are provided in the
Supplementary Note 2.1.

Benchmarking: crystallographic unit cells
As a first step in the benchmarking of the obtained machine-
learned potentials, their ability to predict unit-cell parameters is
assessed. We start with an analysis of the unit-cell volumes.
Overall, the agreement of cell volumes between the VASP MLPs,
the MTPs, and DFT is excellent. This is evidenced by the relative
deviations between force-field and DFT data plotted in Fig. 2a, b

Table 1. Total number of generated reference structures for the on-
the-fly training of the VASP machine learned potentials.

system NUC
atoms Ninitial

references errorlastBayesian Nfinal
references

MOF-5 106 974 0.055 1110

UiO-66 114 739 0.077 1373

MOF-74 54 998 0.089 2549

MIL-53 (lp) 76 783 0.080 2832

MIL-53 (np) 76 827 0.088 3073

The numbers are given for each system after the initial training run
(heating of the system from 50 to 900 K over 25 ps), Ninitial

references , and after the
extension of the reference data set (training at constant temperature of
300 K over 50 ps with a fixed Bayesian error threshold of 0.02 eVÅ−1),
Nfinal
references ; additionally, the numbers of atoms in the unit cell used for the

training, NUC
atoms , and the last Bayesian error threshold in the initial training,

errorlastBayesian (given in eVÅ−1), are shown.

Fig. 2 Relative deviations of the volumes obtained with the force
field potentials compared to DFT and experimental
reference data. For the DFT comparison in (a, b) 0 K optimized
unit cells are considered, while for the comparison with experi-
mental data in (c) the values at room temperature are shown (see
main text for details). For all systems (MOF-5: blue, UiO-66: red, MOF-
74: yellow, MIL-53 (lp): teal, MIL-53 (np): grey) the comparison of the
volumes is shown for machine learned potentials trained on the
initial reference data set. MTP results are displayed by strongly
coloured bars, VASP MLPs results by lightly coloured bars, and
UFF4MOF results by empty bars. The simulated volumes in (c) were
obtained via NPT simulations at 300 K. They are compared to the
average of the experimentally obtained volumes. The individual
experimental results for each system are indicated as vertical lines in
the respective colour.
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on a linear and on a logarithmic scale. For the isotropic systems
MOF-5 and UiO-66 the relative deviation between both machine
learned potentials and the DFT calculated volumes is below 0.2‰.
For MOF-5, the error of the VASP MLPs is reduced even further by
approximately two orders of magnitude. This is in stark contrast to
the situation for UFF4MOF, where deviations amount to up to
14%. The errors of the machine learned force fields are somewhat
larger for the anisotropic MOFs, but they are still comparably low
(around 0.3%). Here, the errors of the UFF4MOF volumes are at
least one order of magnitude larger. A similar trend emerges,
when considering the unit-cell vectors, with negligible deviations
for the isotropic systems and somewhat larger errors for the
c-parameters in MOF-74 and MIL-53 (see Supplementary Note
3.1.1 and Supplementary Table 12).
When comparing the simulations to experimental unit-cell

volumes, one has to keep in mind that the majority of the
experiments for MOF-577–80, UiO-6668,80–82, MOF-7483–86, MIL-53
(lp)75,87,88 and MIL-53 (np)74,75,88 were performed at or around
room temperature (around 300 K). Thus, for this comparison we
did not merely optimize the geometries using the respective force
fields but performed NPT simulations at 300 K for the machine
learned potentials and for the UFF4MOF force field (for details see
method section). Thus, here the force fields not only need to be
able to correctly predict ‘0 K’ structures, but also need to capture
the thermal expansion of the MOF crystals. As will be discussed in
the section on Future Challenges, this is a particular challenge, as
also for the underlying DFT approach modelling thermal expan-
sion coefficients is a sizable challenge83. Moreover, there usually is
a rather significant spread in the experimental data. A comparison
with the average experimental cell volumes is contained in Fig. 2c.
The deviations of the cell volumes of individual measurements
from the average values are indicated by the horizontal lines. A
summary of the experimental data sets and the simulated 300 K
lattice parameters can be found in Table S18. Again, for most
systems the values obtained with the MTPs and VASP MLPs are
close to the values averaged over comparable experiments (with
deviations clearly below 2%). Only for MIL-53 (np) the situation
appears to be somewhat worse with an underestimation of the
average experimental volume by nearly 5%. In this context, one,
however, must note that also experimental values vary by ±4%
around the average. For UFF4MOF the agreement is much worse
also for the comparison to experimental cell volumes, as can be
inferred from Fig. 2c.

Benchmarking: prediction of energies, forces, and stresses
The probably most important benchmark for the performance of
the machine learned potentials is how well they describe total
energies, forces, and stresses. To ensure that the potentials
properly predict situations beyond the reference structures they
were trained on, it is important to analyse their accuracy based on
an independent set of validation data. Here, the validation set
consists of 100 DFT computed displaced structures obtained via
an active learning molecular dynamics simulation in VASP at a
temperature of 300 K. The deviations of the force-field predicted
total energies, forces, and stresses from the DFT simulations are
shown in Fig. 3 for MOF-5 and MOF-74. In neighbouring panels,
we, on the one hand, compare MTP with VASP MLP results and, on
the other hand, MTP with UFF4MOF data, which necessitates very
different scales. Corresponding plots for UiO-66, MIL-53 (lp), and
MIL-53 (np) portraying a similar situation are contained in
Supplementary Fig. 15. The energies and forces for the validation
data set were criteria for the choice of the optimal MTPs amongst
all generated ones (see above). Thus, in addition to the root mean
square deviations (RMSDs) for the chosen MTPs, also average
RMSD values for all trained MTPs are reported in parentheses. The
individual RMSD values for each generated potential can be found
in Supplementary Table 7.

For the energies of the displaced structures relative to the
equilibrium structures (first line of plots in Fig. 3), one observes an
excellent performance of both machine learned potentials (panels
a and c) where for the MTPs and VASP MLPs almost all deviations
amount to <1% of the absolute values. Notably, for both machine
learned potentials the largest differences in total energies for
MOF-5 are around 0.3 meV(atom)−1, which is well below the
chosen convergence criterion for the underlying DFT calculations,
which amounts to 1 meV(atom)−1. In sharp contrast, for UFF4MOF
the errors are more than two orders of magnitude larger with
deviations of up to 50meV(atom)−1 (see Fig. 3b).
For MOF-74, the MTP and VASP MLP errors are somewhat larger

than for MOF-5, but also for this system they are two orders of
magnitude below the UFF4MOF values. The trends for the
maximum errors in energies are fully consistent with those of
the corresponding RMSD values (see above).
For the forces in the second row of Fig. 3, the distributions of

the errors are symmetric around zero. Consistent with the
situation for the energies, the spread for the machine-learned
potentials is similarly small for MTPs and VASP MLPs, while the
transferrable force field at best displays a mediocre performance.
For example, for MOF-5 the RMSD for the forces calculated with
UFF4MOF amounts to 1.03 eVÅ−1, while it is only 0.02 eVÅ−1 for
the MTP and the VASP MLP. In view of the particular relevance of
force predictions, we considered also the Dreiding force field as an
example for a traditional potential ignorant of MOFs in its
parametrization. It performs even worse than UFF4MOF with an
RMSD of 2.13 eVÅ−1 for MOF-5. These errors are severe consider-
ing that the mean absolute value of all the forces in the validation
set for MOF-5 amounts to only 0.59 eVÅ−1. However, not all
traditional force field potentials perform poorly. For example,
employing a traditional, but system-specifically parameterized
MOF-FF potential27 for MOF-5 one obtains a substantially
improved RMSD of 0.09 eVÅ−1, which is an order of magnitude
lower than the UFF4MOF value (albeit still larger than the values
for the machine learned potentials). This (not entirely unexpect-
edly) suggests that the most important step in improving the
performance of a force-field is its system-specific parametrization.
For the errors of the stresses in the last row of Fig. 3, we observe

slightly larger values for the VASP MLPs than for the MTPs. This is
possibly related to the details in the MTP training, where increased
fitting weights for the stress contributions compared to the
weights for the contributions of the forces were used. This was not
done in the training of the VASP MLPs. For UFF4MOF, the error is
again by two orders of magnitude larger. A peculiarity are the
significantly larger stress errors for MOF-74 in Fig. 3k compared to
MOF-5 in Fig. 3i for all force fields. This can at least in part be
attributed to the absolute stress values being distinctly higher in
MOF-74.
Notably, we observed a clear reduction of the force and stress

errors of the VASP MLPs, when employing the extended reference
data set in the parametrisation, such that the initial RMSDs for
MOF-74 of 0.27 eVÅ−1 and 0.17 kbar decreased to 0.22 eVÅ−1 and
0.12 kbar, respectively. Conversely, for the MTPs the use of the
extended reference data sets has only a minor impact on the
errors for forces, energies and stresses (see Table S11).
Concerning the other investigated systems (see Supplementary

Fig. 15 and discussion in Supplementary Note 3.1), for the cubic
UiO-66 MOF the situation for force, stress and energy errors is
comparable to the MOF-5 case, while the anisotropic MIL-53
behaves more like MOF-74 with somewhat higher deviations for
forces and stresses.

Benchmarking: vibrational properties of the studied MOFs
After benchmarking the quality of the properties directly provided
by the machine learned potentials, it is useful to assess derived
quantities. Here, we will focus on vibrational properties, which for
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crystalline materials are determined by phonons. They crucially
impact phononic heat transport, charge transport (via the strong
electron-phonon coupling), and elastic properties. As a starting
point, Fig. 4a–d compares the low frequency phonon band
structures obtained with DFT and the MTPs for MOF-5, UiO-66,
MOF-74 and MIL-53 (lp). In Fig. 4e, the comparison between the
VASP MLP and DFT for MOF-5 is shown. Figure 4 does not contain
data for MIL-53 (np), as for this system it has been challenging to
compute a phonon band structure without imaginary modes
when using DFT (see Supplementary Note 1.4 for details).
The low frequency region in the focus of Fig. 4 is insofar

particularly interesting, as it contains the phonon modes most
relevant for the above-mentioned transport properties as well as
for the relative thermal stability of different phases. It is
immediately evident from the plots in Fig. 4 (and in Supplemen-
tary Fig. 24 for most VASP MLP cases) that both types of machine
learned potentials reproduce the DFT-calculated phonon band
structures almost perfectly. Especially for MOF-5 the largest
deviations amount to <5 cm−1, with this excellent agreement
persisting for UiO-66 for the MTPs. For MOF-74 and MIL-53 (lp), we
see some larger deviations for individual phonon bands, however,

especially for the MTPs the agreement is still extremely good and
outperforms the results for any traditional force field potentials
that we are aware of by a large margin. As shown in
Supplementary Fig. 24, for the VASP MLPs, the agreement for
MIL-53 (lp) and UiO-66 is slightly worse than for the MTPs, but can
be significantly improved using the extended reference data set
(see Supplementary Note 3.5).
The good agreement between force field and DFT-calculated

phonon band structures is lost when employing UFF4MOF, which
is illustrated for MOF-5 in Fig. 4f. The situation becomes even
worse for MOF-74, as illustrated in Supplementary Fig. 26.
UFF4MOF substantially overestimates the dispersion of the
acoustic modes, which results in too high group velocities. This
is one of the origins of the severely overestimated thermal
conductivity for MOF-5 when calculating it with UFF4MOF27.
Another peculiarity of UFF4MOF is that it yields a severe
overestimation of the frequencies of virtually all optical bands.
While the agreement of the phonon band structures is very

reassuring, Fig. 4 displays only the situation for the low frequency
phonons. As plotting the band structures over an extended
frequency range would not be useful due to the sheer number of

Fig. 3 Histograms detailing the deviations of the energies, forces, and stresses. Quantities obtained with the MTP (dark shading, all panels),
VASP MLP (light shading; a, c, e, g, i, k) and UFF4MOF (no shading; b, d, f, h, j, l) have been subtracted from DFT reference data for the
validation set. Deviations in energies relative to the situation at equilibrium geometry, ΔE, are shown in (a–d), differences in the components
of the forces on individual atoms, ΔF, are shown in (e–h), and differences in the components of the stresses Δσ are contained in (i–l). The areas
shaded in grey indicate the ranges with errors within 5% and 10% of the absolute DFT values for forces and stresses and within 1% for the
energy differences. The RMSD values of the respective quantities for various FFs compared to DFT are noted in the panels, where for the MTPs
the RMSD values for the ideal force field and the average RMSD values for all parametrized force fields (in parentheses) are provided. The
figure contains only the data for MOF-5 and MOF-74, with the data for all other studied MOFs contained in Supplementary Fig. 15.
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bands, in Fig. 5 the phonon densities of states (DOSs) calculated
with the force fields are compared to those obtained with DFT for
MOF-5 and MOF-74 (data for the other MOFs can be found in
Supplementary Fig. 16). In the left panels, phonon DOSs in the
same low frequency region covered also in Fig. 4 are displayed,
while the right panels show the DOSs for the entire frequency
range in which phonons exist in the studied materials. As
expected from the preceding discussion, for both the MTPs and
the VASP MLPs in the low frequency region one sees mostly minor
deviations from the DFT data, which are somewhat more
significant for MOF-74 than for MOF-5. Interestingly, this trend
also prevails, when plotting DOSs for the full frequency range. The
situation deteriorates for UFF4MOF, where it becomes virtually
impossible to correlate specific features in the DOSs calculated
with the force field with those calculated with DFT. Additionally,
UFF4MOF massively underestimates the magnitude of the
frequency gap found in the DFT simulations between 50 THz
and 90 THz.
To quantify the quality of the description of phonons by the

three types of force fields, Table 2 lists the RMSDs of the Γ-point
frequencies for all materials in the low-frequency and in the full
frequency ranges. Finally, for MOF-5, Table 2 also contains the
results for the MOF-FF force field. Especially in the low frequency
region, an excellent agreement with the DFT data is achieved for
all machine learned potentials with only single digit wavenumber
errors between 1.1 and 3.9 cm−1. Even for the full frequency range
and when using only the initial training set, MTP RMSD values for
most systems are around an amazing 3 cm−1 with a maximum of
7.6 cm−1 for MIL-53 (np). For the VASP MLPs, deviations in the
entire frequency range are somewhat larger ranging from 4.2 to
10.4 cm−1. However, especially for the VASP MLP, the frequency
error can be improved substantially when extending the reference
data set, as shown in the Supplementary Note 3.1. The MOF-5

frequency error for the conventional and system-specific MOF-FF
potential is substantially higher than for the machine-learned
counterparts. However, MOF-FF still performs better by more than
one order of magnitude compared to UFF4MOF, where the
frequency RMSDs can reach several hundred wavenumbers over
the entire frequency region.

Benchmarking: elastic properties of the MOFs
Another relevant quantity related to the properties of acoustic
phonons (via the Christoffel equation89) is the elastic stiffness
tensor, C. The symmetry-inequivalent elements of C obtained from
DFT and from the force field potentials are shown in Fig. 6 for
MOF-5 and MOF-74. For the MTPs the agreement is close to ideal
for both materials with maximum deviations of 1 GPa. For the
VASP MLPs, the situation in MOF-5 is similar but in MOF-74 the
agreement is slightly worse. Again, it can be improved by
considering the extended reference data set. The lower degree
of accuracy for MOF-74 is presumably caused by the more
demanding description of the elastic constants in that highly
anisotropic system90. Additionally, as mentioned already in the
context of the stresses on strained cells discussed above, the MTPs
were trained with higher relative weights for the stress contribu-
tions compared to the forces, which could explain the improved
level of accuracy in the MTP-calculated elastic constants.
Not unexpectedly, the performance of UFF4MOF is much worse.

An extreme example is the C33 constant in MOF-74, which when
using UFF4MOF is calculated to be >5 times as high as in the DFT
reference (see Fig. 7f). Interestingly, the bulk modulus for MOF-5
calculated via the Voigt average form the components of the
stiffness tensor is rather similar when calculated with UFF4MOF
(16.8 GPa) and with DFT (16.1 GPa). These values are consistent
with the literature14, but considering that the individual

Fig. 4 Comparison of low frequency phonon band structures. They were computed using the ‘ideal’ MTPs (a–d) trained on the initial
reference data set (coloured lines) and employing DFT (black lines) for the following systems: MOF-5 in a, UiO-66 in b, MOF-74 in c and MIL-53
(lp) in d. The comparison between the VASP MLP and DFT for MOF-5 is given in panel e. Panel f contains for MOF-5 the comparison between
UFF4MOF and DFT. High symmetry point names correspond to the space group dependent conventions detailed in ref. 120.
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components of the stiffness tensor differ substantially between
the two approaches, the seemingly good agreement for UFF4MOF
for the bulk modulus has to be attributed to a fortuitous
cancellation of errors.
The numerical values of the tensor components as well as plots

for UiO-66 and MIL-53 are contained in Supplementary Note 3.1.4.
The situation for the machine learned potentials is again
comparable to that in MOF-5 and MOF-74 with deviations being
largest for MIL-53 (np) with an RMSD for all tensor elements of
1.2 GPa. However, this is still quite very good, given the higher
absolute values of the tensor elements in that material.

Benchmarking: thermal conductivity
As a final benchmark quantity, we consider the thermal
conductivity. It is again intimately related to phonon properties,
where now also anharmonic effects play a decisive role. As
calculating the thermal conductivity of MOFs employing DFT is far
beyond present computational possibilities, the comparison is
restricted to experimental data and here to MOF-5, as to the best
of our knowledge this is the only materials amongst the ones
studied here for which high-quality single crystal data exist.

According to ref. 67, the experimental room temperature value of
the thermal conductivity of MOF-5 amounts to 0.32 W(mK)−1 and
it has already been shown that the UFF4MOF and the Dreiding
force fields fail in reproducing that value (yielding thermal
conductivities of 0.847 W(mK)−1 and 1.102W(mK)−1, respectively),
while the system-specifically parametrized MOF-FF variant pro-
vides a sensible value of 0.29W(mK)−127. Here, non-equilibrium
molecular dynamics simulations for MOF-5 were performed using
a level 18 MTP. Notably, for these simulations we used a lower
level of the MTP to reduce the computational cost of correcting for
finite size effects, which requires simulations for various supercell
lengths91,92. This is, however, not expected to have a major
impact, as the difference in the uncorrected thermal conductivities
for selected cell lengths between level 22 and level 18 MTPs are
minimal as shown in Supplementary Note 4.2. The resulting
thermal conductivity obtained from NEMD simulations for cell
lengths ranging from 208 to 416 Å perfectly reproduces the
experiment, yielding a value of 0.32W(mK)−1. As a technical detail,
it should be mentioned that this result has been obtained
applying the traditional approach of determining the temperature
gradient in the NEMD simulation in the region of a linear

Fig. 5 Phonon densities of states (DOSs) calculated with DFT and various force fields. Comparisons of phonon DOSs are shown for DFT
calculations (black lines) and the force field potentials (shaded areas/coloured lines) for the low frequency phonon modes in (a, c) and for the
entire phonon spectrum in (b, d). The plots contain the comparisons for MOF-5 (a, b, blue) and for MOF-74 (c, d, orange) for the MTP, the VASP
MLP, and the UFF4MOF. The DOSs were obtained for 11×11×11 q-point meshes used to sample the first Brillouin zone and a Gaussian
smearing is applied to broaden the modes. The width of that smearing is set to 0.05 THz for the low frequency region in (a, c) and to 0.5 THz
for the entire frequency range in (b, d).
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temperature decrease. When instead employing the method of Li
et al., determining the temperature gradient from the temperature
difference between the hot and cold thermostats91 (which we
used previously27,33), a somewhat lower value of 0.26 W(mK)−1 is
obtained. Therefore, we also employed the ‘approach to
equilibrium molecular dynamics’, AEMD, method as a comple-
mentary molecular dynamics-based strategy for obtaining thermal
conductivities. This again yielded a value of 0.32 W(mK)−1,
confirming the excellent agreement of the MTP simulations with
the experimental data. A full discussion und further details
regarding the heat transport simulations are provided in
Supplementary Note 4.2. At the time of the calculations for this
paper, NEMD or AEMD simulations were not accessible using
VASP, hence no comparison between the VASP MLPs and MTPs
can be provided for the thermal conductivity.

Future challenges
While the above discussion highlights the superior performance of
the considered machine learned potentials for predicting various
observables, we will next discuss thermal expansion as a process
for which the performance of the machine learned potentials
appears to be less satisfactory. In the case of thermal expansion,
one again needs to compare the calculated thermal expansion
coefficients to experimental data, as simulating the thermal
expansion of MOFs with DFT is extremely challenging and prone
to errors (see discussion in the Supporting Information of ref. 83).
As far as the available experimental data are concerned, some of
the issues were already mentioned in the context of the
crystallographic unit cells at 300 K for the narrow pore phase of
MIL-53, where the experimental results also show a substantial
spread. The situation is also problematic for MOF-74, where our
own measurements yielded only very minor changes of the unit-
cell volume with temperature83,93. In view of these uncertainties,
thermal expansion shall only be briefly discussed in the following,
with significantly more details provided in Supplementary Note
4.1.
For example, for MOF-74, the MTPs/VASP MLPs predict a very

small positive (1.6 ∙ 10−6 K−1 and 1.2 ∙ 10−6 K−1/2.0 ∙ 10−6 K−1 and

6.9 ∙ 10−6 K−1) thermal expansion coefficient in linker directions
instead of a very small negative value (−2 ∙ 10−6 K−1) suggested by
the experiments. Due to the generally limited accuracy of the
experimental and computational methods this difference might
still be acceptable. What is, however, more concerning is that
along the pore direction, the MTPs/VASP MLPs predict a thermal
expansion value of 31.0 ∙ 10−6 K−1/25.3 ∙ 10−6 K−1, which is nearly
an order of magnitude larger than the experimental result of
~4 ∙ 10−6 K[−183.
There are, however, also cases in which the agreement between

simulations and experiments is better, like for MOF-5, where the
simulated thermal expansion coefficients of −11.3 ∙ 10-6 K−1 for
the MTP and −11.5 ∙ 10-6 K−1 for the VASP MLP are rather close to
the experimental values, which range between −13.1 ∙ 10−6 K−1

and −15.3 ∙ 10−6 K−178,79,94. As already mentioned above, at this
point it is unclear, whether the varying quality of the agreement
between theory and experiments arises from the machine learned
potentials, or whether the problems are at least in part inherent to
the DFT approach used for the reference data generation. An
indication that the chosen DFT methodology does have a
significant impact is that for MOF-74 it has been observed that
when applying the numerically more stable mode Grüneisen
theory of thermal expansion, the sign of the thermal expansion
coefficient in linker direction would actually depend on the
chosen functional (PBE vs. PBEsol)83.

Fig. 6 Comparison of the elements of the elastic stiffness tensor.
Shown are the tensor elements Ci;j calculated with DFT and with the
MTPs in (a, b), with DFT and with the VASP MLPs in (c, d), as well as
with DFT and UFF4MOF in (e, f). The plots shown here contain data
for MOF-5 in (a, c, d, blue) and MOF-74 in (b, d, f, orange) with
equivalent plots for the other studied MOFs provided in Supple-
mentary Fig. 17. In the upper and central panels, small filled symbols
indicate values obtained with potentials trained on the initial
reference data set and large empty symbols refer to the values for
potentials trained on the extended reference data set. The solid
black lines pass through the origin and have a slope of 1 such that
they indicate an ideal agreement between force field and DFT
simulations.

Table 2. Root mean square deviations (RMSDs) for the phonon
frequencies of the investigated systems.

System Method types RMSDfull / cm
−1 RMSD200 / cm−1

MOF-5 VASP MLP 7 9.0 1.5

MTP 7 3.3 1.6

UFF4MOF 5 203.2 51.0

MOF-FF33 7 14.1 7.8

UiO-66 VASP MLP 9 10.4 2.7

MTP 9 3.7 1.6

MOF-74 VASP MLP 8 4.2 1.1

MTP 8 3.1 1.4

UFF4MOF 4 242.8 116.9

MIL-53 (lp) VASP MLP 8 8.8 3.2

MTP 8 5.2 2.8

MIL-53 (np) VASP MLP 8 6.9 2.5

MTP 8 7.6 3.9

The values are given for Γ-point phonons obtained by the MTPs and VASP
MLPs for the full frequency range, RMSDfull, and for the low frequency
modes up to 200 cm−1 (=6 THz), RMSD200. Additionally, values for
UFF4MOF19,20, Dreiding17 and a system-specifically parameterized MOF-
FF32,33 are provided for selected systems. The number of atom types used
in each respective force field model is also given.
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The other major challenge when applying the MTP approach to
MOFs is to train the potential such that a force field is obtained
that is fully stable for the targeted simulation conditions. Stable
here means that the system in question remains structurally intact
also over hundreds of thousands (or even millions) of molecular
dynamics time steps that one would, for example, apply when
performing NEMD simulations. A structural disintegration of the
material is not possible for simple force field potentials
characterized, e.g., by harmonic bonding potentials, but for
approaches based on mathematically more complex models, like
machine learned potentials, this can become a problem. This is
especially true when in the stochastic description of the atomic
motion at finite temperatures large displacements occur for which
the potential has not been sufficiently well trained.
Improving the long-term stability of the force fields was one of

the main motivations for increasing the final temperature in the
on-the-fly training runs to 900 K. Nevertheless, not all trained force
fields turned out to be stable over hundreds of thousands of time

steps even at room temperature. Notably, the situation turned out
to be significantly more problematic for the MTPs than for the
VASP MLPs, as discussed in detail for the MTPs in Supplementary
Note 2.2. We attribute the less satisfactory performance of MTPs in
the context of thermal stability to their poorer ability to generalize
compared to GAP-type potentials, as already suggested pre-
viously54. This has been attributed to the unregularized global
basis functions of the MTP54. The MTPs for MIL-53 were
particularly problematic, as the material features a comparatively
flat energy landscape. One possibility to mend this problem was
to train several MTPs using the same reference data. In that case,
due to variations originating from the stochastic nature of the
initialization of the training procedure, some potentials turned out
to be substantially more stable than others. However, this is not an
ideal solution, as additional extensive MD test runs would be
required for each MTP to judge the thermal stability. Moreover,
training a large number of accurate MTPs is computational costly.
Notably, also the extended reference data set obtained based on
the molecular dynamics simulations at 300 K did not substantially
improve the situation. However, adding 1009 DFT reference
structures based on active learning runs at 400 K at a reduced
error threshold did result in MTPs for MIL-53 (lp) that were all
stable at least up to room temperature.
These results suggest that at least under certain circumstances

adding more strongly displaced reference structures obtained by
higher-temperature learning steps helps overcoming the problem
of long-term stability of the force field. Unfortunately, this is
associated with a significantly increased learning effort, where
additional reference data beyond the first 500–1000 structures do
not substantially improve the accuracy of the MTPs. Additionally,
for MTPs it could be beneficial, to further improve the data
sampling approach or to augment the force fields with potential

Fig. 7 Evaluation of the accuracy and speed of different variants
of the tested force field potentials obtained for different numbers
of atom types. In a the RMSDs of the forces for the validation set
between DFT and various force-field approaches are shown as a
function of the CPU time used per time step and atom for MOF-5.
Data points are included for: MTPs at various levels trained with 7
atom types (blue squares), a level 22 MTP trained with only 4 atom
types (blue diamond), two variants of the VASP MLP trained with 4
atom types (red square) and with 7 atom types (purple square), a
system-specifically trained MOF-FF variant33 (green triangle), and
the transferable UFF4MOF19 (pink star) and Dreiding17 force fields
(orange down triangle). The speed was obtained by performing an
MD simulation in the NPT ensemble with further details provided in
the main text. In b, the impact of including the separation of atom
types on the validation set force RMSD is shown for the MTP and the
VASP MLP for MOF-5 and MOF-74. c contains the values of force
RMSDs and CPU times for different variants of the VASP MLPs for
MOF-5 and MOF-74. The colour coding refers to the number of used
atom types when training the potential (purple symbols: 7 atom
types for MOF-5 and 8 for MOF-74; red symbols: 4 atom types).
Inverted triangles indicate potentials trained on the extended
reference data set, all other potentials were trained on the initial
reference data set. Empty symbols indicate MLPs obtained retraining
the potential using the default settings of VASP 6.4.1 and filled
symbols represent MLPs obtained with adjusted settings. Symbols
on the left side (’refit’ bracket) indicate MLPs after a refit designed
for production runs. Additional variation in the settings comprise:
increasing the maximum number of local reference configurations
from 1500 to 3000 for the 4 typed potential (Nmax

B , diamond) and
reducing the cutoff of the angular descriptors from 5 to 4 (Racut,
pentagons). In the lower left circle, results for MOF-5 are shown,
while the rest of the panel only contains data for MOF-74. The CPU
time used was tested for a 31104 atom sized supercell of MOF-74
with otherwise the same settings as for MOF-5.
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terms that prevent a structural disintegration of the studied
system.
In general, the stability issues are much less pronounced for the

VASP MLPs, which use a basis set more suitable for generalization
to unknown situations. Based on our stability tests in an NPT
ensemble, all VASP MLPs trained on the initial reference data set
including atom type separation were stable up to 700 K, which is
the maximum temperature included in the tests (see also
Supplementary Note 4.1.2). Still, at very high temperatures some
most likely unphysical cell deformations took place for some of
the systems, but at least the structure never disintegrated.

Evaluating the efficiency of the potentials
So far, the discussion focused on the precision of the machine
learned potentials, demonstrating that they show an excellent
performance when compared to DFT data. What has not been
touched upon so far is an evaluation of the computational
efficiency of the potentials. Here, the MTPs allow a straightforward
adjustment of the number of parameters of the potentials and,
thus, of their numerical efficiency. The primary hyperparameter to
tune in this context is the so-called ‘level’ of the MTP, which
controls the degree to which many-body interactions are included
and, thus, substantially impacts the number of parameters.
Consequently, it has a much more profound impact on both
precision and performance than the number of radial basis
functions, which, thus, has been set to 10 for all presented data.
The other setting of the MTPs that substantially affects the
computational efficiency is the cutoff for the interactions.
However, if one deviates too much from the default value of 5 Å
(chosen also here), the precision of the potentials deteriorates
severely. Therefore, using the same reference data as above we
systematically varied the level of the MTPs from 10 to 24 and
compared the accuracy (in terms of force RMSDs) and the speed
of the force fields in Fig. 7. In panel a, the computational speed of
the machine learned potentials is correlated with their accuracy
and compared to more traditionally force fields for MOF-5. For this
comparison we use three different types of conventional
potentials: a system-specifically parameterized MOF-FF potential
for MOF-5 used in our previous work32,33, the transferable
universal force field18 extended for MOFs (UFF4MOF)19,20, and
the transferable Dreiding17 potential. For the VASP MLPs, panel (a)
contains only the data for the force field refitted on the initial
reference data set, as described in the computational approach
section (using VASP 6.4.1). The computational speed was
evaluated for NPT simulations on 4 × 4 × 4 conventional supercells
of MOF-5 carried out on 64 cores of a dual socket AMD EPYC 7713
(Milan) node of the supercomputer VSC-5 (see https://vsc.ac.at/
systems/vsc-5/). It should be mentioned that differences in the
speeds of the force fields are caused by differences in scaling with
the number of nodes (see Supplementary Note 4.1.4) and can be
affected by using different libraries when compiling the VASP and
the LAMMPS codes. Additionally, we stress that the tests
performed here are far from comprehensive and are restricted
to the force fields considered in this study. There certainly are
other options, like, for example, the GPUMD48 force fields, for
which a very high speed at good accuracy has been reported for
MOFs44.
The traditional UFF4MOF and Dreiding potentials are the most

computationally efficient options, but they also suffer from a poor
description of the forces with RMSD values above 1 eVÅ−1. As
discussed already above, the system-specifically parameterized
MOF-FF potential hugely improves the situation with an RMSD
value of 0.09 eVÅ−1. However, the more complex functional form
including cross terms and an optional, more accurate treatment of
long-range electrostatic interactions via a particle-particle particle-
mesh solver95 slows down MOF-FF by a factor of ca. 5 compared
to the more simple force fields.

Significantly more accurate are MTPs, where the highest levels
show the best degree of accuracy among the tested potentials for
MOF-5 with a force RMSD of 0.016 eVÅ−1. Interestingly, reducing
the level of the MTP from 24 to 10 yields a speedup by a factor of
28, but at the same time less than doubles the force RMSD (to
0.033 eVÅ−1) such that the level 10 MTP still clearly outperforms
MOF-FF. In fact, that MTP is computationally only about twice as
expensive as UFF4MOF, but with a force RMSD reduced by a factor
of 34. For the level 22 MTP, we also tested the performance
without separating the atom types: as can be clearly seen in
Fig. 7a, this has hardly any impact on the computational efficiency,
but decreases the degree of accuracy (with the force RMSD
increasing from 0.016 eVÅ−1 to 0.021 eVÅ−1 for 7 and 4 atom
types, respectively).
The VASP MLPs are of a similar accuracy as the mid- to high-

level MTPs, but they are at least a factor of 2–3 slower than the
highest level MTPs. At least in part this can be attributed to the
rather unfavourable scaling of the parallelization of the molecular
dynamics part of VASP, as shown in Supplementary Note 4.1.4. For
example, when using only up to 16 cores, the VASP MLP with 4
atom types is only about 50% slower than the level 22 MTP. We
expect this scaling to be improved in future implementations.
Figure 7a also shows that the VASP MLP with 7 atom types is

about a factor of 2 slower than the one with 4 types while only
offering a moderately increased degree of accuracy. Conversely,
the gain when considering more atom types in the VASP MLP is
much more significant for MOF-74, as shown in Fig. 7b. Thus, in
the case of the VASP-generated potential, whether or not it is
useful to consider more atom types is system dependent. As
indicated already above, the situation for the MTPs is quite
different: there, the benefit of considering more atom types is
generally larger, while the additional computational cost is
negligible. Thus, for MTPs differentiating between atoms in
chemically different environments is definitely advisable for the
considered systems. We tentatively attribute this difference
between the MTPs and VASP MLPs to the fact that a larger
number of atom types significantly increases the number of
adjustable parameters in MTPs, while in VASP MLPs the size of the
basis set is adjusted dynamically, which at least in part anticipates
the benefit of more atom types for the accuracy.
In the course of our work, we learned that the speed and

accuracy of the VASP MLPs retrained employing the VASP 6.4.1
default settings clearly outperformed VASP MLPs trained with the
default settings of earlier versions of the code both in terms of
speed and especially accuracy. The latter resulted primarily from
including a larger number of local reference configurations in a
reselection process (datapoints below the ‘select’ bracket, which
serve as the reference data for the following comparison). A more
in-depth discussion of the dependence of the performance of the
VASP MLPs on the version of the code can be found in
Supplementary Note 3.7. Another factor hugely impacting the
speed of the VASP MLP is whether or not the live error estimation
in the VASP MLP is performed. As shown in Fig. 7c, when this is
not the case (like for the potentials used to generate the symbols
under the ‘refit’ bracket), the computational cost is reduced by
about two orders of magnitude. For the ‘refit’ calculations also the
accuracy of the VASP MLP is slightly improved due to the use of a
singular value decomposition approach96, when refitting the
parameters (in contrast to the less accurate but more efficient LU
factorisation during training). When additionally increasing the
maximum number of reference configurations retained in the
VASP MLP (red diamond), a higher level of accuracy is achieved,
albeit at the cost of a reduced computational speed. To again
improve the speed of the potential, reducing the radial cutoff of
the angular descriptors appears to be a viable option. However, in
the performed tests, (see pentagons) the difference compared to
choosing the default value is only minor. The most accurate VASP
MLP for MOF-74 is achieved combining a large number of atom
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types with an extended reference data set (see purple down-
triangle). Overall, for the tests under the 'refit' bracket one
observes that, whenever one increases the accuracy of the force
prediction by accordingly setting one of the rather diverse
parameters explored for the VASP MLPs, this also decreases the
overall computational speed.

DISCUSSION
In summary, in this work we describe a strategy for obtaining
machine learned potentials that allow the description of the
properties of MOFs at essentially DFT quality with hugely reduced
computational costs. This strategy uses the active learning
approach of VASP56,97 for sampling the configuration space and
for generating reference structures. On these reference data,
machine learned potentials can already be trained in VASP, which
are highly accurate and efficient (especially when using the latest
releases of the code). The resulting force fields are nearly two
orders of magnitude more accurate, but also clearly slower than
traditional potentials like UFF4MOF. If speed is the priority, the
effective reference data generation procedure of VASP can be
combined with the numerical efficiency and also high accuracy of
moment tensor potentials (MTPs)51,58. They allow flexible adjust-
ments to their speed and accuracy by manually adjusting the size
of the basis set leading to potentials, where the faster variants are
only less than an order of magnitude slower than traditional
transferable potentials while still maintaining an exceptionally
high degree of accuracy. As all necessary codes (the VASP and
MLIP software packages) are readily available, a general use of the
proposed strategy should be comparably straightforward.
A systematic comparison of predicted forces, energies, stresses,

phonon band-structures, and thermal transport coefficients shows
that the such-trained MTPs and VASP MLPs yield a truly amazing
agreement with DFT reference data (as the primary benchmark
quantities) and with experimental data in cases where DFT data
are not available. The said tests were performed for a
representative selection of isotropic as well as anisotropic MOFs
including MOF-5, MOF-74, UiO-66, and the narrow and large pore
phases of MIL-53. Compared to transferrable force fields like
UFF4MOF the improvements in prediction quality is enormous
with errors for certain quantities dropping by several orders of
magnitude and this at only very moderately increased computa-
tional costs. Only when attempting to describe thermal expansion
processes, distinct deviations between the machine learned
potentials and experiments are observed, where there are some
indications that in that case the reference DFT methodology
might be at least partly at fault. Notably, in the case of MTPs for
some systems also the thermal stability of the force fields needs to
be further improved. This can become an issue when performing
extended molecular dynamics runs comprising hundreds of
thousands of time steps, but for the systems considered here
the problem can be mediated by including reference data from
dedicated high temperature runs. The VASP generated potentials
suffer substantially less from issues of thermal stability. This makes
them a highly promising option especially for flexible materials
with flat potential energy surfaces.
Overall, the data presented here and other recent advance-

ments in MOF force field development26,44 clearly point towards
machine-learned potentials as becoming a game-changer for the
modelling of this complex class of materials. This particularly
applies to the simulation of dynamical MOF properties, which are
often computationally not accessible to ab-inito methods like DFT
but for whose description traditional force fields are either too
inaccurate or too tedious to parametrize. Here, the use of VASP
MLPs or MTPs can speed up the simulations by many orders of
magnitude keeping essentially the accuracy level of the reference
method used in their parametrization.

METHODS
In this section, we will discuss the most important settings and
technical details relevant for this work. A more detailed
comparison of the nature of MTPs and VASP MLPs is also
provided. Additional technical information and convergence tests
are contained in the Supplementary Information.

The DFT approach
For the required reference ab-initio calculations, density functional
theory (DFT) simulations were performed with the Vienna ab-initio
Software Package (VASP)98–103 employing the Perdew-Burke-
Ernzerhof (PBE) functional104,105 and applying Grimme’s D3
correction with Becke-Johnson damping106,107 to account for
dispersive forces. For all training runs a plane-wave energy cutoff
of 900 eV was chosen after careful convergence tests based on
total energies, vibrational frequencies and elastic moduli. The
energy convergence for the self-consistent field approach was set
to 10-8 eV. The structures for each system were optimized until the
maximum absolute force component in the system reached at
least <10-3 eVÅ−1 using a quasi-Newton optimization algorithm.
Further details on the VASP settings including the system-
specifically chosen k-space sampling mesh are provided in
Supplementary Note 1.

Functional form of the machine learned potentials
This section introduces aspects regarding the functional form of
the potentials that are relevant for understanding the funda-
mental differences between the kernel-based VASP MLPs and the
moment tensor potentials. It also summarizes the chosen settings
used throughout this work. A comprehensive description of the
VASP MLPs and of the MTPs beyond specific aspects relevant to
assess the results presented in this work can be found in refs. 51,56.
The energies for each atom Ei in the VASP MLPs56 are computed

from kernels K which represent a measure for the similarity
between local reference configurations, iB, and the local config-
uration of interest, i.

Ei ¼
XNB

iB¼1

wiBK Xi;XiBð Þ (1)

The kernel is built from the expansion coefficients of the radial
and angular descriptors containing information regarding the
geometry of the local configurations. The descriptors are defined
up to a certain cut-off, which was set to 5 Å during active learning.
For the reselection of the reference configurations and subse-
quent refits, the cut-off for the radial descriptors was set to 8 Å.
The weights, wiB, represent the parameter that needs to be trained
for each local reference configuration iB. This is done not only for
the energies but also for the forces and stresses using the
derivatives of the kernel with respect to the atom positions and
cell parameters. Notably, the number of local reference config-
urations, iB, increases with the number of reference structures
contained in the training set (up to a maximum value).
Conversely, the basis set of the MTPs51 is built from moment

tensor descriptors, M, describing the neighbourhood, n, around an
atom i:

Mμ;νðniÞ ¼
X

j

f μðjrijj; zi; zjÞ rij � ¼ � rij|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ν times

:
(2)

These descriptors are constructed from a radial part fμ and an
angular part represented by a series of ν outer products of the
distance vector rij. The radial part consists of a sum of radial basis
functions defined up to a distance cut-off for each pair of atom
types zi and zj, where the primary component is a polynomial, Qβ,
up to a maximum order NQ. This number is usually referred to as
the number of radial basis functions. This means that NQ
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parameters cβμ;zi ;zj are associated with the radial part of the
descriptor:

f μ rij
�� ��; zi; zj
� � ¼

XNQ

β¼1

cβμ;zi ;zjQ
β rij
�� ��� �

: (3)

The indices μ and ν define the ‘level’58 of the MTP with
level Mμ;ν

� � ¼ 2þ 4μþ ν. The level specifies, which combinations
of moment tensor descriptors are included to form the basis
functions Bα, which then lead to the energy of an atom around a
neighbourhood using

Ei ¼
X

α

ξαBα nið Þ: (4)

Thus, the parameters that need to be trained are the radial
parameters cβμ;zi ;zj for each atom pair and value of μ and the
parameters ξα for each basis function. The primary difference
compared to the VASP MLPs is that here the number of
parameters does not depend on the amount of training data
and can be adjusted freely based on the needs of the user by
setting the values for the level and NQ. Since especially the angular
component of the moment tensor descriptors can be reused for
many different basis functions, a high level of computational
efficiency is maintained.

On-the-fly training of the VASP MLPs
As indicated in the previous section, the energy, force and stress
weights for each of the basis functions in a VASP MLP need to be
trained on the reference data. For this, the reference data are
generated on-the-fly in an active learning approach, which is
based on molecular dynamics simulations. These were carried out
using a time step of 0.5 fs. The friction coefficient for the Langevin
thermostats and barostats was chosen to be 10 ps−1 and a fictious
mass of 1000 amu was assigned to it for all systems, as required
for the Langevin barostat method of Parrinello and Rahman108. In
the initial training runs, the temperature was set to gradually
increase from 50 K to 900 K over 50,000 time steps. To generate
the independent test sets to validate energies, atomic forces and
stress tensors of the individual force field potentials, another set of
completely independent on-the-fly machine learning force field
runs was performed from scratch in an NPT ensemble at 300 K
with a time step of 0.5 fs. These runs continued until 100 DFT
calculations had been performed, which then served as system-
specific test sets. In the context of generating the test set, the
machine learning approach was used primarily to improve the
sampling of phase space compared to, e.g., picking every nth

configuration from a conventional ab-initio MD run.
The complexity of the selection and training procedure

evidently leads to a number of parameters, whose choice leaves
a large room for optimizations. This is also reflected by
advancement of the VASP code, where version 6.4.1 led to
significant improvements over version 6.3.0. Since the training
runs for this work were carried out with version 6.3.0, the local
reference configurations were reselected with version 6.4.1 with
the ML_MODE=select setting. Therefore, when discussing actual
numerical values for the parameters in the following, we give
them for the training run and for the situation after the reselection
of local configurations in all cases in which they differ (see also the
Supplementary Note 3.7 and ref. 56 for more details).
All training runs were performed using only 4 different atom

types (corresponding to the chemical elements) for each system.
Subsequently, for the reselection of the reference configurations
the number of atom types was increased to differentiate between
chemically different environments. Another important aspect of
the active learning approach is to decide when a first principles
calculation needs to be performed. This is done when the highest

Bayesian errors on the forces exceeds a certain threshold. This
threshold starts at 0.002 eVÅ−1 and is allowed to adjust
dynamically based on the average Bayesian error from previous
10 steps in which the potential was retrained. The Bayesian error
on the forces of individual atoms additionally decides, whether
the neighbourhood around that atom is added to the local
reference configurations. The total number of local reference
configurations can be controlled using a multiplicative factor (set
by ML_SCLC_CTIFOR) acting on the Bayesian error threshold,
which only affects the selection process but not the decision when
first principle calculations are performed. During active learning,
this factor was set to 1.0, while for the reselection of local
reference configurations for the final VASP MTP it was reduced to
0.6, so that more local reference configurations were picked (see
Supplementary Note 3.7 for specific details). As a further
sparsification step, a CUR algorithm109 selects configurations to
be discarded when the eigenvalues of the kernel matrix fall below
a certain threshold, as then the similarity between individual
reference configurations would be too large. During the training
runs, the CUR sparsification threshold parameter was set to 10−10

and for the reselection of the local configurations and the
subsequent refitting procedure, it was set to 10−11 to obtain fast
potentials. The selection and sparsification procedures also allow
setting the maximum number of local reference configurations to
limit the computational cost. In VASP, this can be done with the
ML_MB tag for each atom type and was set to 3000 for each
atomic species during active learning. For the reselected VASP
MLPs it was set to 1500 per atomic species to speed up the
potential. For Fig. 7, tests were also performed using the refined
potentials with a maximum of 3000 configurations per atom types.
To speed up the training during active learning, the potential is
retrained only after 5 first principles steps had been added to the
reference data or when the Bayesian error exceeded the threshold
by a factor of 2 (4 in the case of the reselection).
The weights of the VASP MLPs are trained by solving a linear

system of equations containing the weights, the kernels, and
dimensionless energies, forces and stresses for the structures in
the reference data set. For this, Bayesian regression is used, where
the likelihood, prior and posterior distributions are described via
multivariate Gaussian distributions56, with the optimum weights
located at the centre of the distributions. These optimum weights
can then be obtained by solving a new system of equations.
During on-the-fly training this is performed via an efficient LU
factorization procedure110. In postprocessing, a more expensive
and more accurate approach leading to more accurate results of
the weights using a singular value decomposition (SVD) method
with Tikhonov regularisation96 is used (set with ML_MODE=refit),
where the regularisation precision parameter ML_SIGW0 is set to
10-7. Additionally, a speedup of the potential is achieved by
disabling the error prediction during the production runs via
ML_MODE=refit. In the Supplementary Note 3.7 more details
regarding the different regression methods and additional
comparisons regarding the accuracy are provided.

MTP training
To train the MTPs, the reference data generated during the VASP
on-the-fly learning runs were used. For determining the MTP
parameters, it is necessary to minimize a cost function built from
the energies, forces and stresses in the training set58. The
minimization was performed using a BFGS (Broyden-Fletcher-
Goldfarb-Shanno)111 algorithm. The initial parameters were
chosen randomly. Then an initial training was performed for 75
iterations. Subsequently the main minimization procedure was
started and performed until the differences of the cost function in
the previous 50 iterations reached <2 ∙ 10-3. Said cost function is
built from a weighted sum over the square deviations of forces,
energies and stresses. The weights in the cost function for stresses
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and energies were chosen to be 1.0 and for forces to be 0.01.
These are the default values for forces and energies. For stresses,
the weight was increased compared to the default value of 0.001,
as we found that it improves the accuracy of the stresses without
substantially impacting the precision of the forces or energies.
For most of the training runs, a few thousand iterations were

required to reach the convergence criterion (which are 2–3 orders
of magnitude more iterations than regression steps done for the
training of the VASP MLPs). However, it should be noted that
complications occurred for some of the resulting MTPs, where the
minimization algorithm managed to escape the lowest minimum
found during the process to ultimately reach a local minimum
with a larger cost function. This can be remedied by either
choosing looser convergence criteria or by choosing the
intermediate solution with the lowest cost function. The latter
approach was employed in this work for the cases where this issue
was observed and no further minimum was found within 10,000
optimization steps. For additional details and convergence curves
for the MTP training, see the Supplementary Note 2.2.
Since we wish to show how well the MTPs reproduce the

reference data, we use a relatively large basis set as a baseline
with a level of 22 and a radial basis set size of 10. However, tests
were also performed varying the level of the MTP between 10 and
24 for each system (see Supplementary Note 3.6 for detailed
results) to show the impact of modifying the number of
parameters contained in the MTPs. The MTPs were generally
fitted including the separation of atom types since there is barely
any extra computational cost involved when applying the MTPs.
However, to test the importance of introducing this additional
chemical knowledge and of increasing the number of parameters,
for MOF-5 and MOF-74 MTPs at level 22 were also trained when
only using 4 atom types (one for each chemical element).
Due to the stochastic nature of the initialization of the training

procedure, multiple potentials were trained for each system and
reference data set. A possible strategy for choosing the final MTP
would have been to pick the one with the smallest cost function.
However, it is common practice to judge the quality of a fitted
potential based on quantities independent of the parametrization
procedure, like the properties of a validation set112. In this way,
one can judge the performance of the interpolation and not just
the description of the training set, which could also be described
well by the MTP due to overfitting. Therefore, for the further
analysis and for the calculation of physical properties, the
potentials were chosen that best managed to reproduce the
forces, energies and stresses in the validation set and that were
stable up to at least 300 K. In this context it should be mentioned
that for high level MTPs (like the level 22 MTPs used for most parts
of this manuscript), the variations in the properties by the multiply
fitted potentials are typically rather small and picking the MTPs
with the smallest cost functions would have made an only
marginal difference for the force, energy and stress errors and
would not have impacted any of the trends discussed here. The
only exception is the thermal stability of the potentials, where
some substantial deviations were found between the differently
initialized MTPs. This is why training several MTPs can represent a
workaround for issues related to the thermal stability. Correspond-
ing details are shown in Supplementary Table 8. The data in that
table also illustrate that it can happen that certain force fields
provide a clearly worse description of the validation data without
having a significantly increased cost function in the original
parametrization, which is the primary reason why a multitude of
MTPs were trained for each data set.

Evaluation of benchmark properties
When creating a new force field potential, proper validation is
crucial and thus we aim to provide a large array of properties to
benchmark based on DFT and experimental reference data. In

general, the single point and MD simulations for the DFT
references and the VASP MLP were performed directly using
VASP and for the MTPs using the LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator) package113 interfacing
MLIP58.
Structure optimizations at 0 K for the machine learned

potentials were carried out starting from the DFT relaxed
structures and for the VASP MLPs the same optimizations settings
were used as for the actual DFT calculations. For the MTPs an
iterative process was used, where first the atomic positions and
lattice parameters were optimized using a conjugate gradient
algorithm. This was followed by an optimization of only the
atomic positions and both steps were repeated 10 times. The end
of either of the steps was defined as the situation, when either
1000 force evaluations had been performed (or technically also
when the excessive convergence criterion of force changes falling
to <10-8 eVÅ−1 had been reached).
The elastic stiffness tensors were computed using a finite

differences approach based on the stress-strain relationship90,
where the lattice was strained anisotropically by a fraction of 0.01.
For each strain direction, an optimization of atomic positions was
carried out with the MTP and the resulting stresses were used for
the evaluation. For DFT and the machine learned potential in
VASP, the strained cells were not individually optimized, but rather
the contributions from relaxing the ions were computed from the
second-order force constants in the harmonic approximations to
save computation time (as implemented in VASP using the
IBRION= 6 setting).
Phonon band structures were computed using a supercell-

based finite-differences approach as implemented in phonopy114.
For the required atomic displacements, a displacement distance of
0.01 Å was used. The used supercells were carefully converged.
Whenever possible, this was done based on DFT results. However,
due to the large unit cells in MOFs, for some of the systems,
supercell convergence tests were possible only based on the
force-field results. For specific details regarding these tests and the
supercells used for each system, view Supplementary Notes 1.4
and 3.4.
To evaluate the thermal expansion coefficients, molecular

dynamics simulations in the NTP ensemble were performed for
the MTPs at temperatures ranging between 100 K to 700 K. This
was done over 100,000 time steps for supercells of the respective
system (details can be found in Supplementary Note 4.1). In
addition to providing temperature dependent lattice parameters,
this also allows a rough assessment of the thermal stability of the
obtained force field potentials. To obtain the actual thermal
expansion coefficients linear fits (sometimes in restricted tem-
perature ranges) were performed over the averaged lattice
parameters from the thermally stable MD simulations.
To obtain the thermal conductivity of MOF-5 for comparing the

experimental data to the MTP simulations, non-equilibrium
molecular dynamics (NEMD)92 and ‘approach to equilibrium
molecular dynamics’ (AEMD)115,116 simulations were performed.
For NEMD, a supercell based on the lattice parameters at the
desired temperature of 300 K obtained from the preceding NPT
simulations was constructed, as detailed below. First, an
equilibration at 300 K was performed in an NVT ensemble for
25 ps. Afterwards, the system was treated in an NVE ensemble
while employing the Müller-Plathe algorithm117, which periodi-
cally swaps the kinetic energies of the 16 highest energy atoms in
the first slab of the supercell with the kinetic energies of the 16
lowest energy atoms in the centre slab of the supercell every 4800
time steps. Here, each slab was chosen to be 12.98 Å long,
encompassing one node and one linker of MOF-5. This leads to
the creation of a hot and a cold region while maintaining the total
energy in the system. Consequently, a heat flux from the hot to
the cold region emerges allowing the straightforward computa-
tion of the thermal conductivity using Fourier’s law in combination
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with the temperature gradient. Finite size effects due to scattering
at the thermostat boundaries were accounted for by computing
the thermal conductivity for several different cell lengths and
performing an extrapolation to the infinite size limit91,92.
Perpendicular to the heat-flow direction, the supercell comprised
2 conventional unit cells. For the AEMD simulations, we used a
similarly shaped cell, but this time one half of the cell was set to a
higher temperature of 350 K and the other half of the cell was set
to a lower temperature of 250 K. This is realized by using a
thermostat on one half of the supercell, while not solving the
equations of motion for atoms in the other half. This step was
repeated, but now equilibrating the other half of the supercell to
its starting temperature, while the equations of motions were not
solved for the already thermalized half of the supercell. Then the
thermostats were turned off and the entire system was treated in
an NVE ensemble. The temperature difference between both
halves of the system was recorded as a function of time during the
molecular dynamics simulation. The temperature decay can be
fitted to a function containing the thermal diffusivity, which in
turn leads to the thermal conductivity116. Similar to NEMD, AEMD
is also prone to finite size effects, which can be corrected using a
slightly different extrapolation approach than for NEMD derived
from the Boltzmann transport equation118. For more information
regarding thermal conductivity calculations (including a justifica-
tion for the used supercell sizes) see Supplementary Note 4.2.
To evaluate the computational efficiency, separate simulations

in an NPT ensemble were perfromed at 300 K for at least 2000
time steps using large supercells comprising 27136 atoms for
MOF-5 and 31104 atoms for MOF-74. Here, care was taken not to
include the initialization overhead and not to lose a significant
amount of time to outputting the trajectories.
For obtaining observables based on the traditional force field

potentials for MOF-5 and MOF-74, LAMMPS was employed using
the same methods as specified for the MTPs. To assign the
parameters for the Dreiding and UFF4MOF potentials to the
structure files, the lammps-interface code written by Boyd et al.
was used14. This code has been developed to benchmark various
force fields for several MOFs like MOF-5, UiO-66 and IRMOF-10. For
a more specific discussion and analysis regarding UFF4MOF, see
the Supplementary Notes 3.1 and 3.5. To compare the machine-
learned potentials to a system-specifically fitted traditional force
fields, a MOF-FF type FFP was used. The parametrization of that
force field is described in detail in our previous work33.
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