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Prediction and understanding of barocaloric effects in
orientationally disordered materials from molecular dynamics
simulations
Carlos Escorihuela–Sayalero1,2, Luis Carlos Pardo 1,2, Michela Romanini 1,2, Nicolas Obrecht3, Sophie Loehlé3, Pol Lloveras 1,2,
Josep–Lluís Tamarit 1,2 and Claudio Cazorla 1,2✉

Due to its high energy efficiency and environmental friendliness, solid-state cooling based on the barocaloric (BC) effect represents
a promising alternative to traditional refrigeration technologies relying on greenhouse gases. Plastic crystals displaying
orientational order-disorder solid-solid phase transitions have emerged among the most gifted materials on which to realize the full
potential of BC solid-state cooling. However, a comprehensive understanding of the atomistic mechanisms on which order-disorder
BC effects are sustained is still missing, and rigorous and systematic methods for quantitatively evaluating and anticipating them
have not been yet established. Here, we present a computational approach for the assessment and prediction of BC effects in
orientationally disordered materials that relies on atomistic molecular dynamics simulations and emulates quasi-direct calorimetric
BC measurements. Remarkably, the proposed computational approach allows for a precise determination of the partial
contributions to the total entropy stemming from the vibrational and molecular orientational degrees of freedom. Our BC
simulation method is applied on the technologically relevant material CH3NH3PbI3 (MAPI), finding giant BC isothermal entropy
changes (∣ΔSBC∣ ~ 10 J K−1 kg−1) under moderate pressure shifts of ~0.1 GPa. Intriguingly, our computational analysis of MAPI
reveals that changes in the vibrational degrees of freedom of the molecular cations, not their reorientational motion, have a major
influence on the entropy change that accompanies the order-disorder solid-solid phase transition.
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INTRODUCTION
Solid-state cooling represents an energy efficient and ecologically
friendly solution to the environmental problems posed by
conventional refrigeration technologies based on compression
cycles of greenhouse gases1–6. Upon small and moderate
magnetic, electric and/or mechanical field shifts, promising caloric
materials experience large adiabatic temperature variations
(∣ΔT∣ ~ 1–10 K) as a result of phase transformations entailing large
isothermal entropy changes (∣ΔS∣ ~ 10–100 J K−1 kg−1). Solid-state
cooling relies on such caloric effects to engineer multi-step
refrigeration cycles. From an applied point of view, large ∣ΔT∣ and
∣ΔS∣ are both necessary for substantially and efficiently removing
heat from a targeted system under recurrent switching on and off
of a driving field. In terms of largest ∣ΔT∣ and ∣ΔS∣, mechanocaloric
effects induced by uniaxial stress (elastocaloric effects) and
hydrostatic pressure (barocaloric—BC—effects) emerge as parti-
cularly encouraging2–5.
Colossal BC effects, ∣ΔSBC∣ ≥ 100 J K−1 kg−1, and ∣ΔTBC∣ ≥ 10 K

driven by pressure shifts of the order of 0.1 GPa have been
recently measured in several families of materials displaying
orientational order-disorder solid-solid phase transitions7–16, thus
achieving a major breakthrough in the field of solid-state cooling.
Plastic crystals like neopentane derivatives7–9, adamantane
derivatives10,11, carboranes12 and closo-borates13, to cite some
examples, conform the most representative family of disordered
materials on which such a BC revolution has been realized.
Colossal BC effects in plastic crystals have been intuitively

rationalized in terms of large entropy changes predominantly
originated by molecular orientational disorder stabilized under
increasing temperature17–20 (as it is commonly assumed in
molecular melts21,22).
Nevertheless, despite these recent experimental advancements,

a detailed atomistic understanding of colossal BC effects in plastic
crystals is still missing and general theoretical approaches for
assessing them have not been established. Owing to the first-
order character of the involved order-disorder phase transition, a
few authors have employed the Clausius–Clapeyron (CC) method
in conjunction with atomistic molecular dynamics simulations to
estimate ΔSBC13,18. In the present context, however, the CC
method presents several critical drawbacks: (1) the quantity that is
accessed is the phase transition entropy, ΔSt, which, although
related, differs from the BC descriptor ΔSBC, (2) neither ΔTBC nor
the temperature span over which BC effects are operative can be
directly estimated, and (3) partial entropy contributions stemming
from different degrees of freedom (vibrational and orientational)
cannot be determined. Alternatively, a few researchers have
resorted to oversimplified ad hoc ΔSBC analytical models with little
to none predictive capability19,20. This lack of fundamental
knowledge keeps hindering the rational design of disordered
materials with improved BC performances, thus delaying the
deployment of commercial solid-state cooling.
In this work, we advance towards the solution of the BC

modelling conundrum in plastic crystals by developing and
testing a facile computational approach based on molecular
dynamics simulations. Our method emulates quasi-direct
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calorimetry measurements7,9,10,23 and precisely provides the
vibrational and molecular orientational contributions to the
entropy without resorting to ad hoc analytical models. As a case
study, we apply our simulation BC approach to the technologically
relevant material CH3NH3PbI3 (MAPI, Fig. 1a), a hybrid organic-
inorganic perovskite that undergoes an order-disorder solid-solid
phase transition under increasing temperature (Fig. 1b)24. In
particular, we determined ΔSBC and ΔTBC under broad pressure
and temperature conditions finding, for instance, a giant
isothermal entropy change of 31 J K−1 kg−1 and an adiabatic
temperature change of 9 K for a pressure shift of 0.2 GPa at
temperatures below ambient. Intriguingly, our theoretical analysis
concludes that the vibrational degrees of freedom of the
molecular MA cations have a predominant role in the BC
performance of MAPI, instead of the typically assumed molecular
reorientations. This work establishes an insightful and predictive
computational method for the estimation of BC effects in
orientationally disordered systems like plastic crystals, hence it
may be used to guide experiments and develop original solid-
state refrigeration applications.

RESULTS
Estimation of the total entropy
In the present theoretical BC approach, the entropy of the low-T
ordered and high-T orientationally disordered phases are deter-
mined as a function of pressure and temperature, S(p, T), by
assuming the relation:

Sðp; TÞ ¼ Svibðp; TÞ þ Soriðp; TÞ ; (1)

where Svib and Sori are respectively the partial entropy contribu-
tions resulting from the vibrational and molecular orientational
degrees of freedom (Fig. 2), and possible vibrational-orientational
molecular couplings have been disregarded. In the low-T ordered
phase, Sori is null while in the high-T disordered phase is finite and
positive. Svib, on the other hand, is finite and positive under any
physically realizable conditions at which the system is thermo-
dynamically stable. Once S(p, T) is determined for the low-T and
high-T phases, the BC descriptors ΔSBC and ΔTBC can be estimated
just like it is done in quasi-direct calorimetric measurements7,9,10,23

(Section “Estimation of ΔSBC and ΔTBC in MAPI”). Next, we explain
in detail how to calculate each entropy term appearing in Eq. (1).

Vibrational entropy, Svib
The vibrational density of states, ρ(ω), besides providing informa-
tion on the phonon spectrum of a crystal as a function of the
vibrational frequency ω, it also allows to estimate key thermo-
dynamic quantities like the lattice free energy, Fvib, and entropy,
Svib. A possible way of calculating ρ(ω) from the outputs of NpT
molecular dynamics simulations (NpT–MD, Methods) consists of

estimating the Fourier transform of the velocity autocorrelation
function (VACF)25.
Let vi(t) be the velocity of the ith particle expressed as a

function of simulation time t. The VACF is given then by the
expression:

VACFðtÞ ¼ vð0Þ � vðtÞh i ¼ 1
N

XN
i

við0Þ � viðtÞ ; (2)

where 〈⋯〉 denotes statistical average in the NpT ensemble and N
the number of particles in the system. Subsequently, the
vibrational density of states can be estimated like25:

ρðωÞ ¼
Z 1

0
VACFðtÞ eiωt dt : (3)

In the present case, we assume the vibrational density of states to
fulfill the condition:Z 1

0
ρðωÞdω ¼ 3N ; (4)

where 3N corresponds to the number of lattice vibrations with
real and positively defined phonon frequencies in the system.
(In the case of assuming the normalization conditionR1
0 ρðωÞdω ¼ 1, an additional multiplicative factor 3N should
be considered in the formulas appearing below in this
subsection.)

Fig. 1 Characterization of CH3NH3PbI3 (MAPI) and experimental sequence of T-induced phase transitions. a Representation of the cubic
unit cell of MAPI. b At TOTt � 160 K, MAPI undergoes a transformation from an orthorhombic to a tetragonal phase; at TTCt � 330 K, MAPI
transforms into a cubic phase in which the molecular MA+ ions are orientationally disordered24. A non-negligible volume increase
accompanies the order-disorder phase transition at TTCt .

Fig. 2 Sketch of T-induced molecular vibrational and orienta-
tional excitations in MAPI. Vibrations entail periodic motion of the
atoms around their equilibrium positions, corresponding to fluctua-
tions around a particular local minimum in the potential energy
surface. Orientational disorder, on the other hand, appears when
thermal excitations are high enough for molecules to overcome the
energy barriers between different local minima in the potential
energy surface.
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Upon determination of ρ, the vibrational free energy of the
system can be straightforwardly estimated with the formula26:

Fvibðp; TÞ ¼ kBT ´R1
0 ln 2 sinh _ω

2kBT

� �h i
ρðω; pÞdω ;

(5)

where kB is Boltzmann’s constant. Consistently, the vibrational
entropy, Svib ¼ � ∂Fvib

∂T , adopts the expression:

Svibðp; TÞ ¼ � R1
0 kB ln 2 sinh _ω

2kBT

� �h i
ρðω; pÞdωþ

R1
0

_ω
2T tanh

�1 _ω
2kBT

� �
ρðω; pÞdω :

(6)

It is worth noting that the dependence on pressure and
temperature of the thermodynamic quantities Fvib and Svib are
fully contained in ρ(ω, p) since this function is directly obtained
from the outputs of atomistic NpT–MD simulations.

Molecular orientational entropy, Sori
For a continuous random variable x with probability density f(x), its
entropy is defined as27:

S ¼ �
Z

X
f ðxÞ log f ðxÞdx ; (7)

where the integral runs over all possible values of x. If x represents
a microstate characterizing a particular thermodynamic macro-
state, then the following Gibbs entropy can be defined for the
system of interest28:

SG ¼ �kB

Z
X
f ðxÞ log f ðxÞdx : (8)

In an orientationally disordered crystal, molecules reorient in a
quasi-random fashion as shown by the time evolution of their
polar (θ) and azimuthal (φ) angles as referred to a fixed arbitrary
molecular axis (e.g., the C–N bond in the methylammonium
molecule at a given time). By assuming the molecules in the
crystal to be independent one from the other, one may then
estimate a probability density function for their orientation, f(θ, φ),
from the atomistic trajectories generated in long NpT–MD
simulations. In such a case, pressure and temperature effects are
implicitly contained in f(θ, φ) and the following three-dimensional
molecular angular entropy can be defined (considering the length
of the molecules to be fixed):

Sang ¼ �kB

Z
Θ;Φ

f ðθ;φÞ log f ðθ;φÞd cos θdφ : (9)

In practice, the calculation of Sang entails the construction of
histograms for which the continuous polar variables are dis-
cretised, (θ, φ)→ (θi, φj), and bin probabilities are defined like:

piðθi ;φjÞ � f ðθi ;φjÞΔ cos θΔφ ; (10)

where Δ cos θΔφ corresponds to the area of an histogram bin
(assumed to be constant here). Consistently, one can then rewrite
Sang in the discretised form27:

Sang ¼ �kB
X
i

pi log pi þ kB log Δ cos θΔφð Þ : (11)

The angular entropy defined in the equation above, however, is
not necessarily equal to the entropy associated with molecular
orientational disorder alone since other molecular degrees of
freedom (e.g., molecular fluctuations and librations, which are of
vibrational nature) are also inevitably captured by the angular
probability density function f(θ, φ) deduced from NpT–MD
simulations (Section “Estimation of ΔSBC and ΔTBC in MAPI”). A
practical way of getting rid of most spurious contributions to the
molecular orientational entropy in the high-T disordered phase
consists of offsetting Sang by the maximum value attained in the

low-T ordered phase, in which molecular reorientations do not
actually occur at an appreciable rate. Due to the fact that the
largest molecular oscillations in the low-T ordered phase occur
close to the order-disorder phase transition temperature, Tt, the
molecular orientational entropy can be approximated like:

Soriðp; TÞ ¼
Sangðp; TÞ � Sangðp; TtÞ T � Tt

0 T<Tt

�
; (12)

which is the expression that we have used throughout this work. It
is noted that the Heaviside step function assumed here for Sori
corresponds to a perfectly sharp order-disorder phase transition,
which may not be always the case of orientationally disordered
molecular crystals. Nevertheless, to a first approximation, such an
ideal behaviour should be fine (see Section “Estimation of ΔSBC
and ΔTBC in MAPI”).

Estimation of BC effects in MAPI
We used the method introduced in Section “Estimation of the total
entropy” to estimate BC effects in bulk CH3NH3PbI3 (MAPI, Fig. 1), a
highly promising photovoltaic material with exceptional and
highly tunable optoelectronic properties29–31. The reasons for this
material selection are several. First, at a temperature of ≈ 330 K,
MAPI undergoes a structural transformation from a tetragonal to a
cubic phase in which the methylammonium molecular cations
(MA+) are orientationally disordered24 (Fig. 1b). MAPI, therefore,
conforms to the broad definition of an orientationally disordered
crystal despite being generally, and more conveniently, classified
as a hybrid organic-inorganic perovskite. Second, previous
experimental and theoretical works have already addressed the
existence of possible caloric effects in MAPI32,33, thus our results
may be compared with those of other studies. And third, a reliable
force field has been already reported and tested for MAPI in the
literature34–36 that allows to perform thousands-of-atoms NpT-MD
simulations in a very efficient manner (Methods).
The organization of the following subsections is as follows. First,

we characterize the molecular order-disorder (OD) phase transi-
tion in MAPI under broad temperature and pressure conditions by
means of atomistic NpT–MD simulations performed with the force
field developed by Mattoni and co-workers34–36. Next, we analyse
the entropy change associated with the phase transition of
interest by using the well-known Clausius–Clapeyron equation13.
Finally, we explain in detail the estimation of the partial entropy
contributions Svib(p, T) and Sori(p, T) and of the barocaloric
descriptors ΔSBC and ΔTBC.

Order-disorder phase transition in MAPI
Figure 3 shows the theoretical characterization of the OD phase
transition in MAPI at pressures of 0 ≤ p ≤ 0.5 GPa as obtained from
NpT-MD simulations (Methods). In the high-T phase the molecular
MA cations are orientationally disordered while in the low-T phase
they arrange orderly in an antiferroelectric pattern37. At zero
pressure, this phase transition experimentally occurs near room
temperature and is accompanied by a relative volume expansion
of 0.2–0.3%38,39. The MAPI force field employed in this work34–36

qualitatively mimics such a OD phase transition, however, it does
not quantitatively reproduce the experimental Tt and transition
volume expansion value.
Figure 3a shows the evolution of the volume per formula unit

calculated across the OD MAPI phase transformation at different
pressure conditions. In the NpT-MD simulations, the transition
temperature is identified by a sudden increase in volume that
coincides with the stabilization of molecular orientational disorder
(confirmed by rapidly decaying angular autocorrelation functions
estimated under the same conditions13, Supplementary Fig. 1). In
our zero-pressure simulations, we calculated a relative volume
expansion of 0.8% at a transition temperature of ≈240 K, which are
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appreciably larger and smaller, respectively, than the correspond-
ing experimental values. Nevertheless, since the main objective of
the present study is to develop and test a solid BC computational
approach, such a lack of quantitative force field accuracy should
not be considered as a limiting factor (Section “Estimation of ΔSBC
and ΔTBC in MAPI”).
Figure 3b shows the pressure dependence of Tt estimated for

MAPI. When considering the numerical uncertainties in our NpT-
MD simulations, a linear p-dependence of the OD transition
temperature clearly emerges. In particular, a first-order polynomial
fit of the form Tt(p)= 239.2+ 63.7p, in which the temperature and
pressure are respectively expressed in units of K and GPa, is found
to best reproduce the computed transition temperatures. The
barocaloric coefficient dTt/dp deduced from the simulations
roughly amounts to 60 K GPa−1, which in this case is in fairly
good agreement with the experimental values of 76–35 K GPa−1

reported at zero-pressure conditions32. Table 1 summarizes the
key features of the pressure-induced OD MAPI phase transition as
obtained from our NpT-MD simulations, including the phase
transition entropy change, ΔSt.

The Clausius–Clapeyron method
The well-known Clausius–Clapeyron equation,

ΔSt ¼ dTt

dp

� ��1

ΔVt ; (13)

allows for the estimation of the entropy change accompanying a
phase transition, ΔSt, based on the knowledge of the slope of its
p–T phase boundary and the concomitant change in volume, ΔVt.
By applying this relation to the results of our NpT-MD simulations,
we obtained the phase transition entropy changes summarized in
Table 1. The predicted entropy change approximately amounts to
28 J K−1 kg−1 at zero pressure and steadily decreases under
increasing compression (e.g., ΔSt= 19.2 J K−1 kg−1 at 0.2 GPa).
Such a p-induced phase transition entropy decrease is due
exclusively to the ΔVt reduction originated by pressure (Table 1)
since, to a good approximation, the slope of the p–T phase
boundary in our NpT-MD simulations is constant (Fig. 3b).
In the absence of an applied pressure, the experimental ΔSt

value reported for MAPI amounts to 15.65 J K−1 kg−132, which is
roughly two times smaller than the one estimated here by means
of NpT-MD simulations (Table 1). This noticeable difference follows
from the dp/dTt and ΔVt discrepancies found between the
experiments and our calculations, which have been explained in
the previous paragraphs.
As it can be appreciated in Fig. 3b, the assessed Tt’s come with

some numerical uncertainties (i.e., error bars in the figure) that

result from the fluctuations introduced by the thermostat and
barostat employed in the NpT-MD simulations along with the
discreteness of the simulated p–T conditions (Methods). The
presence of pre-transitional effects also manifests at the highest
simulated pressures, as shown by the T-dependence of the
volume system obtained across the phase transition at p= 0.4 and
0.5 GPa (i.e., the volume variations become less abrupt making
more difficult the identification of ΔVt, Fig. 3a). These errors, which
to a certain extent are unavoidable in NpT-MD simulations, lead to
inaccuracies in the estimation of dp/dTt and phase transition
volume changes, and inevitably propagate to ΔSt. In the following
section, we present a more refined method for the calculation of
phase transition entropy changes, and entropy curves in general,
based on the computational strategy introduced in Section
“Estimation of the total entropy”, thus overcoming the usual
numerical limitations of the Clausius–Clapeyron approach13,18.

Estimation of ΔSBC and ΔTBC in MAPI
Figure 4 shows the vibrational density of states (VDOS) and partial
organic and inorganic contributions estimated for MAPI at zero
pressure and temperatures slightly above and below the
simulated OD transition point (i.e., 245 and 240 K). The VDOS
contribution assigned to the inorganic part, namely, the PbI3
octahedra, is clearly dominant in the low-frequency range 0 ≤ ν ≤
5 THz (Fig. 4a–c). This result follows from the fact that the lighter
atoms, which typically vibrate at higher frequencies, entirely reside
in the organic molecules. Consistently, the range of moderate and
high frequencies, ν ≥ 5 THz, is mostly governed by the MA cation
vibrations.
Albeit the VDOS enclosed in Fig. 4a, b may seem quite similar at

first glance, there are significant differences among them. In
particular, the high-T disordered phase accumulates more phonon
modes in the low-frequency range 0 ≤ ν ≤ 2 THz than the low-T
ordered phase (Fig. 4c and Supplementary Fig. 2). This effect has a
strong impact on the vibrational entropy of the system, Svib, which
is significantly larger in the high-T disordered phase.
Figure 4 d shows the Svib estimated at zero pressure as a

function of temperature. A clear surge in the vibrational entropy is
observed at the OD transition point, which amounts to ΔSvib=
21.66 J K−1 kg−1. The primary contribution to such a vibrational
entropy increase comes from the molecular cations, which is equal
to 13.93 J K−1 kg−1 and almost twice as large as that calculated for
the inorganic part (7.73 J K−1 kg−1). Thus, although the low-
frequency range in the VDOS is dominated by the inorganic
anions, the organic MA cations have a larger influence on the
vibrational entropy change associated with the order-disorder
phase transition, ΔSvib.

Fig. 3 Order-disorder phase transition in MAPI characterized by NpT–MD simulations. a Volume per formula unit expressed as a function of
temperature at pressures 0.0≤p≤0.5 GPa. The phase transition is sharp and characterized by a non-negligible change in volume. The lines are
guides to the eye. b p–T order-disorder phase boundary estimated for MAPI (red line, linear fit). The error bars result from the statistical
fluctuations of the barostat and thermostat employed in the NpT–MD simulations and the discreteness of the simulated p–T conditions
(Methods).
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Figures 5 a, b show the angular probability density associated
with the orientation of a molecular MA cation in MAPI at
temperatures just below and above the simulated OD transition
point (i.e., averaged over all the molecules in the simulation cell).
The coordinates (φ, θ) represent the azimuthal and polar angles
formed by the C–N bond axis in the MA molecules and the
crystallographic axes taken as the rest reference system. In the
low-T ordered phase, the molecules do not reorient but tightly
fluctuate around their preferential orientations (represented by
sharp red spots in Fig. 5a), which alternate from cation to cation
forming a global antiferroelectric pattern37. In the high-T
disordered phase, on the contrary, elongated regions of roughly
equal probability appear between the preferential molecular
orientations (i.e., the blurry greenish areas in Fig. 5b). These
equiprobable density regions represent the actual paths through
which the MA cations reorient (a three-dimensional sketch of
those rotational tracks is provided in the Supplementary Fig. 3).
We note that as it can be appreciated in Fig. 5a, b the orientational
order-disorder phase transition in MAPI is quite sharp, that is, it
occurs in the interval of few degrees Kelvin.

Fig. 4 Vibrational density of states and vibrational entropy, Svib, estimated for MAPI. Total VDOS and partial contributions stemming from
the PbI3 and MA motifs at zero pressure and T= 240 K (a) and 245 K (b). c Comparison of the VDOS obtained for low vibrational frequencies at
temperatures just below and above the MAPI order-disorder phase transition. d Vibrational entropy calculated for MAPI as a function of
temperature at zero pressure; partial contributions from the PbI3 and the MA groups are also shown.

Fig. 5 Characterization of the angular distribution of molecular cations in MAPI and resulting orientational entropy. a Angular probability
density for the molecular MA cations in the ordered phase at T= 240 K. High-probability regions are represented with red color whereas low-
probability regions with dark blue color. b Angular probability density for the molecular MA cations in the disordered phase at T= 245 K.
c Molecular orientational entropy, Sori, calculated at different temperatures and pressures. The lines are guides to the eye.

Table 1. Order-disorder solid-solid phase transition in MAPI
characterized by NpT–MD simulations.

p Tt dTt/dp ΔVt/Z ΔVt/V ΔSt
(GPa) (K) (K GPa−1) (Å3) (%) (J K−1 kg−1)

0.0 240 63.7 1.86 0.8 28.4

0.1 245 63.7 1.66 0.7 25.4

0.2 250 63.7 1.37 0.6 19.2

0.3 260 63.7 1.04 0.3 15.9

0.4 265 63.7 0.90 0.4 13.8

0.5 270 63.7 0.94 0.4 14.3

Results were obtained with the MAPI force field developed by Mattoni and
co-workers34–36. The phase-transition entropy changes, ΔSt, were esti-
mated with the Clausius–Clapeyron relation. The numerical uncertainties
of the reported pressures and transition temperatures amount to 0.05 GPa
and 5 K, respectively.
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It is worth noting that in the high-T disordered phase the
fluctuations of the MA+ cations around their equilibrium
orientations are very broad, as it is deduced from the enlarged
areas of maximum probability in Fig. 5b (in comparison to those
shown in Fig. 5a). These fluctuations conform to molecular
librations with very low vibrational frequencies due to the large
effective mass associated with them. Such a collective librational
dynamics appears to be the main responsible for the vibrational
entropy gain identified for the high-T disordered phase. Figure 5c
shows the orientational entropy of the MA+ cations, Sori, estimated
as a function of temperature and pressure by employing the
method introduced in Section “Molecular orientational entropy,
Sori”. At temperatures below the theoretical transition point, Sori is
null since molecular reorientations do not occur at an appreciable
rate. At temperatures above Tt, on the other hand, Sori is sizeable
and practically independent of temperature. The orientational
entropy plateau that is rapidly attained at T > Tt can be
understood in terms of two different facts: (1) the paths through
which the molecules reorient in the disordered phase are not
significantly affected by increasing thermal excitations, and (2)
although molecular reorientations occur at a higher rate at higher
temperatures, the probability of finding a molecule around an
equilibrium orientation or in a transient orientational state is
pretty independent of temperature. It is worth noting that the
behaviour described here for Sori is plainly different from that of a
rigid molecular free rotor19,20, for which the entropy monotoni-
cally increases under increasing temperature (Discussion).
The pressure dependence of the molecular orientational

entropy also can be appreciated in Fig. 5c. In the high-T ordered
phase, compression only moderately reduces Sori. For instance, at
zero pressure it approximately amounts to 11 J K−1 kg−1 while at
p= 0.5 GPa is equal to ≈ 8.5 J K−1 kg−1. In the compression
interval 0.1 ≤ p ≤ 0.4 GPa, however, Sori behaves quite irregularly
and adopts values of 9–10 J K−1 kg−1. Such fluctuations are due to
the numerical uncertainties in our calculations and the mild
influence of pressure on Sori.
We performed a conclusive test to assess the accuracy of our

Sori calculation method. At zero pressure, the entropy change
associated with the order-disorder phase transition can be directly
obtained from the NpT-MD simulations since the Gibbs free
energy equality between the two involved phases, GO(0, Tt)=
GD(0, Tt), leads to the relation ΔSt= ΔUt/Tt, where ΔUt≡ UD− UO is
the internal energy difference between the disordered and
ordered phases at the specified p–T conditions. Then, by
considering that ΔSt= ΔSvib+ ΔSori and assuming that ΔSvib is
perfectly evaluated with the method described in Section
“Vibrational entropy, Svib”, it is possible to directly compute Sori
without the need of performing integrations over polar probability
maps. By proceeding so, we obtained a minute discrepancy of

only 0.5 J K−1 kg−1 with respect to the Sori value obtained with the
method introduced in the section “Molecular orientational
entropy, Sori” and shown in Fig. 5c. Similar excellent agreement
between the two independent Sori evaluation approaches was also
found for other transition points obtained under p ≠ 0 conditions
(in this latter case, ΔSt ¼ 1=Tt ΔUt þ pΔVt½ �). Therefore, based on
these findings we may conclude that (1) for any arbitrary p–T
conditions, not necessarily ascribed to a phase transition point,
our Sori estimation method based on NpT-MD simulations is fully
reliable, and (2) the neglect of possible vibrational-orientational
molecular couplings in Eq. (1) appears to be reasonable (at least,
for MAPI).
We calculated the total entropy of MAPI as a function of

temperature and pressure by adding up the vibrational and
orientational contributions reported in the previous two sections,
namely, S(p, T)= Svib(p, T)+ Sori(p, T). The resulting S(p, T) curves
are very well behaved, as it is explicitly shown in Fig. 6b. In
analogy to quasi-direct calorimetry experiments7,9,10,23, the
estimation of the barocaloric isothermal entropy change, ΔSBC,
and adiabatic temperature change, ΔTBC, now turns out to be
quite straightforward, as it is schematically shown in Fig. 6a. In
particular, we have that:

ΔSBCðT ; 0 ! pÞ ¼ SðT ; pÞ � SðT ; 0Þ (14)

ΔTBCðT ; 0 ! pÞ ¼ T fðS; pÞ � TðS; 0Þ ; (15)

where Tf stands for the temperature fulfilling the condition
S(Tf, p)= S(T, 0) (Fig. 6a).
Figure 7 shows our barocaloric ΔSBC and ΔTBC results obtained

in MAPI for pressure shifts of 0 ≤ Δp ≤ 0.5 GPa. In Fig. 7a, it is
clearly appreciated that under increasing compression the
maximum ΔSBC value also increases. For instance, the maximum
isothermal entropy change obtained for Δp= 0.1 GPa amounts to
−28.19 J K−1 kg−1 whereas for Δp= 0.5 GPa is equal to −38.99 J
K−1 kg−1. It is worth noting that for Δp ≥ 0.4 GPa the growth rate
of ΔSBC is found to diminish drastically. The temperature span over
which BC effects remain sizeable also increases under increasing
pressure shifts, changing for instance from ≈10 K for Δp= 0.2 GPa
to ≈20 K for 0.5 GPa. These isothermal entropy shifts, although
probably are somewhat overestimated due to the limitations of
the employed force field (Secs. E–F), can be regarded as giant
since are of the order of 10 J K−1 kg−15.
The evolution of ΔTBC under increasing Δp is reported in Fig. 7b.

As already expected from the previous isothermal entropy results,
the maximum adiabatic temperature change is also significantly
enhanced under increasing compression. In particular, the ΔTBC
peak changes from 4.41 K for a pressure shift of Δp= 0.1 GPa to
22.03 K for 0.5 GPa. In this case, the size of ΔTBC is not found to
saturate at the highest considered pressure. It is worth noting that

Fig. 6 Quasi-direct estimation of BC descriptors and total entropy curves calculated for MAPI. a The barocaloric descriptors ΔSBC and ΔTBC
can be directly assessed from the S–T curves obtained at different pressures, as it is schematically shown in the figure. b Entropy curves
calculated for MAPI from NpT–MD simulations as a function of temperature and considering different fixed pressures.
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at conditions other than phase transition points the estimated BC
effects are not null (Fig. 7). This effect follows from the thermal
expansion of MAPI in the ordered and disordered phases23, not
from the OD phase transition itself.
The coefficient of performance (COP) is an important parameter

for cooling technologies. The COP is defined as the useful heat
removed by the system (Q) divided by the work done on the
system (W), COP = ∣Q/W∣40–44. We have estimated the COP
associated with the BC performance of MAPI by taking the data
enclosed in Fig. 7a and Table 1 for a pressure shift of 0.1 GPa. By
considering ∣Q∣= Tt ⋅ ΔSBC and ∣W∣= p ⋅ ΔVt, we estimated a COP
of 27.35. This theoretical COP is quite large since it amounts
to ≈ 45% of the maximum performance achieved by an ideal
Carnot cycle operating between the temperatures Tt ±

ΔTBC
2 .

In a previous work, Liu and Cohen investigated the possible
existence of elastocaloric effects in MAPI (i.e., induced by uniaxial
stress, σ) based on similar molecular dynamics simulations than
reported here33 (e.g., employed also the force field developed by
Mattoni and co-workers34–36). Those authors used a direct
elastocaloric estimation approach that requires of very long
simulation times to attain adiabatic conditions and which cannot
straightforwardly provide elastocaloric ΔS results. Interestingly, Liu
and Cohen reported an elastocaloric ΔT of 10.2 K for a tensile Δσ

of 0.55 GPa33. Although these figures are not directly comparable
to our barocaloric ΔTBC results (i.e., hydrostatic pressure involves
isotropic compression whereas tensile uniaxial strain conveys
unidirectional stretching), they are of similar size and confirm the
promising mechanocaloric potential of MAPI.
Finally, we note that the barocaloric ΔSBC results shown in Fig. 7a

differ greatly from the phase entropy changes, ΔSt, estimated with
the Clausius–Clapeyron method (Section “The Clausius–Clapeyron
method”). Firstly, for a pressure shift of 0.1 GPa, for example, the
estimated barocaloric isothermal entropy change is larger than the
corresponding phase transition entropy change by about ≈ 10%.
And secondly, under increasing pressure ΔSt gets progressively
reduced (Table 1) whereas ΔSBC steadily increases (Fig. 7a), thus
rendering opposite p-induced behaviours. Therefore, the
Clausius–Clapeyron method, although it may provide an approx-
imate order of magnitude for ΔSBC at very low pressures13,18, is not
adequate for estimating BC effects in plastic crystals. (The fact that
ΔSt ≠ ΔSBC is well established in experimental works7–10, however, it
probably needs to be more emphasized in the context of
theoretical calculations.)

DISCUSSION
An interesting question to answer for MAPI, or any other
orientationally disordered crystal, is the following: which are the
partial contributions to the order-disorder phase transition
entropy change stemming from the vibrational and molecular
orientational degrees of freedom? The computational approach
introduced in this work can provide a quantitative answer to this
question, which is shown in Fig. 8. At zero pressure, it is found that
ΔSvib is practically twofold larger than ΔSori, namely, 21.66 and
11.02 J K−1 kg−1, respectively. (It is noted that the ΔSt= ΔSvib+
ΔSori value obtained in this case is slightly larger than the
corresponding entropy change estimated with the
Clausius–Clapeyron method—Table 1—due to the inherent
numerical inaccuracies of the latter method explained in Section
“The Clausius–Clapeyron method”) Under increasing pressure, the
vibrational entropy change gets effectively reduced whereas ΔSori
remains less affected. In spite of this behaviour, at the highest
pressure considered in this study, ΔSvib continues being noticeably
larger than the molecular orientational entropy change, namely,
12.96 versus 8.13 J K−1 kg−1 (Fig. 8). This result appears to be
consistent with recent experimental findings reported for the
archetypal plastic crystal adamantane45 and the orientationally
disordered ferroelectric ammonium sulfate46, for which it has
been shown that the vibrational contributions to the order-
disorder phase entropy change surpass those resulting from
molecular reorientational motion.

Fig. 8 Contributions to the total entropy change associated with
the order-disorder phase transition in MAPI. ΔSvib and ΔSori
represent the total vibrational and molecular orientational entro-
pies, respectively, and it follows that ΔSt=ΔSvib+ΔSori.

Fig. 7 Theoretical estimation of barocaloric effects in MAPI. a Isothermal entropy change, ΔSBC, calculated as a function of T and Δp.
b Adiabatic temperature change, ΔTBC, calculated as a function of T and Δp. BC effects at conditions different from the transition points are
not null essentially due to the thermal expansion of the material23.
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The results presented in this article were obtained from
NpT–MD simulations performed with the MAPI force field
developed by Mattoni and co-workers34–36. To assess the accuracy
of this classical interatomic potential in providing correct
molecular orientational entropies, we carried out complementary
ab initio molecular dynamics (AIMD) simulations based on density
functional theory26 (DFT, Methods). Supplementary Figure 4 shows
the angular probability densities obtained for the molecular MA
cations at temperatures of 250 and 400 K and zero pressure from
AIMD simulations. Under the same thermodynamic conditions, the
Sori values obtained from NpT–MD and AIMD simulations (without
offsetting) agree remarkably well, namely, within 1%. This finding,
on one hand, corroborates the reliability of the molecular
orientational entropy results presented above and, on the other
hand, suggests that intrinsically accurate first-principles methods,
although being computationally very expensive, may be feasibly
employed for the analysis of order-disorder phase transitions in
orientationally disordered crystals.
Finally, we comment on the reasonableness of employing

analytical free rotor models to describe Sori in orientationally
disordered molecular crystals19,20. From textbooks, it is well known
that the entropy of a non-symmetrical molecular free rotor can be
analytically expressed as28:

Srot
kB

¼ 3
2
þ ln

8π2

h3
2πkBTð Þ3=2 I1I2I3ð Þ1=2

� �
; (16)

where {Ii} are the three principal moments of inertia of the
molecule. Since the atomic structure of the methylammonium
cation is well established, we can provide here a quantitative and
meaningful comparison between the two entropies, Sori and Srot,
estimated for MAPI. Supplementary Figure 5 shows the tempera-
ture dependence of Srot obtained for a molecular MA cation, which
significantly differs from the Sori results enclosed in Fig. 5c. Firstly,
Srot monotonically grows under increasing temperature (Eq. (16))
whereas Sori remains practically constant in the disordered phase.
Secondly, at room temperature, for instance, Srot is two orders of
magnitude larger than Sori, namely, ~103 and ~101 J K−1 kg−1,
respectively. And thirdly, Eq. (16) cannot reproduce any entropy
dependence on pressure, even if that is mild, in contrast to Sori.
The huge quantitative and qualitative differences evidenced here
for Srot and Sori can be understood in terms of the facts that in real
materials (i) molecules reorient only along very specific and well
defined paths (Fig. 5b and Supplementary Figure 3), not along all
possible directions like a molecular free rotor does, and (ii)
molecules are not in a perpetual state of orientational motion but
instead integrate vibrations and fluctuations around equilibrium
states with the actual reorientations (Fig. 2). Therefore, as it has
been demonstrated in this section, Srot does not seem to conform
to a physically well motivated model for understanding and
quantifying the orientational entropy and associated changes in
plastic crystals and/or hybrid organic-inorganic perovskites19,20.
We have introduced a computational approach based on

molecular dynamics simulations that allows to investigate barocaloric
effects in crystals resulting from molecular order-disorder phase
transitions. Both the barocaloric isothermal entropy and adiabatic
temperature changes can be quantified from entropy curves
expressed as a function of pressure and temperature, just like it is
done in quasi-direct barocaloric measurements. The presented
simulation method automatically provides the partial contributions
to the crystal entropy stemming from the vibrational and molecular
orientational degrees of freedom. As a case study, we applied our
barocaloric computational approach to MAPI, a technologically
relevant perovskite compound that experimentally undergoes an
order-disorder phase transition near room temperature at normal
pressure. We found giant barocaloric isothermal entropy and
adiabatic temperature changes of the order of ~ 10 J K−1 kg−1 and
~10 K, respectively, for moderate pressure shifts of ~0.1 GPa

(although these figures probably are somewhat overestimated due
to the evidenced limitations of the employed force field). Interest-
ingly, the vibrational degrees of freedom, and in particular those
ascribed to the molecular cations, were found to contribute most
significantly to the phase transition entropy change at all considered
pressures. Furthermore, we demonstrated that the well known
analytical model for a molecular free rotor may not be adequate to
physically understand and quantify the entropy changes occurring in
orientationally disordered materials. We expect that the simulation
approach introduced in this study will be broadly adopted by
researchers working in the fields of caloric effects and/or disordered
materials, thus making a potential great impact in the disciplines of
energy materials and condensed matter physics.

METHODS
Classical molecular dynamics simulations
We used the LAMMPS simulation code47 to perform systematic
classical molecular dynamics simulations in the NpT ensemble for
bulk MAPI by using the force field developed by Mattoni and co-
workers34–36. In these simulations, the temperature was steadily
increased up to a targeted value during 1 ns and subsequently the
system was equilibrated during an additional 1 ns under a targeted
fixed pressure. The production runs then lasted for about 100 ps with
Δt= 0.5 fs, from which the velocities of the atoms and other key
quantities (e.g., the potential energy and volume of the system) were
gathered. The average value of the temperature and pressure were
set by using Nosé-Hoover thermostats and barostats with mean
fluctuations of 5 K and 0.05 GPa, respectively. The simulation box
contained 3072 atoms (equivalent to 256 MAPI unit cells) and
periodic boundary conditions were applied along the three Cartesian
directions. The long-range electrostatic interactions were calculated
by using a particle-particle particle-mesh solver to compute Ewald
sums up to an accuracy of 10−4 kcal mol−1Å−1 in the forces. The
force field uses an hybrid formulation of the Lennard-Jones and
Buckingham pairwise interaction models together with long-range
Coulomb and harmonic forces (the latter for the molecules). The
cutoff distance for the evaluation of the potential energy was set to
10 Å. To determine the p–T phase diagram of MAPI and its
barocaloric performance, we carried out comprehensive NpT-MD
simulations in the temperature range 180≤ T ≤ 340 K, taken at
intervals of 10 K, and in the pressure range 0 ≤ p≤ 0.5 GPa, taken at
intervals of 0.1 GPa.

Ab initio molecular dynamics simulations
First-principles calculations based on density functional theory
(DFT)26 were performed to analyze the orientational properties of
MAPI at zero pressure. The DFT calculations were carried out with
the VASP code48 by following the generalized gradient approx-
imation to the exchange-correlation energy due to Perdew et al.
(PBE)49. The projector augmented-wave (PAW) method was used
to represent the ionic cores50, and the following electronic states
were considered as valence: 2s22p2 for C, 2s22p3 for N, 2s23p5 for I,
1s1 for H and 5d106s26p2 for Pb. We performed ab initio MD (AIMD)
simulations for large supercells containing 384 atoms and on
which periodic boundary conditions were applied along the three
Cartesian directions. The plane-wave basis set was truncated at
500 eV and for integrals within the first Brillouin zone we
employed Γ-point sampling. The AIMD simulations typically lasted
for about 200 ps and the employed time step was equal to 1.5 fs.
A Nose–Hoover thermostat was used to constrain the temperature
in our AIMD calculations in which we mimicked the tetragonal
(I4cm) and cubic (Pm3m) phases of MAPI. The dimensions of the
system were constrained to the equilibrium volume determined at
zero temperature, thus thermal expansion effects were disre-
garded in our AIMD simulations.
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