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Obtaining auxetic and isotropic metamaterials in
counterintuitive design spaces: an automated optimization
approach and experimental characterization
Timon Meier 1,3, Runxuan Li 1,3, Stefanos Mavrikos1, Brian Blankenship 1, Zacharias Vangelatos 1, M. Erden Yildizdag 2 and
Costas P. Grigoropoulos1✉

Recent advancements in manufacturing, finite element analysis (FEA), and optimization techniques have expanded the design
possibilities for metamaterials, including isotropic and auxetic structures, known for applications like energy absorption due to their
unique deformation mechanism and consistent behavior under varying loads. However, achieving simultaneous control of multiple
properties, such as optimal isotropic and auxetic characteristics, remains challenging. This paper introduces a systematic design
approach that combines modeling, FEA, genetic algorithm, and optimization to create tailored mechanical behavior in
metamaterials. Through strategically arranging 8 distinct neither isotropic nor auxetic unit cell states, the stiffness tensor in a
5 × 5 × 5 cubic symmetric lattice structure is controlled. Employing the NSGA-II genetic algorithm and automated modeling, we
yield metamaterial lattice structures possessing both desired isotropic and auxetic properties. Multiphoton lithography fabrication
and experimental characterization of the optimized metamaterial highlights a practical real-world use and confirms the close
correlation between theoretical and experimental data.
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INTRODUCTION
The design of mechanical materials with tailored properties has
been subject of significant interest in recent years, driven by
advancements in three-dimensional manufacturing processes and
optimization techniques. Three-dimensional manufacturing, such
as multiphoton polymerization, has enabled the fabrication of
complex geometries with sub-micron resolution at increasingly
high volumetric print rates1,2. Incorporating holography technol-
ogies into multiphoton lithography (MPL) has further enhanced
the creation of larger arrays of periodic structures while
maintaining high feature resolution3,4. These advancements have
enabled the manufacture of scalable architectures that surpass the
bulk material properties of natural materials and might eventually
lead to the widespread adoption of macroscale metamaterials in
practical applications5. Modifying material feature sizes at the
nanometer scale introduces a significant advantage to mechanical
properties, known as the size effect. Certain nanomaterials exhibit
extraordinary properties, such as increased strength compared to
their bulk counterparts6,7. These exceptional characteristics make
metamaterials highly suitable for a wide range of engineering
applications, including ultralight materials8,9, ultrastrong materi-
als10, reconfigurable materials11, ultraelastic materials12,13, high-
energy absorption materials14, fluidics15, optics16, and more.
Moreover, the creation of flexible structures possessing tailored

mechanical properties has led to the development of bio-inspired
designs, thereby enhancing the characteristics of inherently
weaker bulk materials to a significant degree17. Many materials
found in nature display fascinating properties that cannot be
replicated by conventional materials. These natural materials, have
evolved over millions of years, developing optimized architectures
that span multiple hierarchies and length scales18. For example,
bone exhibits a highly complex porous architecture that combines

exceptional strength, toughness, low weight, and remarkable self-
healing capabilities. These outstanding properties are mainly due
to its composite nature, consisting of stiff and soft building blocks,
and to its hierarchical organization, which consists of multiple
structures across different length scales. Similar examples include
the deep sea sponge Euplectella aspergillum featuring a spiral
hierarchical design that exhibits remarkable resilience to buck-
ling19. Another example is the snail Chrysomallon squamiferum,
characterized by a multilayered structure that imparts toughness
and in-plane isotropy, along with suture structures that regulate
flexibility and strength20. The isotropic nature of these structures
grants exceptional mechanical properties in all directions, making
them suitable for applications with unknown or variable loading
directions21. In addition, nature showcases auxetic behavior,
where materials exhibit negative Poisson’s ratios by expanding
in transverse directions when subjected to axial loading. This
unique characteristic is exemplified in the turtle shell, allowing it
to efficiently absorb energy, withstand significant deformations
without fracturing, and maintain uniform crushing load distribu-
tion22. This behavior can also be observed in salamanders, which
can swell to prevent excessive tearing forces on their skin during
quick movements to evade predators23. Snakes exhibit a similar
phenomenon in their skin, utilizing non-Newtonian swelling for
concertina movement, enabling progressive changes in cell turgor
and body elongation24,25.
Mimicking these structures holds the potential to significantly

enhance material performance26. Among various structural
designs, truss-like and lattice structures have garnered consider-
able attention due to their ability to mimic natural crystal
structures and exhibit enhanced mechanical behavior27–29. Lattice
structures, comprised of interconnected struts arranged in repeat-
ing patterns, offer advantages such as high strength-to-weight
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ratio, energy absorption capabilities, and structural stability30.
Designing and optimizing lattice structures have become essential
in aerospace, automotive, biomedical, and energy systems. Special
emphasis has been placed on the design of isotropic and auxetic
lattice structures31–33. However, achieving systematic design of
optimal lattice structures with multiple desired mechanical proper-
ties remains a challenging task. Conventional design methods
relying on trial and error, or intuition34–36 can be time-consuming,
costly, and may not guarantee optimal performance. Therefore,
there is a growing need for systematic design approaches capable
of efficiently searching for optimal lattice structures that meet
desired mechanical properties while satisfying specific design
constraints.
In recent years, optimization methods have been employed to

investigate and understand controlled elastic properties in various
structures. Techniques such as topology optimization37–41, artificial
neural networks with genetic algorithms (GA)42,43, and machine
learning44,45 have become essential tools in metamaterial design.
Chen, W. et al. demonstrated the improvement of mechanical
stiffness in materials through topology optimization, designing
isotropic lattices based on continuum finite element analysis (FEA)
and utilizing projection microstereolithography for fabrication and
characterization37. Chen, D. et al. clustered 15,000 microstructures
into families, from which parameterized templates were extracted for
generating new complex microstructure designs, demonstrated
through auxetic designs38. Agrawal et al. proposed a topology
optimization method for designing metamaterials with negative
Poisson’s ratio, considering material property uncertainties in a linear
elastic base material39. Tancogne-Dejean et al. designed elastically-
isotropic structures by combining elementary cubic truss lattices,
including Simple Cubic, Body-Centered Cubic, and Face-Centered
Cubic structures40. Panetta et al. presented a combinatorial search
over topologies followed by shape optimization, exploring a space of
truss-like, symmetric 3D patterns. These patterns enable the
fabrication of objects with specific mechanical behaviors and can
be extended to create anisotropic patterns with target orthotropic
properties41. Contrasting traditional topology optimization
approaches, Chang et al. employed neural networks and a GA for
designing auxetic metamaterials with specific Poisson’s ratio. Their
model, trained on a dataset from finite element simulations,
established mapping relationships to optimize microstructure para-
meters for desired Poisson’s ratios, demonstrating effectiveness
through comparisons with tensile experiments and FEA42. Chen et al.
applied multi-objective optimization using Non-dominated Sorting
Genetic Algorithm (NSGA-II) assisted by an elliptical basis function
neural network, coupled with FEA, to design a new class of isotropic
and reusable cork-like metamaterial with an isotropic Poisson’s ratio
close to zero43. Zheng et al. introduced an inverse design method for
auxetic metamaterials using deep learning, employing a conditional
generative adversarial network to generate auxetic metamaterials
with user-defined Poisson’s ratio, validated through finite element
method simulations and uniaxial compression tests44. Wilt et al.
utilized machine learning to enhance the design of compliant auxetic
2D metamaterials with negative Poisson’s ratio, with confirmation of
mechanical behavior through FEA and experimental validation45.
Despite these advancements, it is crucial to address certain
challenges and limitations in the field. Firstly, some designed
structures lack experimental validation39, while others require
substantial data to explore the design space, resulting in high
computational costs or design limitations for 2D or homogeneous 3D
structures38,42,44,45. Additionally, all studies incorporate feature
dimensions as a design variable which is theoretically advantageous
but poses practical challenges in fabrication and limits experimental
validation. The presence of overlapping elements and variable
dimensions introduces complexity, leading to significant discrepan-
cies between designed and fabricated structures. For instance, Chen,
D. et al. observed a substantial thickening of up to 50% compared to
their smallest feature sizes, causing substantial stiffening and

deviation from the modeled Poisson’s ratio38. Consequently, achiev-
ing higher precision in manufacturing processes or adopting larger
overall dimensions becomes imperative. Moreover, simulating
intricate designs is computationally expensive, significantly elevating
the overall costs associated with achieving optimal designs.
Furthermore, certain designs only optimize for one property37,40,41.
The implementation of topology optimization, particularly within
FEA, is complex, relying on intricate mathematical models, and in the
referenced studies, is confined to single-objective optimization.
In our previous work46, we presented a Bayesian Optimization

scheme for designing non-monolithic architected materials with
controlled behavior, using discrete and qualitative design variables.
By utilizing 69 data points, we successfully obtained the optimum
structure possessing Cauchy symmetry from a discrete design space
containing 510 structures. These structures were then fabricated and
experimentally validated. However, the study still had certain
limitations that will be addressed in this paper. Firstly, the design
problem focused solely on single-objective optimization, disregard-
ing the potential for multi-objective optimization. Additionally, the
FEA simulations were performed manually in each iteration loop,
which restricted the number of input variables and the overall size of
the discrete design space. These limitations were necessary to ensure
that the optimization problem remained computationally feasible
and manually manageable. The objective of this study is to expand
the scope by addressing a fully automated multi-objective design
optimization problem that encompasses a larger design space. In this
paper, we propose an approach for the systematic design of lattice
structures with tailored elastic behavior using a GA optimization
framework. By automating the entire process, our approach becomes
applicable to a wider range of optimization cases that require
increased computational resources and iterations. Specifically, we
focus on tailoring the behavior of architected metamaterials by
targeting the design objectives of isotropy and auxeticity, with a
particular emphasis on achieving a zero Poisson’s ratio. We construct
a cubic symmetric microlattice structure with dimensions of 5 × 5 × 5
and a size of 50 × 50 × 50 μm. The lattice structures consist of eight
different unit cell states, each featuring a constant beam diameter to
facilitate fabrication, ensuring microscale precision and repeatable
performance at the highest levels of accuracy. Moreover, none of the
monolithic cells are isotropic or auxetic individually to avoid potential
biases or intuitive outcomes that might occur during the optimiza-
tion. This design choice results in a large counterintuitive combina-
torial design space, providing flexibility in achieving desired
mechanical properties. To solve this complex multi-objective
problem, we utilize the well-known and openly available NSGA-II47

from the pymoo library48. NSGA-II efficiently handles the expensive
and multi-objective nature of the problem, operating within the
combinatorial design space while considering predefined design
constraints. Furthermore NSGA-II is versatile and can be applied to
various types of optimization problems without requiring specific
problem knowledge. This makes it a widely applicable algorithm that
can easily be adapted for other frameworks or to reproduce these
results. Automated FEA simulations are performed to investigate the
mechanical response and calculate the elastic properties of the
lattice. These results are then used to evaluate the objective cost
functions and serve as input for the optimization algorithm. To
validate the effectiveness of our approach and highlight a real world
application, we fabricate micro-scale structures using MPL. In-situ
scanning electron microscopy (SEM) micro-indentation testing is
conducted to assess the mechanical response and verify the validity
of our finite element model. The comprehensive results demonstrate
how discrete unit cell states can be leveraged to optimize the
behavior of complex 3D structures, leading to the creation of
metamaterials with extraordinary targeted mechanical properties. In
essence, our work achieves the creation of an isotropic and auxetic
metamaterial within a discrete and counterintuitive design space.
This is accomplished by rearranging basic unit cell states in an array
while maintaining constant feature sizes and dimensions, which

T. Meier et al.

2

npj Computational Materials (2024)     3 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



facilitate its fabrication at the highest accuracy. Our comprehensive
methodology integrates automated design, FEA, and optimization
with MPL fabrication, and experimental characterization to validate
the optimal structure. Notably, our approach is versatile and can be
adopted by fellow researchers exploring diverse cost functions.

RESULTS
Framework for systematic lattice design
Metamaterials with cubic symmetry have attracted considerable
attention due to the prevalence of extensively studied structures
such as the Diamond, Octet Truss, and Kelvin foam49. Thereby, the
stress tensor σ is related to the strain tensor ε in three-dimensional
composites through the constitutive law of linear elasticity. This
relationship is expressed using an effective order-4 symmetric
stiffness tensor C where

σ ¼ Cε: (1)

When considering cubic symmetry, the effective stiffness tensor is
characterized by only three independent elements: C11, C12, and
C44. C11 and C12 represent stiffness components related to normal
stress, while C44 specifies the shear modulus for cubic symmetric
structures. The effective stiffness tensor can be represented as50:

C ¼

C11 C12 C12 0 0 0

C11 C12 0 0 0

C11 0 0 0

C44 0 0

sym C44 0

C44

2
666666664

3
777777775

(2)

The objective of this work is to develop an inverse design strategy
for a non-monolithic microlattice composed of different discrete
unit cell states with tailored elastic behavior. By utilizing fully
automated FEA simulations and an open-source genetic optimiza-
tion algorithm, various cost functions and objectives can be
defined to achieve tailored behavior, such as high directional
stiffness or Cauchy symmetry. These cost functions are deter-
mined based on the ratio or correlation between the stiffness
tensor components C11, C12 and C44. This work concentrates on
tackling the multi-objective design challenge of dually achieving
isotropy and auxeticity, with a specific emphasis on attaining a
Poisson’s ratio of zero.
Isotropic materials exhibit the same mechanical properties in all

directions, making them highly desirable for achieving uniform
load distribution and structural stability. To quantify the variance
for the stiffness in different directions of cubic structures, the
Zener ratio A is used and defined as51,52:

A ¼ 2C44
C11�C12

(3)

Structures with a Zener ratio value of A = 1 are considered
isotropic. Accordingly, the first cost function to minimize for the
optimization problem is defined as:

f 1ðωÞ ¼ C11 � C12 � 2C44j j (4)

The Poisson’s ratio for compression along the principal axes can
be expressed as43:

ν ¼ C12
C11þC12

(5)

Therefore, to achieve an auxetic structure with a zero Poisson’s
ratio, the second cost function to minimize for the multi-objective
optimization problem is defined as:

f 2ðωÞ ¼ C12
C11þC12

���
��� (6)

The design strategy of identifying an optimal isotropic and
auxetic, zero Poisson’s ratio structure is depicted in Fig. 1.
During the course of this procedure, we utilize 8 distinct
anisotropic and non-auxetic unit cells, depicted in different
colors in Fig. 1a, denoted as A, B, C, D, E, F, G and H. To simplify
the process, we choose unit cell states that possess cubic
symmetry itself, facilitating their systematic assembly into a
bulk microlattice. Furthermore, all unit cells are face-centered
and incorporate nodes at the center of each of the six faces.
This arrangement allows for a flexible and arbitrary combina-
tion of unit cells within the lattice, ensuring that all unit cells
are connected, at the very least at this center face node. To
achieve compatibility with the feature resolution of the MPL
apparatus, the unit cells are designed to be 10 × 10 × 10 μm in
size. These unit cells are arranged in a 5 × 5 × 5 array. The
selection of unit cells was deliberate, incorporating well-
studied designs like the octet truss53, alongside other studied
face-centered and body-centered configurations54,55. Further-
more, our choice of 8 distinct unit cell states ensures a diverse
range of stiffness behaviors, establishing a versatile design
space, as it will be described in the discussion section and
shown in Fig. 9. Although expanding the design space is
feasible by opting for a larger array size, such as 7 × 7 × 7 or
incorporating more input unit cell states, this extension poses
challenges due to heightened computational demands in both
optimization and FEA, along with the imperative for more
sophisticated experimental validation due to the increase of
the geometry. To ensure the boundary condition of cubic
symmetry, ten positions within the 5 × 5 × 5 array can be
assigned independently as shown in Fig. 1b. All other positions
are determined based on the symmetry requirement of the
structure. This means that the same type of unit cell, for
example, is positioned in all corners of the structure. As a
result, specific microlattice configurations can be uniquely
described by a 10-component ω-vector [ω1, ..., ω10], where each
component can take values from A to H according to the
chosen unit cell. Thus the structure shown in Fig. 1b can
uniquely be described by ω = [H G B E D G D B D A]. The
selection of this layout scheme offers two significant advan-
tages. Firstly, it reduces the stress tensor to three independent
stiffness values, thereby simplifying the number of simulations
and tests needed to obtain these stiffness values and assess
whether isotropy and auxeticity has been achieved. This
reduction in complexity streamlines the analysis process.
Secondly, the chosen layout scheme significantly decreases
the number of possible combinations of lattices. By imposing
the restriction of cubic symmetry for the 5 × 5 × 5 lattice with 8
distinct unit cells, the design space is reduced from a
staggering 8125 states to 810 ≈ 1.073 billion states when all
symmetry planes of the structure are taken into consideration.
This reduction in the design space allows for a more focused
exploration of potential lattice configurations and facilitates
more efficient optimization strategies. Figure 1c shows the
multi-objective optimization process that progresses from
random structures towards attaining the optimum of an
isotropic and auxetic lattice structure. The schematic show-
cases this transition using a stiffness map, where the initial
arbitrary shape evolves into a sphere (indicating perfect
isotropy), and the colors gradually shifts from high Poisson’s
ratio (red) to auxeticity (blue).
Figure 2 shows the schematic framework of the design and

optimization setup. During the design process (Fig. 2a), specific
parameters like the lattice size and dimensions are established
initially and maintain constant throughout. Subsequently, a wide
range of unique unit cell states can be defined, each of which is
mathematically represented by lines. Following this, arbitrary and
multiple-cost functions can be formulated for optimization
purposes. In our case, we illustrate this using 8-unit cell states, a
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cubic symmetric array of 5 × 5 × 5, and the multi-objective design
problem opting for isotropy and auxeticity. In the optimization
process (Fig. 2b), the NSGA-II GA47 is employed to explore the
design space and discover a micro lattice design that is both
isotropic and auxetic. Using the population data generated by the
optimization algorithm, unit cells are arranged in a specific
configuration to create unique cubic symmetric lattices. Fabricat-
ing and mechanically testing every structure would be infeasible
given the time it takes to fabricate and test them. Additionally,
mechanical testing introduces noise into the results that can
impact the required data quantity. Therefore, we opt to employ
FEA to calculate stiffness components. To approach an optimal
solution, we input the calculated stiffness values from the FEA
simulations to evaluate the cost functions. The convergence
process of lattice evolution, FEA simulation, and optimization is
implemented within a Python environment that utilizes execu-
tables from ANSYS® and pymoo48. We define an optimal solution
as one that deviates by less than 1% from the desired levels of
isotropy and auxeticity. This tolerance threshold serves as the
criterion for determining the quality of the solution. The entire
optimization process is automated and does not necessitate any
user input.
Once the algorithm converged on an acceptable solution, the

optimum is fabricated and subject to mechanical testing. A hybrid
organic-inorganic resin was utilized in the fabrication process.
Previous studies56 have shown that stiffness measurements
obtained through mechanical testing are limited to the elastic
range, as the photoresist material is highly susceptible to
variations in fabrication parameters, making it sensitive in the
plastic domain. Inside a SEM, mechanical testing and structural
analysis are performed. Detailed information about the FEA model,
applied boundary conditions to calculate the stiffness compo-
nents, optimization, material properties, fabrication and testing
procedures can be found in the Methods section and Supple-
mentary Figure 1 and Figure 2.

Convergence of the algorithm
The results and convergence of utilizing the NSGA-II algorithm
to optimize the micro lattice for the multi-objective of isotropic
and auxetic behavior are depicted in Fig. 3. The problem is
initialized with 8 structures, each composed of a single unit cell
state. The sequential history of the normalized multi-objective
optimization cost is illustrated, which is calculated as the ratio of
the current optimum to the best input unit cell array. The input
cell array optimum, in our case unit cell state H, is the equally
weighted value of the two objective functions for isotropy and
auxeticity

Euclidean Cost ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 1ðωÞ2 þ f 2ðωÞ2

q
: (7)

It is noted that all input unit cells exhibit anisotropic behavior and
possess a positive Poisson’s ratio ranging from 0.14 to 0.39. Using
the provided input data from the sampling of the search space, we
can determine that the average cost function value is represented
by the mean x = 2.664. Additionally, the variance of the search
space is denoted as s2 = 1.264. The cost function value of an
optimal isotropic and auxetic structure is defined as zero. By
achieving full automation of the optimization and FEA simulation
process, rapid iteration loop are made possible, with each iteration
requiring approximately five minutes. This capability enables the
exploration of the design space with several thousand iterations
within a relatively short time frame.
The insets in Fig. 3 illustrate the evolution of the stiffness map

and Poisson’s ratio of the structures over the iterations,
ultimately yielding to an isotropic (perfect spherical shape) and
auxetic (blue color) optimum after 2399 iteration loops. The
sequence ωopt = [H G B E D G D B D A] represents the
mathematical representation of the optimum structure, as
depicted in Fig. 1b and shown in the next section. It is worth
noting that the optimized structure does not exhibit a distinct
pattern or layer arrangement that demonstrates periodicity or

Isotropy

Au
xe

tic
ity

c
Poisson’s ratio:

max0

b
ω = [ H G B E D G D B D A ]

. . .

A CB D

E F H

a

G

Fig. 1 Design space of the optimization setup. a Input Classification: 8 types of cubic symmetric input cells, labeled A - H and color coded.
Cells are face centered and contain nodes in the center of each face. This arrangement ensures compatible connectivity between multiple
cells within a lattice, while preventing any overlapping of beam elements. b Cells are used to construct 5 × 5 × 5 cubic symmetric lattice. The
symmetry constraint leads to 10 arbitrary positions (labeled 1 - 10) where different unit cell states can be placed. Thus, unique lattice
configurations can be described by 10-component ω-vector. c Diagram illustrates the multi-objective optimization problem of achieving an
isotropic and auxetic lattice structure. The schematic showcases this transition using a stiffness map, where the initial arbitrary shape (top
right) evolves into a sphere (bottom left), indicating perfect isotropy, and the colors gradually shifts from high Poisson’s ratio (red) to auxeticity
(blue).
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uniformity in any particular direction, making its design counter-
intuitive. In order to experimentally validate the optimized
structure, all input unit cell structures, and the optimized
structure, were fabricated using the MPL apparatus described
in the Methods section. To ensure uniformity in the cross-section
of the structures, a single batch of resin was utilized, and the
fabrication process was completed within a 24-hour period. The
laser power, writing speeds, and beam alignment were carefully
controlled and kept constant throughout the fabrication process.
Moreover, to ensure repeatability, each beam member was
fabricated by performing multiple passes of the laser beam at
precisely the same location. This approach guarantees the
uniformity and reliability of the fabricated structures for
subsequent testing and analysis.

Properties of the optimum and their corresponding input cells
Figure 4 displays images obtained from the Helium Ion Micro-
scope (HIM) which provides high-resolution imaging and a large
depth of focus. It includes a top view of all monolithic structures
fabricated with the MPL setup in a row and a detailed isometric
view of each structure A - H. Figure 5 shows the fabricated
optimum structure from an isometric (a) and top view (b). In the
top view the different unit cell states A - H are color-coded
according to Fig. 1a and the internal nonuniformity can be clearly
observed.
In order to determine the elastic constants from the experi-

mental findings, the directional elastic properties were derived
using a methodology outlined elsewhere57. The directional
Young’s Modulus, Poisson’s ratio, and Shear Modulus can be
calculated using the following equations:

E ¼ 1
S11

ν ¼ � S12
S11

G ¼ 1
S44

(8)

where S11, S12, S44 is the compliance tensor to the stiffness matrix
C and S12 indicates the direction normal to the loading. In order to
validate FEA results and obtain measurements for the Young’s
modulus and Poisson’s ratio, compression tests were performed
for all monolithic structures and the optimum. Figure 6a
showcases the characteristic stress-strain curves obtained from
the compression tests conducted on all input cell arrays and the
optimum structure.
By analyzing the experimental curves, the Young’s modulus can be

determined. Figure 6b presents a representative frame captured
during the compression measurement. Furthermore, by referring to
the Supplementary Videos 1–9, the Poisson’s ratios of the structures
can be determined graphically by examining the relationship
between lateral and transversal strain. The values for Young’s
modulus and Poisson’s ratio of the optimum structure for the elastic
regime and small deformations were found to be E = 193 ± 9 MPa
and ν≈ 0, which closely aligns with the theoretical estimate from the
FEA simulations of E = 181 MPa and ν = 0.01.

DISCUSSION
We introduced a systematic design approach aimed at creating
optimal isotropic and auxetic lattice structures through multi-
objective optimization. To explore a vast design space consisting

Poisson’s
Ratio
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0

1

2

3
4

5

53
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Fig. 3 Convergence of the multiobjective optimization process.
The vertical axis represents the normalized Euclidean cost for
isotropy and auxeticity, calculated as the ratio of the current
optimum to the best input unit cell lattice (Cell H), with the design
objective defined as a cost of 0. The horizontal axis corresponds to
the number of function iterations. Insets illustrate the evolution of
structures using stiffness maps towards the optimal isotropic
(perfect sphere shape) and auxetic (blue color) configurations as
the iteration number increases.
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Fig. 2 Flowchart and pseudo code of work. a Design and Problem Setup: The initial step involves setting the parameters, such as lattice
dimensions, and designing and defining the input unit cell states. This one-time setup allows for flexibility in defining various cost functions
and optimization goals, making the setup adaptable to a wide range of applications. b Optimization: The Python environment enables a fully
automated process for FEA simulation and optimization. The NSGA-II algorithm and Python simulation code generates a population, performs
FEA simulation, evaluates cost functions, and continues iterating until convergence is attained. To ensure the accuracy of the theoretical
results, the optimal structure is fabricated and subjected to testing for validation purposes.
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of billions of possible combinations, we employed a GA and
worked within a discrete, qualitative counterintuitive design
space. The successful implementation of this approach allowed
us to effectively control the stiffness tensor in the lattice structure,

achieving both isotropy and auxeticity. By formulating the
problem as an optimization task and defining appropriate cost
functions, we utilized the GA to inversely evolve lattice structures
towards their optimal configurations. Although the number of

Fig. 5 HIM image of optimal isotropic and auxetic structure. a Orthogonal view of optimum. b Top view of optimum showing color-coded
different unit cell states, emphasizing the non-intuitive result of the optimization.

a b

Fig. 6 Mechanical testing of structures. a Compression tests of structures A - H and the optimum configuration, measured using a PI-87
Picoindenter. The mechanical loading responses are depicted, and the slopes of the curves are utilized for validating the cost functions and
optimization process. b Representative frame of the compression measurement for the optimum configuration, illustrating the application of
a compressive load by the indenter in lateral direction.

Fig. 4 HIM images of input cell arrays A - H. The top view displays the states of all cells in a row, with structures color-coded as indicated in
Fig. 1a. Detailed isometric views are shown above and below the corresponding cells in the top view.
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iteration loops required to find the optimum was relatively high
compared to previous studies, the use of automated simulation
and optimization processes, leveraging PyAnsys and other open-
source libraries in a Python environment, significantly reduced the
overall iteration time. Each iteration took only a few minutes,
resulting in a relatively short overall optimization time that could
be further reduced through parallel computing. The problem
setup and flexibility of the framework also allows for easy
adjustment of cost functions to achieve different tailored
mechanical behaviors, making the optimization scheme efficient,
reliable, and versatile. Our results provide evidence for the
effectiveness of the GA in generating lattice structures with
enhanced mechanical properties. The absence of any identifiable
pattern in the optimal structure, which possesses both isotropy
and auxetic behavior, highlights the importance of optimization in
designing non-monolithic structures. This further emphasizes the
versatility of the GA approach in addressing complex and
challenging multi-objective problems that lack intuitive or
mechanical principles.
To gain insights into the mechanical behavior of the ideal

structure, we examined the force-displacement curve in conjunc-
tion with the video captures, which effectively highlights the
impact of auxeticity. Figure 7 displays the results of the
experimental compression test conducted on the optimal
structure, along with video captures and a comparison to
theoretical FEA outcomes. Figure 7a illustrates a representative
force-displacement curve obtained from the compression tests,

showcasing the linear FEA utilized for optimization, as well as an
additional nonlinear FEA analysis. Notably, all curves exhibit a
close correlation. The insets at the bottom of the figure highlight
various deformation states observed during the nonlinear FEA
analysis and experimental compression tests. A nearly zero
Poisson’s ratio is observed for both cases at small deformations.
This agreement is further depicted in Fig. 7b, which compares the
Poisson’s ratios for the FEA and measured experimental data.
Despite originating from a MPL bulk material with a high Poisson’s
ratio of 0.499, the targeted structural design achieves an almost 0
Poisson’s ratio and the experimental data aligns well with
simulation results. The mechanical compression response of the
optimized structure is illustrated through the correlation between
the reaction force and the maximum principal stress in Fig. 8.
Further insights are provided through stress distribution and
deformation patterns on the right side of the plot, showcasing
significant variations across the structure. It is observed that the
stress distribution within the lattice structure is not uniform across
entire rows but rather localized in specific sections. This pattern
arises due to the nontrivial configuration of various unit cell states
within the lattice structure. Examination of the region experien-
cing the highest principal stress reveals potential weak points
prone to buckling and failure of beam elements. Exploiting this
unconventional behavior can be used for the precise control of
failure mechanisms on a localized level.
Additionally, Fig. 9 illustrates the directional stiffness maps and

Poisson’s ratios in spherical coordinates for both the initial
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Fig. 7 Experimental compression test data of the optimal structure is presented, along with video captures and a comparison to
theoretical FEA results. a Illustrates a representative force-displacement curve for the compression tests of the optimum structure, combining
both linear FEA used for optimization and an additional nonlinear FEA analysis. The insets show various deformation states throughout the
force-displacement curves for the nonlinear FEA analysis and experimental compression tests. b Compares the Poisson’s ratio with the
compressive displacement for MPL bulk material, FEA and measured experimental data. The experimental data demonstrates agreement with
the simulation results, indicating a Poisson’s ratio close to the optimization goal of zero.
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monolithic structures and the optimum structure. The anisotropy
of the structures is assessed using the Zener ratio, while the value
of ν indicates the Poisson’s ratios. The plots clearly demonstrate
how a design space limited to anisotropic structures (A≇ 1) and
positive Poisson’s ratio (ν≥ 0.14) in the monolithic input cells,
through merging in a unifying lattice structure to can lead to an
optimal result that is both, isotropic (A = 1) and auxetic (ν = 0.01).
These findings further emphasize the role of optimization in
uncovering optimal points that cannot be determined through
intuition. The elastic behavior of the optimum structure remains
reversible until reaching a strain of approximately 7% where slight
weakening is observed, primarily attributable to imperfections in
the fabrication process. When comparing the experimental and
FEA force displacement data for all monolithic structures and the
optimum structure, an average error of 8% is observed for Young’s
modulus and Poisson’s ratio. This close correlation between the

theoretical and experimental data in the compression tests of
multiple structures, provides a reasonable level of confidence in
the validity of the FEA results for shear stress and, consequently,
the whole optimization results.
This study introduces a systematic design approach that offers

engineers and researchers a valuable tool for creating lattice
structures with customized and tailored mechanical properties. By
utilizing the GA, we achieved efficient exploration of the design
space, leading to optimal solutions and substantial time and
resource savings compared to traditional trial-and-error methods.
It is important to note that the optimization process heavily relies
on the selection of appropriate design variables, objective
functions, and constraints. These parameters significantly impact
the outcome and resulting lattice structures, emphasizing the
need for a thorough understanding of the underlying mechanics
and design requirements to obtain meaningful results. While this
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Fig. 9 Directional stiffness map, illustrating the properties of monolithic structures and the optimal structure obtained through the
optimization process. It is observed that all monolithic structures possess a positive Poisson’s ratio (ν≥ 0.14) and none of them approaches
isotropy individually. However, when combined, they yield an optimal structure that achieves both isotropy and auxetic behavior,
characterized by a Poisson’s ratio of ν = 0.01 and a Zener ratio of A = 1.
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Fig. 8 Plot illustrating the mechanical compression response of the optimum structure, depicting the relationship between reaction
force and maximum principal stress. The stress distribution and deformation under load are shown on the right side, highlighting variations
across the structure, with a detailed view of the region experiencing the highest principal stress. The presence of excessive principal stress
leads to buckling and eventual failure of beam elements. This unconventional behavior can be used for the precise control of failure
mechanisms on a localized level.
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research primarily focused on isotropic and auxetic properties, the
methodology presented can be extended to explore other
mechanical characteristics, such as stiffness, strength, or damping,
depending on specific application requirements. The versatility of
the GA enables the optimization of lattice structures for a wide
range of mechanical properties. Furthermore, the framework we
have introduced holds the potential to seamlessly integrate with
methodologies like the one presented by Makatura et al.58. This
approach enables the rapid design of intricate cellular metama-
terials within a user-friendly environment. By incorporating an
inverse design methodology, our frameworks empowers users to
specify their desired material properties and employ an algorithm
to discover the most optimal metamaterial structure accordingly.
To advance and broaden the scope of our research, several areas
warrant further exploration. Firstly, exploring alternative optimiza-
tion techniques and evolutionary algorithms could enhance the
optimization process. Secondly, expanding the design space by
incorporating more complex unit cell designs, additional design
parameters, and larger arrays, while considering constraints for
manufacturability and material-specific considerations, would
ensure practical feasibility. Thirdly, extending the methodology
to account for dynamic loading conditions, including plastic
deformation properties, reversibility, energy absorption, and
buckling, enables the design of lattice structures optimized for
dynamic performance2,59. Additionally, conducting experimental
validation of the optimized lattice structures and exploring
application-specific optimization would provide real-world valida-
tion and tailored solutions. From a fabrication standpoint,
exploring advanced additive manufacturing techniques such as
projection lithography60 could increase the printing area and
enable the efficient fabrication of high-resolution mesoscale
structures. Lastly, investigating multi-objective optimization
approaches that balance complex criteria involving mechanical,
thermal, and optical properties would further enhance the
systematic design approach. Pursuing these future research
directions would enable the creation of lattice structures with
optimized properties for various applications, particularly in optics,
MEMS, flexible electronics, and for meeting requirements for
ultralight or ultrastiff structures61,62.

METHODS
Finite element analysis and optimization
Figure 10 shows the correlation between simulations, calculation
of the cost function and the optimization process. In order to
analyze the mechanical properties of the lattice structure, we
employed FEA simulations. The model and its mesh were created
parametrically in ANSYS® MechanicalTM version 2021 R1 using the
ANSYS® Parametric Design Language (APDL). To enhance our
analysis capabilities, we utilized PyMAPDL, a Python Application
Programming Interface (API) under the PyAnsys umbrella, which
granted us access to the local MAPDL solver and the simulation
data it generated. Originally a standalone package, PyAnsys has
transformed into a comprehensive collection of Python packages
that enable seamless integration with ANSYS®. Hence, different
lattice configurations can be easily conceived by changing
geometric parameters in the code. This expanded functionality
offers a wide range of possibilities, empowering us to construct
models and initiate simulations alongside generative AI models
and advanced statistical analysis. All of the structures called by the
optimization algorithm were fully automatically designed and
analyzed using the PyAnsys environment. For the FEA simulations,
the beam lattices were assigned the following properties: an
elastic modulus of 1.281 GPa and a Poisson’s ratio of 0.4999. These
parameters were utilized to accurately represent the mechanical
behavior of the lattice structure in the analysis. The structures
were meshed using 3D 2-Node elements of type BEAM188 with
circular cross-sections. The element type is based on Timoshenko
beam theory and includes shear-deformation effects. The average
element size was selected by conducting a mesh convergence
study and set to an element length of 0.5 μm. While the beam
diameter remains constant throughout different unit cells to
facilitate fabrication, the volume fraction varies among different
arrays. However, as shown in Table 1, the relative density generally
is below 20%, ensuring accurate modeling through 2-node beam
elements. While structures with higher relative density tend to be
more isotropic since the structure converges to the bulk material,
it must be noted that our optimum that is both auxetic and
isotropic has relative density similar to unit cells B, C, E, F and G.
However, all of these monolithic unit cells are far from auxetic or
isotropic, showcasing how the arrangement of unit cells in the 3D

Fig. 10 FEA load cases and optimization results. a Compression and shear FEA load case to determine all three independent stiffness tensor
elements C11, C12, C44 of cubic symmetric lattices. b The stiffness values for all input unit cells and optimization iterations are visualized in
three-dimensional space. The green line represents the multi-objective optimization goal of isotropy and auxeticity. The iterations (depicted
as blue spheres) progressively converge towards the optimal structure, which lies on the line as shown in the inset. P1, P2, and P3 represent
2D projections of the data points onto the C11, C12, C44 planes, facilitating the examination of individual behaviors throughout the
optimization process.
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space is the dominant factor in the design of a both auxetic and
isotropic structure.
By utilizing the same hardware system, the computation time

using beam elements can be reduced by over 90% compared to
3D tetrahedral elements. Additionally, a study involving multiple
lattice configurations demonstrates that the elastic constants are
within a 5% range for the different mesh element types. For the
calculation of all elastic components of a cubic symmetric
structure, two load cases are needed. A compression load case
to calculate the stiffness components C11, C12 which relate to
normal stresses and a shear load case for the calculation of C44
which specifies the shear modulus for a structure as shown in
Fig. 10a. This methodology has been previously employed for the
precise calculation of the polar stiffness map of structure, leading
to a close correlation between theoretical and experimental
results52. Two types of boundary conditions for compression, Eq.
(9), and shear testing, Eq. (10), are defined. Take a normal strain εxx
for instance, the boundary conditions were defined by52:

Δlx jx¼lx ¼ 0:01lx ; Δlxjx¼0 ¼ Δlyjy¼ly ¼ Δlyjy¼0 ¼ Δlzjz¼lz ¼ Δlzjz¼0 ¼ 0

(9)

which means the displacement in x axis is 0.01lx when x = lx, and
the displacements in all other directions are zeros. In the case of
shear strain εxy, the boundary conditions were:

Δlx jz¼lx ¼ 0:005lz; Δlzjx¼lz ¼ 0:005lx ;

Δlzjx¼0 ¼ Δly jy¼ly ¼ Δly jy¼0 ¼ Δlzjz¼lz ¼ Δlxjz¼0 ¼ 0
(10)

The elastic stiffness components can be calculated by dividing the
average strain (εij) through the average stress (σij)63–65:

C11 ¼ σxx
εxx

C12 ¼ σyy
εxx

C44 ¼ σxy
εxy

(11)

The average stress and strain values are obtained by integrating
over the volume or particularly all finite elements:

εij ¼ 1
V

Z
V
εij dV σij ¼ 1

V

Z
V
σij dV (12)

To conduct uniaxial compression testing, an infinitely stiff plane is
affixed to the top surface of the structure and displaced
downward in the negative x direction. C11 is calculated by
averaging σxx and C12 by averaging σyy. For shear testing, a lateral
displacement is applied to an edge of the structure, and C44 is
calculated by averaging σxy. Instead of iterating through each
element, which incurs significant computational costs, we utilized
reaction forces to calculate the average stress components. This
approach is feasible as we treat the structure as a unified building
block, neglecting internal stress phenomena and operating within
the elastic material range. A comparison reveals that both
approaches yield average stresses within a 5% margin of
difference, but employing the reaction force approach reduces
computational time by approximately 98%. Using the reaction
force approach, the average stress σxx in the compression load
case for example can be computed using the following equation:

σxx ¼
P

Fx jx¼0

A with A ¼ 50 μm ´ 50 μm (13)

Further information on the applied boundary conditions and FEA
models can be found in the Supplementary Figure 1 and Figure 2
and elsewhere46,52,65. Utilizing the simulations and effective
stiffness properties, the cost function values for isotropy and
auxeticity can be determined. To identify the optimal set of

categorical parameters, the PyAnsys code developed in this study
was combined with a multi-objective optimization algorithm in
Python. This allows all components of the optimization problem to
operate within the same Python environment.
To minimize the objective function, we approach the problem

of categorical variables as follows:
Let ωopt denote the argument that minimizes f(ω) within the

combinatorial space, where f(ω) represents the objective functions
for isotropy and auxeticity, visualized as green line in Fig. 10b. The
categorical variable vector is defined as z = [ω1,...,ωm], with m
variables in total. The space is a set of possible combinations. Each
categorical variable can take a value from {U1,...,Uj}, which consists
of unordered categories that cannot be ranked on the real-
number line. In our case for the 5 × 5 × 5 cubic symmetric lattice m
= 10 and j = 8, for 8 different input unit cell states. The objective
is to discover an optimal isotropic and auxetic structure on the
line, as depicted in the inset in Fig. 10b.
In the context of practical engineering problems, evaluating the

objective function f(ω) can be prohibitively expensive. Furthermore,
the challenges of optimization are amplified by the high dimension-
ality of the design space, making it impractical to optimize certain
problems using traditional optimization techniques. Moreover,
gradient-based algorithms are not applicable to combinatorial
problems. Since the entire process is fully automated and each
iteration loop only takes a few minutes, the focus is on reliably finding
optimal structures rather than minimizing the number of iteration
loops. To address the optimization problem, the NSGA-II was
employed47. The NSGA-II algorithm is a popular choice for solving
multi-objective categorical problems. Its effectiveness in handling
categorical variables and ability to optimize conflicting objectives
simultaneously make it an ideal choice for such problems. NSGA-II
combines genetic operators like selection, crossover, and mutation
with a non-dominated sorting procedure to evolve a diverse set of
solutions that represent the trade-off between the objectives. By
efficiently exploring the combinatorial search space, NSGA-II identifies
a set of Pareto-optimal solutions, providing decision-makers with a
range of options to choose from based on their preferences and
priorities47. The population in our current approach consists of two
components: the elite individuals and the offspring points, totaling 20
in size. The elite individuals, which are non-dominated points, make
up no more than 50% of the population and are inherited from the
previous generation. The offspring points are generated through
selection, crossover, and mutation processes to create the next
generation. The probability of crossover is set to 0.9, while the
probability of mutation is set to 0.1. After generating the population, a
fitness evaluation was conducted to determine the placement of the
design points. The population was iteratively updated until conver-
gence is achieved.

Fabrication
The microlattice structures are fabricated using a hybrid organic-
inorganic resin. Details about the mixture, composition and mechnical
testing can be found in the Supplementary Methods and Figure 3.
The MPL fabrication of the structures for mechanical testing is
achieved through sub-micron resolution direct femtosecond laser
writing, utilizing a FemtoFiber pro NIR laser with a wavelength of 780
nm, pulse width of 100 fs, and repetition rate of 80 MHz. Details about
the MPL setup can be found in the SI. A parametric study is
conducted to determine the optimal laser power and writing speed
for achieving the best printing results of the microlattices. The laser

Table 1. Volume fraction for different monolithic arrays A–H and the optimum structure.

Array A B C D E F G H Optimum

Volume fraction 0.107 0.183 0.196 0.080 0.205 0.180 0.194 0.105 0.205
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output energy during the fabrication process is measured at 6 mW
before the objective lens, while the scanning speed is set to 35 μm
s−1. The resin sample was secured on a stage equipped with piezo
and servo elements, enabling movements in the XYZ directions. A
camera is utilized to locate the substrate surface, specifically defined
as the bottom of the fabricated structure. By accurately identifying the
substrate surface, the camera assists in ensuring the alignment and
positioning of the laser writing process. This step is essential for
achieving the desired structural integrity and dimensional accuracy of
the microlattices. Furthermore, the camera enables in situ monitoring
of the polymerization process. It captures real-time videos of the
fabrication procedure, allowing researchers to observe the formation
of the microlattice structure as it progresses. This monitoring
capability is valuable for assessing the quality of the fabrication
process and detecting any potential complications or irregularities
that may arise during the polymerization. In addition to its primary
functions, the camera serves as a tool for early detection of issues
such as laser misalignment, material defects, or other factors that
could affect the quality of the fabricated microlattices. For a more
visual demonstration of the in situ camera imaging during the
fabrication of a microlattice, a representative video has been included
in the Supplementary Video 10. This video provides a detailed insight
into the fabrication process, showcasing the dynamic formation of the
microlattice structure and illustrating the real-time monitoring
capabilities facilitated by the camera.

Mechanical testing and characterization
In order to assess the mechanical performance of the microlattice
structures, in-situ nanoindentation tests were conducted using the
PI 87 SEM PicoIndenter from Hysitron. The tests were performed
inside a SEM, specifically the FEI Scios 2 model from Thermo Fisher
Scientific. A molybdenum flat tip indenter with a diameter of
70 μm, obtained from Probing Solutions Inc., was utilized for all
mechanical tests. In order to enhance the imaging quality, the
samples were subjected to a gold-platinum sputtering process for
a duration of 50 seconds using the Magnetron Sputtering
Deposition System. To ensure proper fixation, the microlattice
structures were mounted on glass substrates using PELCO® Pro
C100 Cyanoacrylate Glue from TED PELLA and fixed onto an SEM
pin stub mount. Compression tests were conducted with the top
face of the structure in contact with the indenter. Each structure
underwent deformation at a rate of 250 nm s−1, and multiple tests
were conducted on each structure to ensure repeatability. To
analyze the critical deformation events, a frame-by-frame compar-
ison of the deformation with the force-displacement curve was
performed. This testing methodology aligns with previous studies
and allows for a comprehensive understanding of the mechanical
behavior of the microlattice structures56.
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