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Uncertainty driven active learning of coarse grained free
energy models
Blake R. Duschatko 1✉, Jonathan Vandermause 1,2, Nicola Molinari1,3 and Boris Kozinsky 1,3✉

Coarse graining techniques play an essential role in accelerating molecular simulations of systems with large length and time scales.
Theoretically grounded bottom-up models are appealing due to their thermodynamic consistency with the underlying all-atom
models. In this direction, machine learning approaches hold great promise to fitting complex many-body data. However, training
models may require collection of large amounts of expensive data. Moreover, quantifying trained model accuracy is challenging,
especially in cases of non-trivial free energy configurations, where training data may be sparse. We demonstrate a path towards
uncertainty-aware models of coarse grained free energy surfaces. Specifically, we show that principled Bayesian model uncertainty
allows for efficient data collection through an on-the-fly active learning framework and opens the possibility of adaptive transfer of
models across different chemical systems. Uncertainties also characterize models’ accuracy of free energy predictions, even when
training is performed only on forces. This work helps pave the way towards efficient autonomous training of reliable and
uncertainty aware many-body machine learned coarse grain models.
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INTRODUCTION
Molecular dynamics (MD) has long been used to efficiently study
the statistical and kinetic properties of a wide variety of systems
by integrating Newton’s equations of motion1,2. There are,
however, substantial limitations on the applicability of molecular
dynamics to situations where the behavior at long length and
time scales is relevant, such as many biological processes. Fast
degrees of freedom in the system prohibit the use of larger
integration time steps while creating a more rugged energy
landscape that typically slows important structural changes3,4.
Exploring a rough energy landscape with small time steps
becomes unfavorable when coarser resolution is of interest. In
addition, computing forces and updating the configuration state
of every degree of freedom (DOF) at each time step in an all-atom
(AA) system can be a computational burden. For a variety of
problems, fast motions such as those of hydrogen vibrations do
not play a significant role in long length- and time-scale
properties, making it unnecessary to track each DOF.
In the context of biological systems, understanding protein

folding pathways and the bulk properties of lipid bilayer
membranes often require simulations of physical timescales on
the order of microseconds or longer, while also typically modeling
tens or hundreds of thousands of atoms5,6. In the most cutting-
edge applications of MD, on the other hand, it is not typically
feasible to exceed these two limits simultaneously. Similarly, at the
all-atom scale protein-protein interactions, or more generally
polymer-polymer interactions, may not depend on all degrees of
freedom. Accounting for the effects of solvents adds additional
computational complexity. In such scenarios as described above, a
variety of coarse grained (CG) techniques are often used to probe
the system at longer time scales and lower spatial
resolution3,4,7–26.
Of central importance to modeling the thermodynamics of

systems with CG approaches is identifying the reduced degrees of
freedom, or CG beads, and determining the interactions between

them. To this end, two primary approaches are taken. Top-down
methods are parametric models tuned to reproduce experimental
observations, while bottom-up methods are built upon an
underlying all-atom description of the system. Top-down coarse
grained force fields are well established with widespread use
across different applications3,4,12–18,20,21, while the development of
bottom-up coarse grained models has seen substantial activity
within the past decade or so23,27–40. Although top-down methods
are appealing for many reasons including thermodynamic
transferability and speed, they fail in many regards to be more
than simply qualitative in nature. On the other hand, despite
acquiring explicit dependence on thermodynamic state points,
bottom-up approaches can rigorously reproduce the statistical
behavior of the system of interest by targeting the many-body
coordinate dependent free energy, often called the potential of
mean force (PMF), represented by a reduced set of
coordinates27,31.
Due to the complexity of the PMF, machine learned (ML) forces

fields have recently gained traction over empirically parameter-
ized classical potentials. In particular, the success of all-atom
machine learned force fields as surrogate models for ab initio
molecular dynamics41–55 has resulted in increased interest in
applying similar techniques to modeling the PMF23,33–40. These
approaches typically make use of regression over long all-atom
trajectories via a multiscale coarse graining/force matching
technique that reproduces the all-atom PMF in the limit of
sufficient sampling of the canonical ensemble27. In addition,
machine learning has targeted related problems of choosing an
optimal low-resolution representation of atomic systems37 and
more broadly the problem of reconstructing atomic details from
CG models56–58. So far, most ML approaches to CG models were
based on neural networks (NN), which possess a number of
benefits. For example, they serve as highly flexible representations
of complex functions that can be trained on large training sets.
Kernel-based methods have also been proposed38–40. However, all
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ML-based CG models of the PMF to date lack a measure of
uncertainty through Bayesian techniques or even through neural
network ensembles.
The wide array of problems that are faced in CG modeling

motivate a new perspective. For instance, in exploratory applica-
tions, such as the discovery of structure of large proteins or rapid
screening of soft materials, training CG models with a set of
relevant configurations may become infeasible. Some configura-
tions may never be sampled due to their rarity or the time it takes
for a system to evolve into these states. For this reason, current
approaches that do not use uncertainty metrics rely heavily on
substantial a priori knowledge of the target behavior of the all-
atom system, posing a limitation on their potential for wide spread
applicability.
Moreover, it becomes increasingly difficult to assess the quality

of models by estimating the true error on the test set, since this
requires long constrained dynamics trajectories to obtain well-
converged PMF data. In addition, traditional aggregate metrics
such as mean absolute errors of forces may not capture subtle
deficiencies in a model. Also, bottom-up CG models are highly
dependent on the configuration and chemical make up of the all-
atom system used for training, making the transferability of these
CG models difficult to anticipate.
Compared to NNs, kernel-based Bayesian regression methods,

such as Gaussian process (GP) regression, provide access to
predictive uncertainty and have been demonstrated to efficiently
select sufficiently representative training sets via active learning in
all-atom settings47,49,50. One limitation is the increase of the
computational cost of the training and inference tasks with the
size of the training set. However, in many cases, the full GP can be
mapped onto an exact model for predicting both the mean and
uncertainty with a cost that is independent of the training set size.
Application of these recent methods have been demonstrated to
simulations of complex heterogeneous systems at record speed
and size, reaching 500 billion atoms51,59,60. In the context of coarse
graining, active learning frameworks have seen less activity, and
the existing literature on these methods is limited to non-bottom-
up approaches61.
In this work, we present an active learning regression

framework based on principled Bayesian uncertainty inherent
to sparse Gaussian processes (SGP’s) for autonomous develop-
ment of coarse grained force field models. First, we demon-
strate the ability of Gaussian process regression to learn the
coarse grained PMF on-the-fly, thereby reducing the guess work
typically needed to construct the training set. In practice, this
allows the model to discover unknown configurations that may
appear at long timescales by bypassing the more predictable
motions of faster degrees of freedom. We emphasize that this
differs from current approaches that rely on all-atom simula-
tions to sufficiently explore the full configuration space on their
own before removing any degrees of freedom. Second, we
show that uncertainty-aware active learning enables the
development of more transferable coarse grained models. In
particular, we demonstrate how uncertainty, along with the
locality, allows models of one molecular system to be
transferred to a new system by updating the training database.
In addition, we explore the implications of the design choice of
how to label the species of CG beads on model accuracy and
transferability, which has an important impact on the final
speed of the model. Third, we find that uncertainty allows for a
rapid and direct assessment of model robustness and limita-
tions where traditional metrics such as force errors are
insufficient, thereby accelerating deployment and facilitating
automatic refinement.

RESULTS
Validity of uncertainty aware on-the-fly learning of coarse
grained models
Bottom-up training of coarse grained models is typically done by
regressing the PMF derivatives to time averages of forces, the
precise form of which is given by Eqs. (7) and (8). A common
approach is to utilize instantaneous forces in a long unconstrained
molecular dynamics trajectory to minimize appropriate functionals
that reproduce the PMF27,33. This approach requires care in
dealing with two implicit timescales in the problem. For one, the
simulation times of the fast degrees of freedom must be long
enough to ensure that the sampled all-atom configurations are
not highly correlated. Also, collecting sufficient training data
requires simulating long enough time scales in order to visit a full
range of coarse grained configurations. Even so, depending on the
shape of the PMF, some regions in CG configuration space
separated by barriers may not be visited during the training
simulation. Principled quantitative uncertainty provides a rigorous
way of identifying configurations that lie within and outside the
training set.
Here, we introduce an on-the-fly CG workflow implemented in

the FLARE framework49,50, depicted in Fig. 1, that utilizes the
predictive Bayesian uncertainty of SGPs. The goal of this FLARE-CG
approach is to automate the collection of the PMF labels by
deriving a decision threshold of data acquisition from the
uncertainty associated with every prediction during a CG MD
simulation. This is implemented by directly comparing each local
CG environment for which predictions are made with those in the
training set using a pre-defined kernel function operating on
geometric descriptors of local configuration environments.
Specifically, we consider the local environment of CG sites within
a defined cutoff radius from the central site. Many-body symmetry
preserving descriptors based on the atomic cluster expansion
(ACE) are constructed for this purpose, with different hyperpara-
meters allowing for different levels of expressiveness50,62.
The workflow begins from an initial coarse grained structural

configuration, for which a constrained dynamics trajectory is
performed to acquire force labels for training. Note that the
acquired forces are the gradients of, and therefore directly related
to, the PMF that we are trying to learn (see Methods A).
Subsequently, for each configuration, the predicted models local
PMF uncertainties are used to decide whether to evolve the
system forward in time. If the uncertainty of the model on the new
configuration is above a user-defined threshold, more constrained
dynamics data is collected to augment the Gaussian process
model database; otherwise, the CG MD step is accepted, and the
system evolves forward by a time step. This process is repeated at
every step of the CG MD trajectory, forming an autonomous active
learning loop. Eventually, after the model no longer makes
frequent calls to the all-atom baseline, the trained SGP model’s
explicit dependence on the training set size can be eliminated by
mapping it onto an exactly equivalent and much faster parametric
model50.
During the active learning process, the model hyperparameters

are adaptively optimized by maximizing the log-likelihood in
response to new training data. By maintaining well calibrated
uncertainties, models are then capable of discovering new
configurations on their own, circumventing a major problem of
potentially missing unknown structures in a model’s training set.
Further, this methodology allows us to rely on the all-atom models
only to remove fast degrees of freedom and obtain CG force
training labels, so that the slow degrees of freedom are evolved
directly using the learned low-resolution CG surrogate model. We
illustrate the performance of SGPs trained on-the-fly for a pentane
liquid structure consisting of 70 molecules, with the hydrogen
degrees of freedom integrated out (Fig. 2).
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The all-atom to CG mapping sequence is shown schematically
in Fig. 2a. Our approach requires a prior definition of CG sites.
Although recent works have considered automating the CG site
selection process37,56–58,63,64, more work is needed to integrate
these approaches with our proposed framework. We instead rely
on chemical intuition to choose the CG mapping, where for the
pentane system, we choose to map the all-atom system to carbon
sites. In this example, the hydrogen atoms are integrated out,

effectively setting to zero their weight in the mapping function,
defined in Eq. (3) of Methods.
Existing empirical and ML CG models often label coarse grained

species by their underlying all-atom composition and bond
topology, suggesting the end carbon atoms of pentane should be
treated differently than those on the interior of the chain3,33. In
particular, CG carbons can be treated as different species types in the
descriptor, defined in Eq. (15), depending on whether they are at the
end of the molecular chain. Alternatively, all carbons can be treated
as the same species type, and we can rely on the ML model to
correctly learn CG forces from the geometry of the local environment
structure.
We investigate the impact of this choice by exploring the

performance of models of pentane with and without explicit labeling
of end carbons as a different species in the descriptor. Hydrocarbon
systems such as pentane liquid are a convenient test case, as many
top-down empirical models are parameterized for them. In the
following, we compare the accuracy of our ML CG models, whose all
atom baseline is the OPLS force field, to an empirical CG force field
with the same CG site mapping, OPLS-UA17,65. Both the OPLS
parameter set and its united atom variant were designed to capture
the densities and heats of vaporization of organic liquids. While of
the same molecular form, the OPLS-UA force field is further refined
such that groups consisting of hydrogen atoms bound to a carbon
atom are treated as a single interaction site.
For the ML CG approach, we find in Fig. 2c that the single-species

and the two-species models provide similar force accuracy as well as
the reproduction of structural properties compared to the all-atom
baseline. Such comparisons are valuable because the less complex
single-species models have shorter inference times. This arises from
the scaling of the dimensions of ACE descriptors and kernel matrices
with increasing number of species, associated with more compu-
tationally heavy linear algebra computations at inference. We are
not claiming, however, that this finding for pentane is a general
result expected to hold for other molecular systems.
Similarly, comparing to each other the learning of on-the-fly

models for both single- and two-species realizations in Fig. 2c, we
find both types of models achieve comparable force accuracy. We
note that the predictive uncertainties of each model differ between
single- and two- species as a result of having inherently different
model complexity. In practice, this means that single-species models
will tend to make fewer calls to the reference method (constrained
all-atom dynamics). In this example, we use a predictive uncertainty
value threshold, defined in Eq. (19) of Methods, of 0.02 for the two
species case and 0.01 for the single species case to further highlight
this contrast in behavior with respect to uncertainty. The final mean
absolute force error, as a percentage of the mean absolute force
component of the model predictions, on a test set lies around 9%
for both single and two species models. For comparison, we also
compute the error in forces predicted by the OPLS-UA force field on
the same test set and find an error of 30%.
To emphasize that uncertainties are indeed predictive, in Fig. 2c,

we show the (unitless) mean local PMF uncertainty given by Eq.
(19) of Methods in each test set frame. A frame refers to a
structure snapshot together with atomic force information. As a
function of training set size, the uncertainty correlates directly
with the trends followed by the mean absolute force errors on the
test set. Even though the quantitative values of uncertainty and
force test-set error do not agree, the crucial point is that the same
trend behavior persists.
Figure 2b, d demonstrate that the inter- and intra-molecular

properties, respectively, of the CG carbon sites match the behavior of
the all-atom carbon atoms with high fidelity. The full carbon-carbon
radial distribution functions are well reproduced, as are the end-to-
end molecule chain distance. This distance is defined as the linear
separation between the two carbons on the ends of each molecule.
In addition to pair distributions, more complex structural

correlations have been suggested for assessing the fidelity of

Fig. 1 A Schematic representation of the active learning work-
flow. FLARE-CG is an extension of the Fast Learning of Atomic Rare
Events software49–51. Here, we schematically demonstrate the
workflow of the on-the-fly active learning training loop. An initial
all-atom frame is run under constrained dynamics and coarse
grained to obtain initial force labels. A select number of sparse
environments are randomly added to the training set of the
Gaussian process. The construction of model descriptors is
performed, and the hyperparameters of the SGP updated by
maximizing the log marginal likelihood. The model proposes a
molecular dynamics step, along with force and local free energy
uncertainties. If all local free energy uncertainties are below a
tolerance threshold, the step is accepted. Otherwise, reconstruction
is performed in order to collect more constrained dynamics training
data. To perform reconstruction, we construct excluded volumes
around already placed atomic centers in the system. New atom
placements are proposed by randomly drawing an azimuthal and
polar angle pair, which are subsequently accepted if they do not lie
within regions of overlap between existing excluded volumes.
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coarse grained models66–70. For example, it is possible for CG
models to reproduce a set of distribution functions such as those
shown, but the relative sampling between a set of states may still
be inconsistent67. To further establish the strength of our method,
we analyze the possible correlated states for pentane.
As in Fig. 3, pentane bond and angle distributions are unimodal,

and therefore do not meaningfully contribute to understanding
correlations between structural states. Instead, we consider the
trans (T) and gauche (G) dihedral angle regimes, akin to ref. 67.
With two dihedral angles, we label the structural state pairings of
pentane as TT, GG, and TG. We show in Fig. 3 that both the single
and two species CG models capture the relative sampling of these
sates quite well compared to the all-atom baseline.
For completeness, we compare the accuracy of structural

property predictions of our coarse grained models to an existing
empirical (non-ML) model, OPLS-UA17, in both Figs. 2 and 3. We
find far greater fidelity in the reproduction of structural properties
with our SGPs compared to this empirical model, as well as the
relative sampling of dihedral angle pairs. In particular, we
emphasize that the OPLS-UA model describes two, three, and
four body interactions that are typical in classical force fields.
Despite this, the simple functional form of such models is
insufficient for capturing structural correlations. This further
motivates the use of ML approaches to PMF modeling.

Transferability across molecular systems
Bottom-up CG models are typically developed to preserve the
partition function of the Boltzmann distribution maintained by
thermostats in the all-atom MD simulation, thereby ensuring
consistency with the AA thermodynamics. However, this implicitly
assumes that the model will be specific to both the chemical make
up of the all-atom system as well as the thermodynamic state
points. Particularly in this setting, where models are specific to a
given system, predictive model uncertainty is helpful in quantify-
ing the distance of local CG configurations in the test set from

those in the training set. This enables us to systematically adjust
and improve CG models.
To examine the degree to which SGP CG models trained on one

system can transferred to another system, we consider several
ways in which a model trained on the pentane liquid can be
applied and adapted to an octane liquid, as summarized
graphically in Fig. 4a. Direct CG models of octane are trained on
all-atom octane data on-the-fly using active learning. Unadapted
CG models are trained on-the-fly on the pentane system for
100,000 time steps and then deployed directly on octane. Here,
the SGP evolves the system in CG space over time for 100,000
steps, checking the uncertainty against the user defined threshold
at each step, before being deployed on octane. Note that 100,000
does not refer to the number of AA constrained dynamics steps
used when collecting more data. The models labeled as adapted
(50) and adapted (100) have identical pentane training data, but
their training sets are subsequently augmented on-the-fly for 50k
and 100k time steps with octane training data, respectively, via the
same procedure defined for the pentane on-the-fly loop. We also
compare the performance of trained CG pentane models to the
underlying AA results for octane. The goal of this experiment is to
determine whether or not uncertainty can enable models
previously trained on other systems to be extended to a new
system more efficiently than starting over and without loss of
accuracy. The results of each model type shown in Fig. 4 and
Table 1 is the average of 40 independently trained models.
We find in Fig. 4c for the two species models that the inter- and

intra-molecular structure of the carbon atoms is reproduced
substantially better with the adapted models than their una-
dapted counterparts. This is further reflected in the end-to-end
chain distance RMSE values given in Table 1. Note, however, that
the unadapted single-species models shown in Fig. 4b give higher
fidelity radial distribution functions compared to the unadapted
two species models while using far less training data on pentane
(see Table 1). This result can be attributed to the higher
dimensionality of the two-species descriptors, which makes the

Fig. 2 Demonstration of active learning to coarse grained pentane. a Atoms in a pentane liquid are mapped directly to their carbon sites,
integrating out hydrogen degrees of freedom. In two experiments, the beads are treated as either one or two different species, based on the
underlying bond topology. b The end-to-end chain distance distribution of single and two species models are compared to the all-atom
training baseline, as well as a common coarse grained force field for hydrocarbon liquids, OPLS-UA. c The learning rate for two and single
species models is reported by showing the mean absolute force error on a test set as a relative percentage to the mean absolute force
component in each test frame. We also report the mean free energy uncertainty of the model on the set, defined in Eq. (19), which is a unitless
quantity. d The full carbon-carbon radial distribution function for single species, two species, all atom, and OPLS-UA simulations. The inset
shows a zoomed-in view of the long-range structure.
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two-species model more sensitive to changes in local environ-
ments. In the single-species case, for example, local environments
near the end of the hydrocarbon chains look highly similar to
those of octane. For the two-species case, this is not true as the
local environments, within the 4.5 Å cutoff, of octane carbon sites
will almost never contain both ends of the chain, which is likely to
happen in pentane. As a result, to a single species kernel, octane
looks more similar to pentane and it is able to extrapolate with a
limited amount of data.
To emphasize the utility of active learning, in particular in the

context of designing transferable models, we note the stark
contrast in accuracy between adapted models trained with and
without using uncertainty. In Fig. 5, we examine difficulties that
arise in modeling the end-to-end chain lengths of single and two
species approaches. Here, the non-active learning based models
are trained from randomly selected octane data, with a single
frame being used for the single species models and 15 frames for
the two species, in line with the amount of data collected by on-
the-fly models reported in Table 1. Each curve is the average over
an ensemble of 40 models.
A relatively small amount of octane data is added while training

these adapted models, and it is therefore crucial that the added
data be maximally informative. In this regard, two-species models
are more susceptible to poor performance when the available
data is not representative of the differences between the original
(pentane) system and the new (octane) system. Being a less
descriptive model, the single species examples do not suffer from
this to the same degree. It is quite evident that uncertainty based
active learning enables accurate transferability of coarse grained

models where non-active learning could not. For completeness,
we examine the learned distributions of active and non-active
learning based models in the Supplementary Discussion, along
with a detailed discussion on the structural correlations for this
system.
To highlight the benefits of using an adapted model on systems

outside of the training set as opposed to starting from scratch, we
compare the computational cost of AA constrained dynamics
reference computations as well as the resulting force errors and
structural properties of adapted models compared to training an
octane model from scratch (Table 1). Assuming the pentane data
is already available, we find that by using an SGP containing data
from a chemically similar system, far fewer AA reference calls to
the new system are needed compared to starting from scratch. In
both the single- and two-species cases, the force accuracy of
adapted models with fewer active learning calls to the octane
reference AA constrained dynamics method is higher than in
direct models trained on octane from scratch which also requests
more data in active learning. Additionally, over the course of the
50,000 and 100,000 on-the-fly training steps, we report in Table 1
the average number of frames in which the models request more
octane data. We see explicitly that in all cases, models starting
from pentane request fewer frames of data for the new system.
This is a crucial point, as the reduction in required constrained
dynamics calls of adapted models significantly reduces the
computational cost of model training. We observe that the single-
and two-species models display comparable force errors despite
their disagreement in the reproduction of chain distance
distributions, which we explore further in the next section.

Fig. 3 Structural correlations captured via active learning. a The distribution of bond lengths in pentane moleclues for single species, two
species, and OPLS-UA models relative to the all-atom baseline. b Bond angle distributions of the same set of models. c Dihedral angle
distributions of the same set of models. Vertical lines indicate the separation between trans and gauche dihedral conformations. d The relative
sampling of the three dihedral pair states for pentane, trans-trans (TT), trans-gauche (TG) and gauche-gauche (GG).
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Correlating model robustness and PMF uncertainty
In this section, we aim to examine the correlation between the
force error and error in structural properties determined by the
PMF. Specifically, we focus our attention on the end-to-end chain
distance distribution. Physically, the multi-modal distributions that
appear in pentane and octane systems arise from the PMF minima
at two values of dihedral angles along the chain. For shorter
chains, fewer pairs of dihedral angles exist that are energetically
favorable, whereas longer chains effectively become more flexible
to bending.
To quantify the variation between a model and the AA system

in the end-to-end chain distance distribution, we define the
population error as

100 ´
pcg1 =pcg2
paa1 =paa2

� 1

����
���� (1)

where p1,2 are the populations (i.e., frequencies of sampling end-
to-end chain distance values) of the first and second PMF basins of
the AA or CG system.
With this definition, we can motivate this discussion by

considering the relationship between mean force errors and
population errors for the octane models discussed in the previous
section. The mean force errors of the adapted single-species
models are quite similar to the two-species models, while the
population error between the single- and two-species approaches
differ substantially (see Table. 1). The population error of the
adapted (100) single- and two-species models differ by nearly a
factor of 10. Similarly, adapted versions of the single-species
models achieve comparable force accuracy to their direct model
counterparts, despite varied performance in capturing the relative
sampling of states. This result points to a clear disconnect
between force and PMF errors.

Fig. 4 Transferable coarse graining enabled by active learning. a A schematic representation of the computational experiment considered.
Adapted (50 and 100) pentane models are those that have seen extra octane data, generated on the fly for 50,000 and 100,000 steps,
respectively. Unadapted models are pentane models deployed directly on octane with no additional training. b The carbon-carbon radial
distribution function and the end-to-end chain distance frequency are shown for single species models. The inset shows the long-range
structure of the liquid (c) the carbon-carbon radial distribution function and the end-to-end chain distance frequency are shown for two
species models, with the inset showing the long-range structure.

Table 1. Accuracy and efficiency of transferable coarse grained models.

GP Model Pentane Frames Octane Frames Force MAE/MAC (%) Population Error (%)

Single Species Unadapted Pentane 11.45 0 15.29 34.98

Adapted (50) Pentane 11.45 1.77 10.10 53.71

Adapted (100) Pentane 11.45 2.02 10.10 52.09

Direct 0 12.1 10.18 49.72

Two Species Unadapted Pentane 42.42 0 78.18 597.05

Adapted (50) Pentane 42.42 15.26 10.14 9.84

Adapted (100) Pentane 42.42 17.52 10.04 5.85

Direct 0 54.73 10.20 13.86

The average number of all-atom LAMMPS calls over a set of 40 models, as well as the average total number of training frames in the GP, is reported for both
single- and two-species models. In addition, we report the mean absolute force error on a test set, averaged over 10 models, as a percentage of the mean
absolute force component (MAC) in each test frame, as well as the population error of the averaged chain distance distribution from the all-atom ground truth,
defined in Eq. (1).
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For the remainder of this section, we focus our attention on the
case of pentane specifically as it has a much more bimodal
distribution in chain distances compared to octane, corresponding
to a more challenging energy landscape in which to study
population ratio errors. Even longer chains do not display such
bimodal distributions at all (see Supplementary Fig. 4). To this end,
in Fig. 6a, we show the end-to-end chain distance distributions for
a set of 40 pentane models, each trained with subsets of 50
training frames and 50 sparse points per frame, drawn randomly
from the same set of AA constrained dynamics data. It is clear that
models vary widely in predicting end-to-end pentane chain
distance distributions, despite all models exhibiting low errors on
forces. Quantitatively, we show in Fig. 6b, the learning curves for
the set of 40 models along with their corresponding population
errors defined by equation (1). Black and red lines correspond to
monotonically and non-monotonically decreasing quantities,
respectively. Each model in the ensemble exhibits monotonic
decrease in the force error with more force training data. At the
same time, many models show non-monotonic evolution in the
population error as a function of the training set size.
These trends can be understood by noting that pentane chain

distance distributions are characterized by the difference in PMF
values between the two basins. However, in our training, only PMF
derivatives (forces) are used, which only implicitly constrain the
model’s estimate of PMF. As a result, in a test set with minimal
representation of transition structures and high sampling of
equilibrium ones, we expect that mean force errors will decrease
with added data more rapidly than the PMF errors. Thus, improving
the fidelity with which these models reproduce distributions of
structural properties requires a large amount of force data,
especially in the rarely sampled transition region. We note that
despite the variability across models in the ensemble, the mean
population error as a function of training set size indeed decreases,
as does the mean force error. The insets of Fig. 6b show the mean
force error and population error of the ensemble of models, along
with the standard deviation represented with error bars.
The overlap in the distribution of force errors is far smaller than

that of the population errors. In each step of the learning process,
a model’s PMF predictions are less constrained than the force
predictions. As a result, there are effectively more learning
pathways that quantities arising from the PMF, such as population
errors considered here, can take towards a converged value.
Because of the substantial overlap in distributions at different
stages of training, many of these pathways are not necessarily
monotonically decreasing functions.

One possible solution to minimize this variability would be to
include PMF labels in the training set. However, free energies are
difficult to compute. In the absence of such PMF labels, however,
we argue that by training with force labels alone, the local PMF
uncertainties can still be meaningfully interpreted, and that the
uncertainties are able to capture useful information regarding the
impact force data will have on the model’s PMF predictions.
To connect uncertainty more directly to the performance of

observable properties, we explore the local PMF uncertainties of
CG environments and their relationship to Eq. (1). First, we define
the molecular uncertainty as the average local PMF uncertainty on
CG sites, i, belonging to molecules with an end-to-end chain
distance L. Formally, this is given by

σðLÞ ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

X
mtðLÞ

X
i2mtðLÞ

δε2i

s
(2)

where δε2i is the local PMF uncertainty of CG site i belonging to a
molecule m of length L, evaluated on a frame in a test set t. The
average is performed over all molecules whose end-to-end chain
distance lies within a range L ± ΔL in the test set.
In addition to the mean and standard deviation of force errors

and population errors shown in Fig. 6b, we plot the molecular PMF
uncertainty in equation (2) as a function of the training set size for
a single model averaged over molecules within the transition state
region. The molecular uncertainty follows the monotonic trend of
the true population error averaged over the ensemble of models,
while individual models do not necessarily follow such monotonic
trends in population errors, as mentioned above. We suggest that,
due to the wide variation across models, the local PMF uncertainty
for a single model does not necessarily predict the true error of
populations on a single model, but rather correlates with the
expected average error of an ensemble of models.
We also find that force training labels alone constrain PMF

predictions in a meaningful way. In particular, the usefulness of
the force data that is added is also reflected in the local PMF
uncertainties, supporting its use as a metric in on-the-fly training.
To demonstrate this, we examine the molecular uncertainty
defined by Eq. (2) as a function of chain distance for two different
scenarios. Starting from a baseline model trained with 50 frames
of pentane force data, we compute σ(L) on an independent test
set. Subsequently, we consider the addition of force labels in a
molecule whose chain distance lies within the transition region
(~4.8 Å, model A) compared to the addition of sites in a stretched
molecule of chain distance ~ 6.3 Å, model B. The stretched
configuration in model B is highly energetically unfavorable, and

Fig. 5 Comparison of transferability with and without active learning. We show the end-to-end chain length distribution for single and two
species CG models trained with and without active learning. a Compared to the all-atom baseline, single species models are shown. Each CG
curve is an average over the results of 40 models. The non-active learned models has seen one additional frame of octane data, while the
active learning models see on average 1.7 frames of data. b The same data is shown but for two species models. In this case, the non-active
learned models each see 15 frames of octane data, while the active learning models see on average 15.2 additional frames.
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we expect that this data would have a less meaningful impact on
the local PMF uncertainties of the model within the more well-
explored regions of phase space.
In Fig. 6c, we plot differences of molecular uncertainties,

σ(L)− σA,B(L), between the baseline model and models A and B as
a function of chain distance. Indeed, the transition state model
shows a sharper decrease in uncertainty overall compared to the
stretched model, directly indicating that the local PMF uncertain-
ties are capable of identifying how force data will constrain the
corresponding PMF predictions.

DISCUSSION
In this work, we have explored the utility of uncertainty aware
machine learning models for coarse graining. The principled
Bayesian uncertainty measure of Gaussian processes enables an
on-the-fly active learning scheme for CG models that allows for
automating the creation of training sets. A key aspect of the on-
the-fly ML CG method is that it overcomes the time- and length-
scale limitations of AA models by integrating the AA system in
time only over fast degrees of freedom. In addition, by collecting
training data only when necessary during MD, we eliminate the
need for specifying a priori which configurations our model will
need to be trained on. Instead, as the algorithm explores
configurations, it automatically decides if they are new enough

to be added to the training set. We have made a direct
comparison of all-atom and CG simulations using the same time
step, although the CG models generalize well and are stable for
larger time steps. This is expanded on in the Supplementary
Discussion.
In addition, computational speed is a key metric in CG force

fields. While fast classical all-atom force fields are used as a
reference in this work, this need not be the case. For example, one
could target ML models based on ab initio data that would be far
more accurate. To this end, we quantify in Supplementary Fig. 1
the efficiency gained by using ML models at a coarse grained
resolution as opposed to the full all-atom alternative. We find that
these coarse grained models have the potential to be up to 50
times more efficient than an equivalent all-atom model when
taking into account the largest stable timesteps.
Further to the point of designing more efficient CG models, the

analysis we have done on the performance of single- versus two-
species models is valuable. In this Gaussian process framework,
there is unfavorable scaling with the number of species. As such, a
single-species representation equates to a much faster model.
Systems where this choice does not lead to significant accuracy loss
in pair-wise and correlated distributions, such as the pentane system
considered, will benefit greatly from improved model efficiency.
Moreover, the on-the-fly framework enables models to be

transferred across molecular systems in a principled way. By the

Fig. 6 Insufficiency in relative energies captured by uncertainty. a The end-to-end chain distance distribution of an ensemble of 40 pentane
models, each trained with 50 frames of data (b) the distribution of mean absolute force errors and (c) the population errors defined in Eq. (2)
for the pentane ensemble as a function of training set size. Red lines correspond to non-monotonic trends, while black are monotonic. The
insets show the mean and standard deviation of the computed property (black), as well as the uncertainty defined in Eq. (2) averaged over
models in the ensemble and over molecules within the transition region (magenta). The uncertainty does not share an axis with the force or
population errors, but is simply a unitless quantity as described in the Methods (d) the effect of adding different types of data is shown. The
carbon sites of a transition state molecule (blue) and unphysically stretched molecule (red) are added as new data to a model having 50
frames of data. The resulting change in molecular uncertainty from the baseline model is shown as a function of chain distance.
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locality assumption inherent in the structural descriptors, for local
environments that are similar across systems forces will be
predicted to be similar, at a given thermodynamic state. Similarly,
environments that differ will result in small kernel values and
contribute proportionally less to the prediction of forces on new
environments, and the framework will request more data.
In practice, this approach could be used to develop CG models for

common polymer backbones that could then be efficiently adapted
to systems with differing functionalization. In this case, only data
around new functional groups would be required, as opposed to
starting from scratch. This would allow for more rapid development
of coarse grained models in materials screening settings. We
emphasize that there is a tradeoff in single- and two-species
representations for transferable models. In the octane example
considered in this work, there is an ease of direct transferability of
single-species models without adaption. On the other hand, the
achievable accuracy upon the addition of more data of the more
descriptive two-species model may be more desirable. In general, it
is difficult to anticipate the extent of this complex tradeoff.
The issue of model variance is further addressed herein as arising

from limited direct PMF information. By training on time-averaged
forces only, obtained from unbiased MD configurations, the PMF in
transition regions is difficult to capture. What’s more, examining
force errors alone can seem to suggest that models should always
improve with more data. In fact, we show that over an ensemble of
models, average force errors indeed decrease monotonically with
more data, while PMF errors do not necessarily decrease for each
model. As a result, properties arising from PMF values, such as
population ratios of stable configurations, can vary significantly and
converge slowly in the training process. We find only that the
average over a set of models will improve such property predictions.
We demonstrate that despite the lack of direct PMF labels in the
training set, providing forces still imparts meaningful PMF informa-
tion to the model that is reflected in the monotonic behavior of
uncertainties. This allows a better understanding of model robust-
ness where traditional metrics such as force errors are insufficient.
We note that the molecular local PMF uncertainty plotted in

Fig. 6b, c does not correspond quantitatively to the mean absolute
force error or population error. While some work has been done
on understanding how to more concretely link uncertainty and
performance71, it is not well understood how we can, for example,
translate specific values of uncertainty directly to the variance of
observed structural properties over an ensemble of models. This
remains an open question and demands systematic investigation
even for force-fields in all-atom simulations. Moreover, the
particular form in which we analyze molecular uncertainty in Eq.
(2) is a choice. Other functional forms of molecular uncertainty can
be conceptualized that may or may not provide deeper physical
insight. This will require careful considerations in future works.
Finally, we note that a particular challenge in making the

proposed method more generally applicable is the reconstruction of
all-atom configurations to enable constrained dynamics during the
active learning loop. In order to seamlessly go between the all-atom
and coarse grained representations, a scheme for recovering lost
degrees of freedom must be designed. In many cases, this is done
with techniques designed for specific systems (as we have utilized in
this work), or brute force methods such as a multi-stage
compression and expansion of the system box to equilibrate
replaced degrees of freedom. Recent works have begun to examine
this problem from the perspective of machine learning56–58,63,64, but
such approaches require pre-selected training sets to learning the
CG mapping that would require additional work to reconcile with
our active learning scheme. Doing so will enable a much broader
study of materials at a variety of resolutions.

METHODS
Potential of mean force
While many approaches exist for designing coarse grained
models, top-down approaches lack thermodynamic consistency.
A thermodynamically consistent coarse grained model is one for
which the Boltzmann distribution of the coarse grained sites is the
same as that implied by the underlying all-atom model27. In
principle, all of the thermodynamics of the all-atom system may
be recovered from the resulting potential of mean force.
Suppose we have an all-atom model consisting of n atoms at a

set of positions rn= {r1, r2,…, rn} and governed by a potential
u(rn). We consider a mapping of the AA system to N coarse
grained sites, given by RN= {R1, R2,…, RN}, of the form

Rj ¼ MjðrnÞ ¼
Xn
i¼1

cijri (3)

where j denotes the index of the coarse grained site and i the
index of each atom. The mapping coefficients cij must satisfy
∑icij= 1 to ensure translation invariance of the resulting model27.
The above information is enough to define the Boltzmann

probability distribution of the AA system within the canonical
ensemble, so that

pðrnÞ ¼ expð�uðrnÞ=kBTÞ
Zr

(4)

with Boltzmann constant kB, temperature T, and partition function
Zr. Let the coarse grained system be governed by its own
potential, U(RN), so that we can define a Boltzmann probability for
the coarse grained sites at the same state points as

PðRNÞ ¼ expð�UðRNÞ=kBTÞ
ZR

(5)

For a consistent coarse grained model, we would like the
probability of sampling a given coarse grained configuration to be
the same as if we had sampled the sites from the AA system. In
other words,

PðRNÞ ¼
Z

pðrnÞ
YN
j¼1

δðMjðrnÞ � RjÞdrn (6)

This requirement defines the potential of mean force, U(RN), as a
coordinate-dependent free energy surface in terms of an under-
lying AA model. In particular,

expð�UðRNÞ=kBTÞ /
Z

pðrnÞ
YN
j¼1

δðMjðrnÞ � RjÞdrn (7)

The PMF allows us to define a force on each coarse grained site as
a gradient of the free energy. This force captures not only
energetic effects, but also the entropic contributions to the free
energy arising from the degrees of freedom being integrated out.
Formally, for mappings that take a group of atoms to their

center of mass, and for which no atom belongs to more than one
coarse grained site, the mean force on each site is Eq.27

FjðRNÞ ¼
X
i2Sj

f i

* +
RN

(8)

where Sj is the set of atoms involved in the mapping to site j, fi is
the atomistic force on atom i, and the average is a weighted
ensemble average defined as

gðrnÞh iRN ¼

R
gðrnÞe�uðrnÞ=kBT QN

j¼1
δðMjðrnÞ � RjÞdrn

R
e�uðrnÞ=kBT QN

j¼1
δðMjðrnÞ � RjÞdrn

(9)
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for an arbitrary function g of the atomistic coordinates. Note that it
is not a requirement that every atom have a non-zero weight in at
least one mapping to a coarse grained site. In the hydrocarbon
systems we consider, the hydrogen atoms have corresponding
coefficients cij= 0 for all CG sites, j.
To model the PMF independent of atomic details, we must

define a functional approximation to U(RN) as well as how the
parameters of this function will be fit. In the following section, we
describe the technique used to reconstruct all-atom information
for data collection, as well as the sparse Gaussian process model
used to approximate the PMF. The mean force labels in Eq. (8) can
be estimated using constrained molecular dynamics.

All-atom reconstruction
In order to go from the coarse grained resolution back to an AA
representation, we must define a method for recovering AA
degrees of freedom. For the n-alkane systems studied in this work,
we use the idea of excluded volumes. In all cases, we have chosen
to map AA structures onto a carbon site based structure
representation, leaving only hydrogen atoms to be reconstructed.
A schematic of this reconstruction scheme is provided in Fig. 1.

Initially, excluded volumes of radius RC are placed around each CG
carbon site. For each site, we define a procedure for reconstructing all
hydrogen atoms that are bonded to the central site. We wish to place
a hydrogen atom a distance RC−H away from its bonded carbon,
which requires a polar and azimuthal angle to define a complete
coordinate. A random pair of angles is drawn, and it is determined
whether or not the resulting point lies within a restricted region.
Such restricted regions are defined in terms of overlapping

excluded volumes. In particular, a conical region is constructed whose
central axis is defined by the vector from the central carbon to the
neighboring atom creating an excluded volume overlap. The angular
extent of the conical region is determined by the angle between the
central axis and the lines connecting the central carbon to the circular
intersection of the edges of the excluded environments.
Should the angle between the vector from the carbon to the

new hydrogen site and the central axis vector of any restricted
region be less than that regions angular extent, a new pair of polar
and azimuthal angles is drawn for the hydrogen until a position
that does not lie in an overlapping region is found. This process is
iterated for each hydrogen atom bonded to the carbon site before
proceeding to the next carbon atom. Note that in general, RC−H

and RC need not be equal, and in our implementation, RC−H is
taken to be the experimental value of 1.118 Å.
In addition, for each hydrogen atom placed, a new excluded

volume is introduced into the system centered at this location,
with a radius RH. In this way, the presence of reconstructed degrees
of freedom can influence subsequent placements, allowing for
easy avoidance of non-physical AA reconstructions. We find stable
reconstruction results when setting RC and RH to 1.6 Å and 1.1 Å,
respectively. These quantities are comparable with the experi-
mental C-H and C-C bond lengths of 1.118 Å and 1.531 Å.
In order to reduce the time spent on sampling, we place a

restriction on our reconstruction algorithm such that if an
acceptable sample is not drawn in a predefined amount of time,
the excluded volume radii are reduced by 10%. However, we
rarely find this to be necessary.
Once all hydrogen atoms have been reconstructed, energy

minimization (see Supplementary Methods) is performed, after
which hydrogen velocities are drawn at random from a Boltzmann
distribution at 250K and equilibrated with a 0.5 fs timestep for
20,000 steps.

Sparse Gaussian processes
Bottom-up coarse graining models often require an accurate
description of many-body interactions. Here, we use sparse
Gaussian processes as implemented in the FLARE software to do

so. We outline the methodology here, with more detail available in
ref. 49,50. The methods below closely mirror the procedures
presented by FLARE, but more specifically with application to
coarse grained potentials.
We assume that the PMF can be modeled with a purely local

function. In particular, given a set of coarse grained coordinates
RN= {R1, R2,…, RN} with chemical-type identities {s1, s2,…, sN}, the
PMF is given by a sum of local free energy contributions from the
CG sites in the form

UðR1;R2; ¼ ;RN; s1; s2; ¼ ; sNÞ ¼
XN
i

εðsi; ρiÞ (10)

where ρi is some description of the local environment of CG site i.
In particular, the environment is the set of distance vectors
between neighboring sites, such that j ≠ i, within a cutoff radius of
rðsi ;sjÞcut that can, in general, be species dependent. Formally,

ρi ¼ fðsj; rijÞ jrij < rðsi ;sjÞcut g (11)

Following the Atomic Cluster Expansion approach introduced
by Drautz62, the local environment of a site can be projected onto
single-particle basis functions

hϕnℓmjρii ¼ ϕnℓmðrijÞ (12)

where we choose for ϕ a decomposition into radial and spherical
harmonic components with cutoff function, c,

ϕnℓmðrijÞ ¼ Rn
rij

rðsi ;sjÞcut

 !
� Yℓmðr̂ijÞ � cðrij; rðsi ;sjÞcut Þ (13)

In this work, we use Chebyshev polynomials for the radial basis
and spherical harmonics for the angular basis. A covariant tensor
can be constructed by summing the basis functions over sites
within the local environment as

cisnℓm ¼
X
j2ρi

δs;sjϕnℓmðrijÞ (14)

Utilizing the sum rule of the spherical harmonic functions, a
rotationally invariant descriptor, di, is

dis1s2n1n2ℓ ¼
Xℓ
m¼�ℓ

cis1n1ℓmcis2n2ℓm (15)

The parameters n, ℓ, and rcut are hyperparameters that we
manually specify. To do so, we maximize the marginal log-
likelihood (see Supplementary Fig. 3), and use the values n= 12,
ℓ= 5, and rcut= 4.5 Å, independent of chemical type.
To complete the description of the sparse Gaussian process, we

must define a kernel that compares the local environment
descriptors. As in Ref. 50, we choose a kernel that resembles the
smooth overlap of atomic potentials (SOAP) kernel43,54,55 and
takes the form

kðd1; d2Þ ¼ σ2 d1 � d2

d1d2

� �ξ

(16)

Here, the hyperparameter, σ, is optimized by maximizing the marginal
log-likelihood during on-the-fly training, and ξ is a chosen parameter
that can be used to increase the body-order of the model.
For a set of sparse coarse grained environments, S, that is a subset

of a larger training set, F, a prediction of the local free energy on a
new environment ρi can be cast as a sum over the sparse points:

εðρiÞ ¼
XNs

s2S
kðdi; dsÞαs (17)

where

α ¼ ðσ�1
n KSFKFS þ KSSÞ�1

KSFy (18)
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where y is the vector of training force labels, KSF the matrix of
kernel values between the sparse set and training set, and KSS the
matrix of kernel values between points in the sparse set alone. The
noise hyperparemter, σn, quantifies the inherent uncertainty
present in the training labels and is another hyperparameter that
is tuned via maximizing the marginal log-likelihood.
Such mean predictions with the sparse Gaussian process also

allow for posterior predictive distribution variances. For SGP’s,
computing the variance requires approximate methods, where we
choose in this work to use the Deterministic Training Conditional
(DTC) approximation72. As in ref. 50, we use a further simplified
form that is the predictive variance of a fictitious Gaussian process
trained on local free energies of the sparse environments alone.
The resulting uncertainty on local free energies is

~VðεÞ ¼ kεε � kεSK
�1
SS kSε

σ2
(19)

Lying between 0 and 1, this form gives us a unitless measure in
defining uncertainty thresholds during on-the-fly training. We find
a relative tolerance of 0.02 to perform well. This is found to be
stable from our empirical observations and is consistent with
similar values used in ref. 50.
The resulting models, following the on-the-fly training trajec-

tory, can be simplified such that the summation over sparse points
in the predictive distribution can be computed once and used for
all future predictions50. This simplification allows for efficient
inference upon deployment of the SGPs.

Computational details
The LAMMPS package73 was used for all production simula-
tions. The OPLS-AA65 and OPLS-UA17 force fields were used in
addition to the SGP models. The on-the-fly MD active learning
loop was performed using the Atomic Simulation Environment
(ASE)74, and mapped SGP potentials were used in a custom
implementation of a LAMMPS pair-style, available as an
executable in the FLARE repository49,50. We have adapted the
on-the-fly framework to coarse grained applications, and the
software package, FLARE CG, is available upon request. The
specific version of the FLARE code used in the production of
these results is also available upon request. Parsing of LAMMPS
output files for RDFs was done primarily through Ovito75.
Parameters for all simulations are provided in the Supplemen-
tary Methods.

DATA AVAILABILITY
All input and output files from the FLARE training and LAMMPS simulations are
available upon request.

CODE AVAILABILITY
The code used to perform coarse graining and the integration with FLARE will be
made public on github. The version used for the data collected herein is otherwise
available upon request.
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