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Finite-temperature screw dislocation core structures and
dynamics in α-titanium
Anwen Liu 1, Tongqi Wen 2, Jian Han 1✉ and David J. Srolovitz 2✉

A multiscale approach based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) methods is developed to simulate the
dynamics of an 〈a〉 screw dislocation in α-Ti. The free energy barriers for the core dissociation transitions and Peierls barriers for
dislocation glide as a function of temperature are extracted from the MD simulations (based on machine learning interatomic
potentials and optimization); these form the input to kMC simulations. Dislocation random walk trajectories from kMC agree well
with those predicted by MD. On some planes, dislocations move via a locking-unlocking mechanism. Surprisingly, some
dislocations glide in directions that are not parallel with the core dissociation direction. The MD/kMC multiscale method proposed
is applicable to dislocation motion in simple and complex materials (not only screw dislocations in Ti) as a function of temperature
and stress state.
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INTRODUCTION
The major plastic deformation mechanism in crystalline metals is
dislocation glide. The motion of dislocations is (largely) controlled
by elastic stresses and intrinsic dislocation properties. While these
stresses are easily analyzed in terms of continuum elasticity,
dislocation motion often occurs preferentially on planes other
than those with the largest resolved shear stress. This is associated
with differences in glide resistance/lattice friction between
different slip planes. This depends on the relative ease with
which the dislocation core moves. The ease of glide, in turn, is
sensitive to the dislocation core structure1–6. The dislocation core
structure is, in many cases, temperature-dependent. While
knowledge of the core structure is essential, a quantitative link
between core structure and dislocation dynamics is often elusive.
Here, we develop a multiscale approach to predict screw
dislocation dynamics in α-Ti.
Atomistic simulations are commonly employed to determine

dislocation core structure, in part because the direct experimental
determination of the structure is demanding7. Since the atomic
structure of the material is highly distorted with respect to that in
a perfect crystal, quantum mechanical accuracy is often required
to predict core structures; often achieved using density functional
theory (DFT) calculations8–11. Transition state theory-based meth-
ods (such as the nudged elastic band NEB method) are often
employed to discern the minimum energy path of a dislocation
core as it traverses the slip plane10–13. While DFT methods are
usually limited to ground-state (0 K) structures, finite-temperature
ab initio molecular dynamics are possible but too computationally
costly for widespread use. Therefore, most finite-temperature
dislocation core structure determination is based upon semi-
empirical interatomic potential methods; e.g., Poschmann et al.14

studied the core structure of an hai ¼ ah1010i screw dislocation in
α-Ti at finite temperature using a modified embedded atom
method (MEAM) potential15. Unfortunately, this MEAM potential
fails to accurately reproduce all of the relevant 0 K core structures
and energies predicted by DFT16. Bond order potentials (BOPs)17,18

were proposed to retain the quantum nature of atomic

interactions in transition metals in a more cost-effective manner
than DFT. However, BOPs are both computationally costly and not
easily implemented in molecular dynamics (MD) simulations19.
The recently developed Deep Potentials (DPs)20,21 (a class of
neural network potential) yield DFT accuracy with near empirical
potential computational efficiency. Here, we employ the DP
method to predict the structure of screw dislocation cores at
finite-temperature in α-Ti.
The link between dislocation core structure and dislocation

dynamics is often related to the assumption that the dislocation
glide direction is consistent with the dislocation core dissociation
direction. While such an assumption may be valid in some simple
cases, its validity is far from assured in the case of more complex
(non-cubic) materials, such as hexagonal close packed (HCP)
metals. Several models have been proposed to simulate disloca-
tion dynamics at the mesoscale, such as discrete dislocation
dynamics (DDD)22–24 and kinetic Monte Carlo (kMC)23,25–28

methods. Extant mesoscale models do not explicitly incorporate
the effects associated with the dislocation core structure. Here, we
develop a mesoscale dislocation dynamics model that incorpo-
rates an explicit description of the atomic-scale character of
dislocation core structure.
While recent simulations (e.g., see ref. 14) focus on long

dislocation lines, here we focus on the intrinsic dislocation
properties associated with the dislocation core structure. The
admittedly important roles played by dislocation kinks in the
motion of long dislocations are omitted here in order to provide a
thorough examination of core effects without the complicated
features of kink dynamics (which vary dramatically with, e.g., local
dislocation curvature, junctions and interactions with other
dislocations). The effects of core structure of short 〈a〉 screw
dislocation segments in α-Ti based on the DP for Ti as a function of
temperature are investigated. Experimental observations29 show
that the edge dislocations are highly mobile and the yield
strength of HCP Ti is governed by screw dislocation lattice friction.
We report the results of MD simulations (based on machine
learning potentials of quantum mechanical accuracy) of screw
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dislocation core structures, transitions between different core
structures, statistical analysis of dislocation motion, and the
determination of the kinetic parameters (i.e., free energy barriers
associated with migration, core structure transitions, ...) describing
screw dislocation motion. We then perform kinetic Monte Carlo
simulations of screw dislocation motion in Ti incorporating these
quantum mechanically accurate MD simulation parameters. We
examine the effect of both temperature and loading direction on
dislocation core transitions and dislocation mobility. The results
provide the basis for understanding non-Arrhenius screw disloca-
tion mobility in metals with complex crystal structures.

RESULT
Atomistic dislocation structure and dynamics
We performed MD simulations to determine 〈a〉 screw dislocation
core structure in α-Ti; the simulation geometry is shown in Fig. 1a
(see Methods). By examining all the MD configurations from 300–900
K, we identified five distinct core structures for the 〈a〉 screw
dislocation in HCP Ti. Figure 1c–g show these five core structures
with a differential displacement map30 (the black arrows) and the
Nye tensor component αzz31,32 (the contour). The αzz map describes
the screw component of the Burgers vector density. We find that the
distribution of αzz is highly delocalized in the form of a dipole,
indicating that the core structure dissociates on a plane that includes
½1210�. For convenience, we denote the pyramidal plane by “π”, the
prismatic plane by “P” and the basal plane by “B”. We find that two of
the dislocation cores dissociate along the π plane; i.e., the “π core”
(Fig. 1c) and “π0 core” (Fig. 1d). The dissociation plane of π core is
close to ð3031Þ while that of π0 core is close to ð1011Þ, as shown in
Fig. 1b. Two cores are dissociated along the P plane; i.e., the “P core”
(Fig. 1e) and “P0 core” (Fig. 1f). The αzz(x, y) map for the P core
possesses inversion symmetry roughly about the point (0, 0) while
that for the P0 core possesses mirror symmetry roughly about the
y= 0 line. We also identify a dissociated core along the B plane; i.e.,
the “B core” (Fig. 1g). The π, π0, P and P0 cores were found at all

temperatures in our simulations. These three are consistent with the
0 K core structures predicted by DFT calculations10. The B core was
observed only at high temperature, T≳ 400 K.
Since the π, π0, P and P0 cores are stable at 0 K, we can obtain their

0 K equilibrium structures by direct energy minimization based on
different initial configurations (with the dislocation core centered at
different positions). The π, π0, P and P0 core energies are
Eπ= 544.8 ± 0.43 meV Å−1, Eπ0 ¼ 561:5 ± 0:52 meV Å−1 and EP ¼
EP0 ¼ 547:4 ± 0:34 meV Å−1, respectively (see Supplementary
Information, SI, for details). The energy differences are around
EP− Eπ= 2.6 meV Å−1 and Eπ0 � Eπ ¼ 16:7 meV Å−1; for compar-
ison, the DFT results10 are 5.7 meV Å−1 and 11 meV Å−1, respectively.
The dislocation core structures and energies at 0 K obtained from DP
are reasonably consistent with DFT results. Since the π0 core energy is
much higher than the energies of the other cores and a nudged-
elastic-band calculation10 shows that the π0 core energy is almost as
high as the barrier for π core glide, π0 core is not important for the
thermodynamic and kinetic properties; hence, we ignore the π0 core
below. Since the P and P0 core energies are nearly equal, we do not
distinguish the P and P0 cores below.
We focus on two aspects of dislocation core dynamics: core

motion and core structure transitions. The former is analyzed
based on the trajectory of the core position (Fig. 2a), while the
latter requires recognition of instantaneous core structure. We
automated the determination of the core position and the core
dissociation direction based on the αzz map. For convenience, we
denote the αzz-weighted average of any quantity A as

A ¼
RR

Aðx; yÞαzzðx; yÞdxdyRR
αzzðx; yÞdxdy ; (1)

Then, the core position is rcore � x; yð Þ; the core positions
determined in this manner are indicated by the blue “+” in
Fig. 1c–g. Figure 2a shows the core trajectory at 500 K. From the
trajectory, we see that the dislocation random walk is anisotropic.
The pattern is elongated along the y-axis, suggesting that the
dislocation glides on the P plane most frequently.

Fig. 1 MD simulations of the 〈a〉 dislocation core structure in α-Ti. a The cylindrical model and Cartesian coordinate system employed in the
MD simulations. The blue “+” symbol indicates where the screw dislocation was introduced. The atomic interaction in Region I and Region II
are all modelled using DP, while atoms in Region II are treated via an Einstein model. b An HCP unit cell, where the P, π, π0 and B planes are
identified. c–g The dislocation cores observed in the MD simulations (following 10–20 energy minimization steps – for improved visualization,
see Method and Ref. 23). The dark and light gray circles denote atoms on successive planes (perpendicular to the ez-axis) in the perfect crystal.
The arrows represent the differential displacement map while the color heat map shows the αzz distribution. Blue “+” symbols indicate the
core positions determined by the first moment of αzz.
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The glide direction as a function of time ϕ(t) is

ϕðtÞ ¼ arctan
yðt þ ΔtÞ � yðtÞ
xðt þ ΔtÞ � xðtÞ
� �

; (2)

where Δt is the time step. The second moment of αzz is the tensor
[Cij], where C11 ¼ x2, C22 ¼ y2 and C12 ¼ C21 ¼ xy. Suppose that
the (normalized) eigenvector of [Cij] corresponding to the
maximum eigenvalue is e*. Thus, the core dissociation direction
at t is given by

θðtÞ ¼ arctan e�yðtÞ=e�xðtÞ
h i

: (3)

Figure 2b shows the temporal evolution of the dissociation
direction θ at 500 K and Fig. 2c shows the distribution of the core
dissociation direction θ at different temperatures. The three sharp
peaks at θ≃ 75∘, 90∘ and 105∘ correspond to the π1, P and π2 cores
(π1 and π2 are both π cores). The peaks for the π cores shift
towards θ= 90∘ as temperature increases because the c/a ratio
increases with temperature33. The peak for the π0 core, if it existed,
would be at ~61∘ and ~110∘; however, no peaks exist there,
implying that the π0 core may be ignored. At a high temperature
(e.g., 900 K), there are shallow and broad humps at θ= 0 or 180∘,
indicating the existence of the B core at high temperature. The
peaks, signaling different cores, broaden with increasing

temperature. We set criteria to distinguish the core structures
based on the distribution in Fig. 2c. We define the width of the
orientation window for the P core as the minima between the P
and π cores; i.e., ~90 ± 9∘ (the exact position of the minima varies
with temperature); see the two dashed lines near θ= 90∘ in Fig. 2b
or c. The boundary between the π and B cores is not well defined.
Since the probability for θ < 50∘ or > 130∘ is almost zero, any
quantity evaluated based on the core distribution is insensitive to
the choice of this boundary. In practice, we choose the boundary
between the π and B cores at the θ in the middle between 0 and
the θ for the π core (i.e., the θ for the second highest peak); see the
two dashed lines close to θ= 90∘ in Fig. 2b or c. Using this
criterion, we can identify the core structure at any time during the
MD simulation. We color each point on the trajectory (at 500 K)
shown in Fig. 2a according to the core structure at each time. We
observe that B cores (green points) are rare. The π core (red
points) and the P core (blue points) are largely distributed on
alternating P planes; this is consistent with the examination of the
π and P core positions in the Fig. 2a inset. The Fig. 2a inset shows
that ideally the π core is positioned between a dark gray P plane
and a light gray P plane, while the P core and B core are between
two light gray or two dark gray P planes. Hence, the π and P cores
should be distributed on different P planes. Such consistency
validates the core structure recognition method.

Fig. 2 Dislocation core trajectory, dissociation direction and glide direction. a The example trajectory of a dislocation core obtained by the
MD simulation at 500 K for 2 ns. The blue, red and green points denote the positions where the core structures are P, π and B, respectively. The
inset shows that the P/B cores and the π cores should be distributed on alternating P planes. b Temporal evolution of the core dissociation
direction θ extracted from the same MD simulation. c Distribution of θ at the temperature ranging from 300 K to 900 K. The horizontal lines
denote the boundaries we defined to distinguish the core structures at 500 K. d–f Distributions of the deviation of the glide direction ϕ away
from the dissociation direction θ for the B, π and P cores. g–j The differences of the αzz maps at two moments, corresponding to the four
dislocation core glide events observed in the simulation. The blue/red “+” symbol indicates the core position in the previous/next moment.
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It is usually assumed that the dislocation core dissociation
direction is the same as the dislocation glide direction; this
need not be true. To investigate the correlation between the
core dissociation direction (θ) and the glide direction (ϕ), we
examine the probability of different glide directions for
particular core dissociations (characterized by the dissociation
direction θi (i ∈ {π, P, B}). Figure 2d shows the glide direction
distribution for the B core. Most frequently, the B core glides on
the B plane (B-glide), corresponding to the peak at ∣θ−ϕB∣= 0.
The B-glide of the B core is also seen in the difference between
the αzz maps at a pair of times: Δαzz ≡ αzz(t2)−αzz(t1). As shown
in Fig. 2g, the alternatively distributed negative and positive
Δαzz clouds lying on the B plane is a feature of B-glide of B core.
The glide direction distribution for the π core is shown Fig. 2e.
This distribution exhibits a peak at ∣θ−ϕπ∣ ≈ 15∘ (at T= 300 K),
where θπ ≈ 75∘. The angle between the π0 plane (i.e., the ð1011Þ
plane) and the B plane at 300 K is
ϕ ¼ arctan ð2= ffiffiffi

3
p Þðc=aÞ� � � 61�; so, if the π core glides on the

π0 plane (π-glide), ∣θ−ϕπ∣ ≈ 14∘. If the π core glides on the P
plane (P-glide), ∣θ−ϕπ∣ ≈ 15∘. This suggests the peak at ~15∘ in
Fig. 2e has contributions from both P-glide and π-glide. Careful
examination, however, shows that P-glide is much more
frequent than π-glide. The π-glide and P-glide of π core can
be directly verified by the Δαzz maps in Fig. 2h and i. The
alternating negative and positive Δαzz clouds on the π plane is
a feature of π-glide of the π core while the off-line distribution
of the negative and positive clouds is a feature of P-glide of the
π core. The observation that a π core can glide on the P plane
contradicts the assumption that the core glide and the core
dissociation directions must be the same. Figure 2f shows the
glide direction distribution for the P core. Clearly, the P core
only glides on P plane. Again, the P-glide of the P core can be
verified through considerations of the Δαzz clouds distributed
along the P plane, as shown in Fig. 2j.

Model and parameterization of dislocation core dynamics
The unit kinetic event during the motion of a dislocation core
observed in the MD simulation can be abstracted as a
transition. We label the states before and after a transition by
i and j, respectively, where i, j ∈ {B, π1, π2, P}. The π1 and π2
cores denote, respectively, the π cores with the dissociation
directions θπ ≈ 75∘ and 105∘ (they are symmetry-related). We
use κ to label the slip plane, i.e., κ ∈ {B, π1, π2, P, 0}, where the
π1 and π2 planes are, respectively, the π0 planes with the
inclination angles ϕ ≈ 61∘ and 119∘, and κ= 0 denotes the
transition which does not involve the change in core position.
We denote the transition from an i to j core involving glide on
the κ plane as “i(κ)j”. An “i ≠ j” event represents a transition of
the core structure, while an “i= j” event represents glide of a
core with no core structural transition. All possible kinetic
events observed in the MD simulations (Fig. 2) are shown
schematically in Fig. 3a–f. These events, denoted i(κ)j, are
summarized in Fig. 3g. Some events listed in the 1st, 2nd and
3rd columns are equivalent. The 4th column shows the
irreducible events. Note that π denotes the core symmetrically
related to π; e.g., if π= π1, then π ¼ π2.
From the MD results shown in Fig. 2c, we can extract the

equilibrium probabilities fP ig that a core is of type i as a function
of temperature. The open symbols in Fig. 4a represent the MD
data fP ig. π is the most probable core structure at all
temperatures, PπðTÞ> 0:6. At T⩽ 300 K, the B core is not observed
in the MD and at T > 300 K, the B core occurs with very low
probability.
In thermal equilibrium at temperature T, the probability of

finding the i core is well-described by a Boltzmann distribution:
P i / exp �Fiℓ=kBTð Þ, where Fi is the free energy of the i core
(energy per length), ℓ is the length of the dislocation line, and kB is

the Boltzmann constant. The free energy difference between the i
and j cores is related to their probability ratio:

ΔFij � Fj � Fi ¼ kBT
ℓ

ln
P i

P j

� �
with i≠j: (4)

Since the elastic energy is the same for all core structures, ΔFij
represents the core energy difference. The core energy
difference ΔFij at each temperature can be obtained from the
MD data fP ig (reported in Fig. 4a) and Equation (4). Note that
although the 10-20 step partial relaxations reduce the potential
energy of the system, these energies are not of interest. Rather
the partial relaxation simply aids the identification of the
inherent core structures (See Methods and SI). The important
energy differences ΔFij are determined based on the relative
probabilities of different dislocation core structures – which are
unaffected by the partial relaxations. The core energy
differences, ΔFPπ and ΔFBπ, are shown as open symbols in
Fig. 4b. We can fit the data ΔFij with an empirical relationship of
the form:

ΔFijðTÞ ¼ Aþ BT ln T þ CT2; (5)

where A, B and C are parameters. The rationale for the form of this
fitting relation is discussed in the SI. For ΔFPπ, A= EP− Eπ= 2.6
meV Å−1, where EP and Eπ are the energies of the P and π cores at
0 K. The fitted curves are shown as solid lines in Fig. 4b and the
parameters are in Table 1.
The basic kinetic parameters for dislocation core dynamics are

the frequencies of all events as a function of temperature.
Unfortunately, it is impractical to deduce these frequencies
directly from the MD results. Atomic vibrations are inevitable in
MD simulations at finite temperatures; removing these by thermal
averaging or quenching in order to unambiguously recognize
each core event (defined in Fig. 3) requires artificial criteria.
Sampling frequency also makes this impractical: if the sampling
frequency is too high, the thermal vibration issue will be severe; if
it is too low, we will miss some kinetic events. Here, we sidestep
the frequency issue, as explained in this section. In short, we fit the
MD data using harmonic transition state theory (HTST) with
temperature-independent parameters. The general parameteriza-
tion steps are

S1: (Prediction) Guess a set of frequencies for all kinetic events
{νi(κ)j} at each temperature (see Methods).
S2: (kMC) At each temperature, perform a kMC simulation (see
Methods) with frequencies {νi(κ)j} to compute the core mean
squared displacement (MSD), the mean squared angular
displacement (MSAD) of the core dissociation direction, and
the probability of occurrence of each core structure fP ig.
S3: (Optimization) Optimize {νi(κ)j} such that the MSD, MSAD and
fP ig obtained from the kMC are consistent with the MD results
at all temperatures (see Methods).
S4: (Reduction) From {νi(κ)j}, extract the fundamental kinetic
parameters (attempt frequencies and intrinsic energy barriers)
based on HTST.

The MSD and MSAD (S2 and S3) are defined as follows. At a
particular temperature, the MSDs in the ex- and ey-directions are
defined as

hðΔxÞ2iðτÞ ¼ ½xðt þ τÞ � xðtÞ�2
D E

;

hðΔyÞ2iðτÞ ¼ ½yðt þ τÞ � yðtÞ�2
D E

;
(6)

where 〈⋅〉 denotes the average over t. The circles in Fig. 5a and b
show the MSDs, 〈(Δx)2〉 and 〈(Δy)2〉, obtained from the MD
simulations under different temperatures. We find that core glide
along the ey-axis (P plane) is, in general, faster than glide along the
ex-axis (B plane). At all temperatures, each MSD is approximately a
linear function of τ. The translational diffusion coefficients in the
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ex- and ey-directions are

DT
x ¼

1
2
dhðΔxÞ2i

dτ
and DT

y ¼
1
2
dhðΔyÞ2i

dτ
: (7)

One goal of optimizing the frequencies {νi(κ)j} is to ensure that
the values of DT

x and DT
y from kMC and MD simulations match.

The mean squared angular displacement MSAD for core
dissociation i is

hðΔθÞ2iiðτÞ ¼ ½θðt þ τÞ � θðtÞ�2
D E

i
; (8)

where the subscript “i” denotes that in the average θ(t= 0)= θi,
i.e., the dissociation direction of core i. The circles in Fig. 5c, d and
e show the MSADs, hðΔθÞ2iP, hðΔθÞ2iπ and hðΔθÞ2iB, obtained from
the MD simulations at different temperatures. The MSAD, at each
temperature, is well fitted by the function:

hðΔθÞ2iiðτÞ ¼ 2 1� e�DR
i τ

	 

; (9)

where DR
i (i= P, π, B) is the rotational diffusion coefficient about

dissociation angle θi
34. In S3, the frequencies {νi(κ)j} are trained for

the best match between the core probabilities (fP ig), the
translational diffusion coefficients (DT

x and DT
y ) and the rotational

diffusion coefficients (DR
P, D

R
π and DR

B) obtained by kMC and the MD

results. The solid lines in Fig. 5a-c show the MSDs and MSADs
obtained from kMC simulations with optimized {νi(κ)j} for different
temperatures. The kMC and MD results are in excellent agreement.
We now turn to the parameter space reduction in S4. The

frequencies {νi(κ)j} are obtained via S1-3 for the MD simulation
temperatures. In principle, dislocation core dynamics at other
temperatures may also be obtained from MD simulation at such
temperatures and repeating S1-3. The computational resources
required for these MD simulations and the optimization process
limit the applicability of this approach. We resolve this issue based
upon a set of additional assumptions.
Consider the schematic energy landscape for a kinetic event i(κ)j

in Fig. 6a. Two local minima correspond to the i and j core free
energies, Fi and Fj. The core energy difference is ΔFij (Equation (4));
for a core glide event, ΔFii= 0. The total free energy barrier for i(κ)j
is denoted FbiðκÞj . The intrinsic free energy barrier for i(κ)j is Qi(κ)j

and, in principle, Qi(κ)j=Qj(κ)i. The total free energy barrier is
commonly approximated as

FbiðκÞj ¼ QiðκÞj þ ΔFij=2; (10)

where the factor 1/2 is valid when ΔFij≪Qi(κ)j
26. While other

reasonable proposals for FbiðκÞj are possible, our fitting results,
below, suggest that Equation (10) reproduces the MD results.

Fig. 3 Kinetic events for 〈a〉 screw dislocation core dynamics. a–f All possible events starting from a P core, a π core or a B core. The dark
gray and light gray circles denote atoms on successive ð1210Þ planes. The vertical gray solid lines denote a series of ð2020Þ planes; the vertical
gray dashed lines are offset with respect to the vertical solid lines by

ffiffiffi
3

p
a=4. The horizontal gray solid lines denote a series of (0001) planes (Nc

planes); the horizontal gray dashed lines are offset with respect to the horizontal solid lines by c/2 (i.e., Nc/2 planes). The “+” symbols denote
dislocation core positions and their colors are consistent with those in the first column of g. When two “+ ” symbols are located at the same
site, we make one larger than the other for clarity. g The 1st and 3rd columns show the starting and ending core structure for one event. The
2nd column shows the core displacements corresponding to the transitions. Some events listed in the 1st, 2nd and 3rd columns are connected
by the gray lines indicating that they are equivalent in the sense that they have the same energy landscapes. The 4th column shows the
irreducible events, where i(κ)j denotes the transition from an i to j core by glide on plane κ.
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The frequency of event i(κ)j can be expressed as

νiðκÞj ¼ ν0iðκÞj exp � FbiðκÞjℓ

kBT

 !
(11)

based on HTST35,36, where ν0iðκÞj is an attempt frequency that
includes the effect of barrier recrossing. Equation (11) can be
rewritten as

ηiðκÞjðT�1Þ � ln νiðκÞj
ffiffiffiffiffiffiffiffiffiffiffiffi
P i=P j

q	 

¼ ln ν0iðκÞj �

QiðκÞjℓ
kBT

: (12)

This shows that ηi(κ)j is a function of the inverse temperature T−1. If
fν0iðκÞjg and {Qi(κ)j} are constant with respect to temperature, they
can be obtained by linear fitting. However, we find that the fitting
quality is improved by allowing the intrinsic free energy barrier to
be temperature-dependent and of the form:

QiðκÞj ¼ Q0
iðκÞj 1� T

T0

� �q� �
; (13)

where Q0
iðκÞj is the intrinsic barrier at 0 K, T0= 1250 K is the HCP-

BCC transition temperature for this DP potential33, and we assign
q= 3 to give best fit to all the data. Equation (13) is proposed
based on the observations that (i) the free energy barrier decrease
with increasing temperature and (ii) when the HCP phase
becomes unstable/metastable, the transition between the core
structures is barrierless. In this way, the kinetic parameters can be
fitted to the MD data; i.e., fν0iðκÞjg and fQ0

iðκÞjg.
Figure 6b and c and Table 2 show the fitting results for

Equations (12) and (13) (symbols/lines are the MD data/fits). As
expected, the i(κ)j and j(κ)i data coincide. Among the transition
events (Fig. 6b), the transitions between P and π cores are the
most frequent and associated with the lowest energy barriers.
As expected, direct transitions between P and B cores are rare.
Among the glide events (Fig. 6c), the glide on B plane is
associated with the lowest barrier. But glide on B plane is rare
since the probability of the B core is very low (Fig. 4a).
Pyramidal glide (via π(π)π) is much less frequent and associated
with a much higher barrier than prismatic glide (via P(P)P). This
means that pyramidal glide is rarer than prismatic glide; in
qualitative agreement with the DFT 0 K glide barriers10 (DFT
predicts the Peierls barrier for P(P)P glide and π(π)π glide as
11.4 meV Å−1 and 0.4 meV Å−1, while the values from our
simulations are 14.1 meV Å−1 and 1.14 meV Å−1).

Kinetic Monte Carlo
The model and parameterization of the core dynamics described
are the key for understanding and predicting dislocation
dynamics. Here, we apply this model to 〈a〉 screw dislocation
dynamics in Ti via kinetic Monte Carlo (kMC) simulations (see
Methods). The only modification is that the kinetic event
frequencies {νi(κ)j} are determined through Equations (10), (11)
and (13).
The equilibrium core structure probabilities fP ig were com-

puted via kMC and compared with those obtained from MD, as
shown in Fig. 4a. At temperatures ≥ 300 K, the kMC results show
excellent agreement with MD. Pπ and PP exhibit a minimum and
maximum near 300 K. Beyond this temperature both Pπ and PB
increase, while PP decreases with temperature T. PP and PB are
approximately equal near 0 and 900 K. No MD is available below
300 K where it is difficult to obtain valid statistics; here, we only
show kMC data from Equation (5). At 0 K, based on the fact that π
core is energetically favorable, Pπ should be 1 and PP and PB
should be 0. PB � 0 for T ≤ 300 K, which is consistent with the MD
observation that the B core is unstable.
The MSDs and MSADs computed via MD and kMC simulations

are compared in Fig. 5a-e. In general, the kMC simulations
reproduce the MD results well, except for the MSADs

Fig. 4 The equilibrium probabilities of core structures and the
free energy differences. a The probabilities of the π (red circles), P
(blue squares) and B (green triangles) cores obtained by the MD
simulation (open symbols) and the kMC simulation (solid symbols).
b The core energy differences, ΔFPπ (blue squares) and ΔFBπ (green
triangles), obtained from the MD data in a. The solid lines are the
fitting results based on the formula Equation (5).

Table 1. Fit parameters for the free energy difference between cores i
and j, ΔFij, as per Equation (5).

Parameters ΔFPπ ΔFBπ

A (meV Å−1) 2.6 41.7 ± 1.25

B (10−3 meV Å−1 K−1) − 1.65 ± 0.300 − 7.65 ± 0.833

C (10−5 meV Å−1 K−2) 3.24 ± 0.266 3.59 ± 0.506

Table 2. The kinetic parameters determined by fitting to the MD data
for the core transition events and glide events.

Events i(κ)j Q0
iðκÞj (meV Å−1) ν0iðκÞj (ps

−1)

i ≠ j: core transition

B(B)π 13.9 ± 0.444 0.782 ± 0.0450

B(0)P 12.6 ± 0.172 0.636 ± 0.0141

π(B)P 7.47 ± 0.447 0.769 ± 0.0445

π(P)π 13.7 ± 0.209 0.871 ± 0.0236

π(π)P 6.69 ± 0.125 0.442 ± 0.00718

B(π)π 11.8 ± 0.221 0.457 ± 0.0131

i= j: core glide

B(B)B 4.33 ± 0.237 2.61 ± 0.0800

π(π)π 14.1 ± 0.315 0.0689 ± 0.00281

π(P)π 6.06 ± 0.760 0.216 ± 0.0213

P(P)P 1.14 ± 0.295 1.18 ± 0.0488

ν0ik is the attempt frequency in Equation (12). Q0
ik is the intrinsic 0 K energy

barrier in Equation (13).
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corresponding to core dissociation starting from θB at low
temperatures (Fig. 5e) (this is associated with limited sampling
of the B core in the MD simulations). Due to larger accessible
timescale in kMC compared with MD, the kMC simulations provide
smooth curves at low computational cost (compared with MD).
The glide-direction dependent translational diffusion coefficient
can be constructed as

DTðϕÞ ¼ DT
xcos

2ϕþ DT
ysin

2ϕ; (14)

see Fig. 5f. DT(ϕ) is elongated in the ey-direction, indicating that a
dislocation core moves fast along the P plane and slowly along the
B plane; this is consistent with the MD trajectories in Fig. 2a. The
dissociation-angle-dependent rotational diffusion coefficient can
be constructed as

DRðθÞ ¼ DR
i cos

2 π

2
θ� θi
θj � θi

� �
þ DR

j sin
2 π

2
θ� θi
θj � θi

� �
; (15)

where (i, j)= (B, π) or (π, P); see Fig. 5g. DR(θ) measures the rotation
rate for cores initially oriented at angle θ. Figure 5g shows that
DR(θ) is highly anisotropic at low temperatures and becomes more
isotropic as temperature increases. At all temperatures (except for

900 K), DR is maximum at θ= 0 which corresponds to the B core.
This is consistent with the fact that B core is not energetically
favorable and tends to transform into other cores. DR is a
minimum at ~ θ= 75∘; corresponding to the π core. This indicates
that the most stable core is π.
The kMC model is sufficiently flexible to simulate dislocation

dynamics under an externally applied stress. We apply the
approach developed by Ivanov and Mishin37.
The major assumption is that the applied stress influences the

dislocation glide barrier through the resolved shear stress (RSS),
but not the energy barrier for the core transition itself. Hence, this
model does not fully capture the non-Schmid effect38–41 (see
below).
We assume that the free energy landscape for i core glide on

the κ plane has the form of FiðκÞiðrÞ ¼ ðQiðκÞi=2Þ
½1� cosð2πr=LiðκÞiÞ�, where r is a slip distance, Qi(κ)i is the glide
barrier (Equation (13)) and Li(κ)i is a lattice period in the slip
direction on the κ plane. Applying an external stress σ creates
Gibbs free energy landscape Gi(κ)i(r)= Fi(κ)i(r)−fκr, where fκ is the
Peach-Koehler (PK) force: fκ= (σb) × ξ⋅sκ= τκb. With our sample
geometry, Fig. 1a, ξ= ez is the line direction, b= bez is the Burgers
vector, sκ ¼ cosϕκex þ sinϕκey is the slip direction on the κ plane

Fig. 5 Mean squared displacement and diffusion coefficients. a and b show the mean squared displacements (MSDs) of a dislocation core in
the x- and y-directions at different temperatures. c–e show the mean squared angular displacements (MSADs) of a core dissociation direction
starting from θP, θπ and θB. f Translational diffusion coefficient as a function of glide direction, DT(ϕ) at different temperatures. g Rotational
diffusion coefficient as a function of dissociation direction, DR(θ) at different temperatures. In all figures, the circles denote the MD data, the
solid lines denote the results of kMC simulations based on the optimized frequencies {νi(κ)j}, and the dotted lines denote the results of kMC
simulations based on the fitted parameters fν0iðκÞjg and fQ0

iðκÞjg.
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with inclination angle ϕκ, and τκ � �σxz sinϕκ þ σyz cosϕκ is the
RSS on the κ plane. Then, the Gibbs free energy barrier for the
forward/backward glide is

Gb±
iðκÞi ¼ QiðκÞi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� τκ

τ0iðκÞi

 !2
vuut ∓

πτκ
2τ0iðκÞi

1 ∓
2
π
arcsin

τκ
τ0iðκÞi

 !2
64

3
75;

(16)

where τ0iðκÞi � πQiðκÞi=ðLiðκÞibÞ. The frequency of forward/backward

glide event i(κ)i, ν ±
iðκÞi , is obtained from Equation (11) with FbiðκÞi

replaced by Gb±
iðκÞi ; νiðκÞi ¼ νþiðκÞi � ν�iðκÞi . The detailed explanation of

Equation (16) can be found in Ref. 37. With this frequency as input,
we perform kMC simulations of dislocation motion under different
stresses σ (see Methods).

The kMC simulations show a locking-unlocking type of
dislocation motion at low temperatures. Figure 7a and b show
the temporal evolution of the dislocation core dissociation angle,
θ, and the core displacement in the ey-direction (P plane), Δy, at
T= 100 K under shear stress σyz= 10 MPa. When the dislocation
core has a P core (blue circles), Δy increases quickly; i.e., P-glide is
fast. On transformation to a π core (red circles), the dislocation
pauses while “waiting” to transform back to a P core (Fig. 7a) upon
which glide restarts on the P plane (Fig. 7b). Hence, the π core is
“locked” (does not glide) and the P core is “unlocked” (glides
easily).
The “locking” period predicted by kMC (~10−10 s) is much

smaller than that observed in in situ TEM straining experiments
(~8 s)10. There are two possible sources for this discrepancy. The
TEM specimen is a thin foil, the free surfaces of which could
provide strong drag on the dislocation. We have performed
additional MD simulations, involving a dislocation line threaded at
two free surfaces, to examine the drag effect (see SI for the
simulation settings and results). The simulation results confirm
that the free surfaces significantly reduce the dislocation mobility
by imposing severe restrictions on core transitions. Second, our
kMC simulations only study the motion of a short dislocation
segment, rather than a long dislocation line. The differences in
dislocation mobility between our work and TEM observations are
attributed to the differences in dislocation line length. The motion
of long dislocation lines involves collective motion of many
dislocation segments, thus a higher free energy barrier should be
overcome during the glide process. Moreover, long dislocations
may migrate via kink pair nucleation and propagation, which
necessitate inclusion of kink formation and migration energy
barriers in estimation of dislocation mobility. Multiple core
structures will likely be found on a long dislocation line. The
interaction between these different core structures may also lower
the dislocation mobility. This, coupled with the free surface
restraint on core transitions (see SI) explains why short dislocation
segments are more mobile than long dislocation lines in TEM
observations.
To validate our kMC results, we simulated dislocation core

motion at high temperature (500 K) at a high shear stress (σyz= 60
MPa) by both kMC and DP-based MD (note that the MD time scale
only allows the study of fast dynamics which can be achieved at
high temperatures and high driving forces). Figure 7c and d show
the evolution of θ and Δy obtained through kMC simulations,
while Fig. 7e and f show the same quantities under the same
conditions from MD. The kMC and MD results are consistent. At
this high temperature, the locking-unlocking mechanism is not
easily seen, although it effectively lowers the core velocity along
the P plane.
A shear stress σ= σxz(ex⊗ ez+ ez⊗ ex) creates a PK force on

the screw dislocation f= σxzbex; the dislocation moves, on
average, in the ex-direction, i.e., on the B plane. We found that
the dislocation velocity on the B plane, vB, is a linear function of σxz
(see the kMC and MD data in SI). The dislocation mobility on the B
plane is MB= vB/(σxzb). Alternatively, we may drive the dislocation
motion on the P plane via shear stress σ= σyz(ey⊗ ez+ ez⊗ ey) to
obtain MP= vP/(σyzb). If the energy barrier for a core transition or
glide event is large, the intrinsic free energy barrier, Qi(κ)j, is the
Peierls barrier and the dislocation motion is thermally activated.
On the other hand, if it is small, Qi(κ)j cannot be interpreted as
Peierls barrier; it is simply a parameter in the model which
reproduces the frequencies obtained from MD. Dislocation
mobility in the case of small energy barrier is phonon damping-
controlled such that the viscous drag coefficient is M�1

B or M�1
P

42.
Phonon damping is not explicitly modeled in kMC; rather it is
captured through the parameterization of the frequency obtained
from MD (similar to the method reported in Ref. 28).
The temperature-dependencies of MB and MP are shown in

Fig. 8. MB is much lower than MP at all temperatures, as suggested

Fig. 6 Kinetic model and coefficients. a Schematic of the energy
landscape for the i(κ)j event. Fi and Fj are the free energies of the i
and j cores; ΔFij= Fj− Fi and ΔFij= 0. FbiðκÞj is the total free energy
barrier and Qi(κ)j is the intrinsic barrier for i(κ)j. b ηi(κ)j (Equation (12))
vs. inverse temperature. c ηi(κ)i (Equation (12) for glide events) vs. the
inverse temperature. In b and c, symbols and solid lines denote MD
data and fitting results (Equations (12) and (13)).
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by Fig. 5f (where the dislocation core diffusion coefficient is a
minimum/maximum at ϕ= 0/90∘. As shown in Fig. 8a and its inset,
MB increases with temperature monotonically while MP exhibits a
maximum at T= 300 K (indicated by the dash-dotted line). The
decrease of MP and increase of MB above 300 K is consistent with
the MD results, i.e., the crosses in Fig. 8a inset. MD simulations
from the literature43–46 always show that the dislocation mobility
decreases (or equivalently, the viscous drag coefficient increases)
with increasing temperature. However, we note that MD results at
low temperatures do not exist, since MD timescales do not suffice.
The decrease in mobility (increase in viscous drag coefficient) at
high temperature is usually interpreted as a phonon drag/
damping effect. However, our kMC results suggest that glide on
the P plane is also effectively damped by dislocation core
transitions to B core. With increasing temperature, the B core is
increasingly stable (Fig. 4a) such that the transition rate from the π
core to the B core increases (Fig. 6b), leading to B-glide which
contributes to zero motion on the P plane.
We also investigated the effect of shear stress orientation and

dislocation mobility anisotropy. A PK force may be applied in different
directions, by choice of the relative magnitudes of σxz and σyz; i.e.,
f= σxzbex+ σyzbey. The orientation angle (maximum resolved shear
stress plane, MRSSP) is χ ¼ arctanðf P=f BÞ ¼ arctanðσyz=σxzÞ, where fP
and fB are the PK forces resolved on to the P and B planes. We
calculated MP and MB for various values of χ under 100 K and 200 K;
the results are shown in Fig. 7g and h. There is no surprise that MB

decreases andMP increases as χ increases from 0 to 90∘, and the high-
temperature mobilities are higher than the low-temperature counter-
parts. The dislocation mobility can be generalized to a tensor, M,
defined by the relationship: v=Mf. The dislocation glide velocity
component parallel to the PK force is v ¼ f̂ � v ¼ ð̂f �Mf̂Þf ¼ Mf ,
where f̂ ¼ ðcos χ; sin χÞT is the direction of PK force and the scalar
dislocation mobility is

MðχÞ � f̂ �Mf̂ ¼ M11cos
2χ þM22sin

2χ þ 2M12 sin χ cos χ; (17)

where MP=M(0)=M11 and MB=M(90∘)=M22. We measured the
velocity component parallel to the PK force (v) and calculated the
scalar mobility (M= v/f) as a function of χ; see Fig. 8d. Next, we
extracted Mij by fitting M vs. χ to Equation (17); see the solid lines
in Fig. 8d. We find that M11=MB(χ= 0), M22=MP(χ= 90∘) and M12

is negligibly small in comparison with M11 and M22. Since
M11 ≠M22, the dislocation velocity v is, in general, not in the
same direction as the PK force f. The off-diagonal component M12

relates to how the PK force, resolved on B/P plane, influences
dislocation glide on the P/B plane – this is a non-Schmid effect38.
M12 ≈ 0 indicates that dislocation glide is well-described by the
Schmid law in our kMC model.

DISCUSSION
The glide probabilities are deduced from dislocation random walk
(i.e., with no driving force), from which we extracted the intrinsic

Fig. 7 Temporal evolutions of the dislocation core dissociation angle (θ) and the core displacement along P plane (Δy). a and b The core
trajectories under σyz= 10 MPa at 100 K predicted by kMC. c and d The core trajectories under σyz= 60 MPa at 500 K predicted by kMC. e and
f The core trajectories under σyz= 60 MPa at 500 K obtained by MD. In all figures, blue, red and green circles label the P, π and B cores,
respectively.
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glide barriers. Applied stress does not change the intrinsic glide
barriers, but rather biases the glide barriers according to Equation
(16). The Schmid effect is naturally included in this model, since
the glide barrier will be lowered the most along the plane where
the resolved shear stress is the maximum.
We do not investigate non-Schmid effects in this study as this is

not an intrinsic property. To capture non-Schmid effects generally
necessitates determination of how the entire 6-dimensional stress
tensor alters the glide barrier. More specifically, it is possible to
repeat our sampling and analysis presented in this work as a
function of stress normal to the P-plane, π-plane or B-plane. This is
beyond the scope of this study.
The present simulations focused mainly on understanding the

effect of intrinsic dislocation core properties/behavior on disloca-
tion motion. Hence, all simulations were performed to short
dislocation segments. While this helps obtain fundamental,
intrinsic core behavior, it does not account for all aspects of
dislocation dynamics. Nevertheless, it is of practical interest to
understand how a long, screw dislocation line moves in α-Ti. The
mechanism of the motion of a long dislocation line is associated
with nucleation and propagation of kinks. Both kink nucleation
and propagation necessarily involve the advance of local short
dislocation segments. In this sense, the core properties extracted
in this paper serve as essential input to such higher-level, long
dislocation line models/simulations.

A serious treatment of long dislocations should be multiscale.
Even the extant long (32b) dislocation MD simulations (e.g., see
Ref. 14) have not resolved the size effect issue. At a high
temperature (kBT exceeds the kink energy), a dislocation line will
likely undergo thermal roughening (i.e., the fluctuation amplitude
of a dislocation line scales with the size of system)47. If so, the size
effect cannot be overcome by any finite length scale MD
simulation. A possible strategy is to incorporate the intrinsic
dislocation core properties as inputs for a multiscale method, such
as kMC, rather than to simulate a long dislocation directly by MD.
To do this, additional information is required (e.g., double kink
formation and migration barriers or migration velocities); these
may be obtained either directly from MD simulations or by
derivation. For example, Edagawa’s line tension model48 provides
a reasonable description of variations of the double-kink
nucleation energy, which can also be directly obtained from
atomistic simulation by modeling a kink structure49. The kink
migration barrier may be obtained from atomistic simulation for
determination of Peierls barrier49. If the kink migration barrier is
much lower than the screw dislocation migration barrier, the kink
velocity can be used in place of the migration barrier in kMC
simulations27. All above allow for the effective parameterization of
long dislocations for kMC simulations (e.g., those proposed by Cai
and collaborators23,27) of long dislocations in complex materials.
We have studied the finite-temperature core structures of 〈a〉

screw dislocations in HCP Ti, through a multiscale framework. First,
we characterize atomic interactions in Ti based upon machine
learning, Deep Potentials (DP), which reproduce the stable/
metastable dislocation core structures found via quantum
mechanical, DFT calculations. DP was employed in molecular
dynamics (MD) simulations of screw dislocation core structure at
finite temperatures. MD provides the statistics of directional
dislocation core dissociation (π, P and B cores) and directional core
glide (π-, P- and B-glide). We found that the π core is stable and
the P core is metastable, consistent with 0 K DFT results, while the
B core is metastable above 300 K. Contrary to common under-
standing, the glide direction need not align with the core
dissociation direction; e.g., π core can glide on the P plane.
The MD observations allow us to identify all important unit

kinetic events associated with dislocation core motion. The events
were categorized as either core transition (change in the
dissociation direction) or core glide events (unit displacement
along a slip plane). These events were incorporated into a kinetic
model and that was parameterized through the MD data. The
machine learning-based fitting procedure ensures that the
frequency of each core structure and the translational and
rotational diffusion coefficients produced by a kinetic Monte
Carlo (kMC) simulation implementation of the model are
consistent with MD data. We found that P core glide on the P
plane event has the lowest core glide barrier, the transition
between P and π cores has the lowest barrier among all core
transition events, and the glide of the π core (on any plane) is very
difficult.
With the parameters (barriers and frequencies) obtained by

fitting, the proposed kMC simulation procedure is applicable to
dislocation core dynamics at any temperature and applied stress.
The dislocation will undergo a random walk (diffusion) in the
absence of an applied stress; long-time dislocation core trajec-
tories provide anisotropic translational and rotational diffusion
coefficients. The former indicates that dislocation motion on the P
plane is the fastest and motion on the B plane is the slowest. This
implies that the π core is difficult to rotate and is stable while
rotation away from the B core is fast. Under an applied stress,
dislocation motion occurs through a locking-unlocking process at
low temperatures, consistent with experimental observations. The
locking behavior originates from the high energy barrier
associated with π core glide. Application of different stress states
yields that the motion of 〈a〉 screw core in Ti is anisotropic. The

Fig. 8 Dislocation mobility. a Arrhenius plot of dislocation
mobilities on the P plane for σyz (blue) and B plane for σxz (red).
The circles and crosses are, respectively, the kMC and MD data. The
dash-dotted line indicates T= 300 K. c and d The mobilities on the B
and P planes (MB and MP) as a function of PK force direction χ. d The
scalar dislocation mobility as a function of χ. The symbols are kMC
data while the solid lines are fits to Equation (17). In b–d the blue
and red circles correspond to 100 K and 200 K.
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temperature dependence of this anisotropy is consistent with the
(limited) MD predictions.
This work demonstrates that the intrinsic dynamic behavior of

dislocations cannot be described based upon studies of 0 K
dislocation core structures alone. Rather, statistical examination of
the finite-temperature core structures is essential to determine,
not only, the finite-temperature stability of different core
structures, but also the kinetic properties of dislocation motion
and core structure transitions. The kinetic model and parameters
obtained in this work provide the necessary inputs for the higher-
level approaches, such as kMC simulation of a long dislocation line
(for which kink nucleation and propagation are considered) and
discrete dislocation dynamics. While the present study focuses on
the screw dislocation motion in Ti, the method described here is
applicable to all dislocation types, at any temperature and stress
state, in both simple (cubic) and complex (non-cubic) crystalline
materials.

METHODS
MD Simulations
The simulations employ a Deep Potential (DP) trained using DFT
results for perfect crystals and defects in the α, β and ω phases of
Ti33. This DP successfully reproduces the 0 K core structures of the
〈a〉 screw dislocations in Ti as predicted by DFT33.
The MD simulation cell geometry is shown in Fig. 1a. An HCP α-

Ti single crystal cylinder is constructed such that the ½1210� is
parallel to the cylinder axis; the Cartesian coordinate system
employed has exk½1010�, ey∥[0001] and ezk½1210�. The simulation
cell is periodic along the ez-axis. An 〈a〉 screw dislocation, with
both Burgers vector and line direction parallel to ez, is introduced
in the center of the cylinder by displacing the atoms according to
the anisotropic elasticity solution (lattice parameters and elastic
constants for this potential as a function of temperature). The
configuration is equilibrated at different temperatures in an NVT
ensemble. The interactions between atoms in Region I (see Fig. 1a)
are described by the DP for Ti. The atoms in Region II are
described as an Einstein crystal, i.e., the atoms are tethered at the
coordinates of the as-constructed (with anisotropic elastic
displacements of atoms from their perfect crystal locations)
configuration by harmonic springs, to avoid the free surface of
Region II which will apply image force on the dislocation core. The
interface between Region I and II has negligible effect on the
simulation results. Details can be found in the SI. The spring
constant is determined as 3kBT=hðΔratomÞ2i, where kB is the
Boltzmann constant, T is the absolute temperature and hðΔratomÞ2i
is the mean squared displacement of atoms at the temperature T.
The radius of Region I is ~160 Å, the width of Region II is ~18 Å,
and the dislocation line length is ~6 Å. The whole system contains
~33, 000 atoms; i.e., large enough that Region II and the interface
between Region I and II have little influence on the random walk
of the dislocation core about the center of Region I; see SI for
details. The cylindrical sample containing a dislocation was
equilibrated for 2 ns at each temperature. All MD simulations
were performed using LAMMPS50.
The dislocation configurations were thermally equilibrated at

temperatures 300–900 K (well below the HCP-BCC transition
temperature, 1250 K). The atomic configuration was recorded
every 50 fs. Energy minimization for 10–20 steps (by conjugate
gradient with line-search step size 0.01 Å) was conducted for each
of these atomic configurations to remove thermal vibration in
order to clearly visualize/analyze the atomic structure23. Such
energy minimization has little effect on the dislocation core
distribution (for details, see SI).

Nye tensor parameters
The Nye tensors are visualized with perfect crystals as
references. Two key parameters govern the presentation of the
Nye tensor plot are the cutoff distance for constructing a
neighbor list and the maximum angle (Θ) employed to identify
matches between p and q vectors––here, p and q denote the
radial distance vectors between each atom and its neighbors in
the reference and current systems, respectively. In our investiga-
tion, we have chosen a cutoff distance that corresponds to 1.3
times the equilibrium lattice constant at the temperature of
interest. We set Θ to 10∘.

Prediction of event frequencies associated with dislocation
dynamics
In S1 of Section Model and parameterization of dislocation core
dynamics, we need an initial guess of the frequencies of all events
at all temperatures based on the MD results. We treat the core
transition events (i ≠ j) and the core glide events (i= j) differently.
The frequency for a core transition event i(κ)j (i ≠ j), νi(κ)j, is

obtained from the MD results by

νiðκÞj ¼
N iðκÞj
N iΔt

¼ P iðκÞj
Δt

; (18)

where Δt is the time interval between recording atomic config-
urations, N i is the number of configurations showing the i core,
N iðκÞj is the number of the i(κ)j events recorded, and P iðκÞj is the
conditional probability Pði ! jjiÞ ¼ Pði ! jÞ=PðiÞ ¼ N iðκÞj=N i .
The sampling interval Δt is chosen small enough that few events
are missed but not so small that thermal vibrations lead to
incorrect event identification. We set Δt= 0.1 ps (i.e., close to the
inverse Debye frequency for Ti).
The frequency for a core glide event i(κ)i, νi(κ)i, may also be

extracted from the MD simulation atomic configurations, sampled
with time interval Δt. Suppose that the number of the i(κ)i events
is N iðκÞi and the displacement vector of the mth i(κ)i event is di(κ)

i(m). Then, the total time spent on the i(κ)i-glide is N iðκÞiΔt and the
glide distance of the i(κ)i event is sκ ⋅ di(κ)i(m), where sκ= nκ × b/∣b∣
(nκ is the normal to the κ plane and b is the screw dislocation
Burgers vector). The frequency for the i(κ)i-glide event is thus
obtained from

νiðκÞi ¼ 1
N iðκÞiΔt

� sκ
2LiðκÞi

�
XN iðκÞi

m¼1

diðκÞiðmÞ; (19)

where Li(κ)i is the shortest glide distance, i.e., one period of Peierls
barrier along the direction sκ. sB, sP and sπ are the unit vectors in
the ½1010�, [0001] and ½1012� directions, respectively. According to
Fig. 3a–f, LBðBÞB ¼ ffiffiffi

3
p

a=2, LP(P)P= c/2, Lπ(P)π= c and

LπðπÞπ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2=4þ c2

p
.

Kinetic Monte Carlo simulations of dislocation dynamics
Here, we focus on simulating the motion of a short, straight 〈a〉
screw dislocation line in Ti. The dislocation line in a periodic box is
shorter than the correlation length along the dislocation; in this
sense, we are considering dislocation core dynamics, rather than
the dynamics of a long dislocation line.
We construct a 2D lattice in the ex-ey plane. The period of the

2D lattice is ax ¼
ffiffiffi
3

p
a=2 and ay= c in the ex and ey-directions (Fig.

1c). All admissible events are listed in Fig. 3. The core state at a
particular time is described by the core structure"i” and location (x,
y). Some events involve glide in two opposite directions (i.e.,
corresponding to the “±” in the “Transition (κ)” column in Fig. 3g.
When these events occur, “+”/"−” is chosen randomly. The kinetic
Monte Carlo (kMC) algorithm is:

A. Liu et al.
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a: Assume a dislocation core initially dissociated as i= P, π1, π2
or B, and (x, y)= (0, 0).
b: Generate a list of admissible events i(κ)j according to Fig. 3g
and the corresponding frequencies {νi(κ)j} (extracted from the
MD results). Calculate the “activity”: Λ= ∑κ,jνi(κ)j.
c: Randomly choose an event with probability νi(κ)j/Λ (see24 for
details).
d: Advance the kMC clock by Δtkmc ¼ Λ�1 lnðR�1Þ, where R is a
random number in the range (0, 1].
e: Update the state, including the core structure i and (x, y), by
the chosen event. Return to a.

Optimization of event frequencies associated with dislocation
dynamics
The frequencies {νi(κ)j} are adjusted such that the MSD, the MSAD
and the core probabilities fP ig obtained from the kMC simulation
are consistent with the MD results. The loss function used in this
optimization is

L ¼ kXkmcðfνiðκÞjgÞ � Xmdk2 and X

� ðDT
x ;D

T
y ;D

R
P;D

R
π;D

R
B;PP;Pπ;PBÞ;

(20)

where ∥⋅∥ denotes the L2-norm, the subscripts “kmc”/"md” denote
the quantities obtained from kMC/MD simulations and Xkmc is a
function of {νi(κ)j}. L is minimized with respect to {νi(κ)j}.
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