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Molecular identification with atomic force microscopy and
conditional generative adversarial networks
Jaime Carracedo-Cosme 1,2 and Rubén Pérez 2,3✉

Frequency modulation (FM) atomic force microscopy (AFM) with metal tips functionalized with a CO molecule at the tip apex
(referred as High-Resolution AFM, HR-AFM) has provided access to the internal structure of molecules with totally unprecedented
resolution. We propose a model to extract the chemical information from those AFM images in order to achieve a complete
identification of the imaged molecule. Our Conditional Generative Adversarial Network (CGAN) converts a stack of constant-height
HR-AFM images at various tip-sample distances into a ball-and-stick depiction, where balls of different color and size represent the
chemical species and sticks represent the bonds, providing complete information on the structure and chemical composition. The
CGAN has been trained and tested with the QUAM-AFM data set, that contains simulated AFM images for a collection of 686000
organic molecules that include all the chemical species relevant in organic chemistry. Tests with a large set of theoretical images
and few experimental examples demonstrate the accuracy and potential of our approach for molecular identification.
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INTRODUCTION
Atomic Force Microscopy (AFM)1 in combination with dynamic
operation modes2,3 has become one of the key tools for imaging
and manipulation of materials and biological systems at the
nanoscale. Operated in the frequency-modulation mode (FM)
(commonly known as Non-contact AFM), AFM achieves true
atomic-scale resolution2,3. The use of metal tips functionalized
with a CO molecule at the tip apex, has provided access to the
internal structure of molecules with totally unprecedented
resolution4,5. The main contrast mechanism for AFM with inert
tips like CO is Pauli repulsion4, that is due to the overlap of the
electron densities of tip and sample. This repulsive force produces
positive frequency shifts – changes in the oscillation frequency of
the cantilever holding the tip due to the tip-sample interaction –
that are observed as bright features in the constant height AFM
images above atom positions and bonds, reflecting the molecular
structure. Increasingly accurate AFM simulation models6–10 have
been developed to explain the observed image contrast. They
have contributed to elucidate the role of the CO tilting7, the
influence of other contributions to the tip-sample interaction, like
the electrostatic force11,12, the role of the CO-metal tip charge
distribution10,13, and the interplay of the short-range chemical
interaction and electrostatics in bond order discrimination and the
imaging of intermolecular bonds14.
High-resolution experimental (HR) AFM images, together with

the ability to address individual molecules, have paved the way for
the identification of natural products—like breitfussin A, where
the structure of some of the fragments was known but methods
like nuclear magnetic resonance (NMR) failed to provide the
global structure15. HR-AFM is also key in the imaging of the
intermediates (including radicals) and final products generated in
on-surface reactions, shedding light into the formation processes
and reaction pathways16–19. The technique has also been able to
resolve more than a hundred different types of molecules in
asphaltenes, the solid component of crude oil20. Molecular
identification in all of the previous cases was supported by

significant information about the nature of the molecules
involved, as in the case of asphaltenes, where we were dealing
essentially with polycyclic aromatic hydrocarbons based on C and
H atoms. Achieving molecular identification in a general case is a
much more challenging problem, as it is necessary to disentangle
the contribution of the bonding topology, the chemical composi-
tion and the internal corrugation of the molecule to the contrast
of the HR-AFM images, coping with the presence of experimental
noise and tip asymmetries. In spite of the wealth of information
provided by HR-AFM experiments and the advances in the
interpretation of the observed contrast, the complete identifica-
tion of molecular systems, i.e., the determination of the structure
and composition, solely based on HR-AFM images, without any
prior information, remains an open problem.
Few works have tried to tackle this problem using artificial

intelligence (AI) techniques21,22 to process AFM images. Deep
learning (DL) is nowadays routinely used to classify, interpret,
describe and analyze images23–28, providing machines with
capabilities that surpass human beings29. DL ability to recognize
patterns could in principle be exploited to characterize the
structure of molecular systems. Kalinin and co-workers have done
pioneering work30 in the application of DL31 and Bayesian32

methods to extract information from electron microscopy and
scanning probe microscopy (SPM) images. Gordon et al.33

implemented a model to automate the detection of spatially
correlated patterns in varied sets of AFM images of self-organized
nanoparticles. However, the problem of molecular identification
based on AFM images has to face two main challenges that are
intrinsic to the technique: how to achieve chemical identification
within the molecule at the single atom level—as the effects of
both geometry and chemical composition contribute to the
determination of the 3D molecular charge density, that is
ultimately responsible for the AFM contrast—and how to deal
with markedly non-planar, 3D structures, given that the deflection
of the CO tip as we get closer to the sample can prevent the
exploration of the lower lying molecular areas. Alldritt et al.21
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focused on the structure challenge and developed a convolutional
neural network (CNN) whose aim was to determine the molecular
geometry from HR-AFM images. Working with molecules mainly
based on C and H, the performance was excellent for the structure
of quasi-planar molecules, even using the algorithm directly with
experimental results. For 3D structures, they were able to recover
information for the positions of the atoms closer to the tip, in a
height range of 150 pm. However, the discrimination of other
chemical species (O, Cl) and simple functional groups (OH)
produced non conclusive results.
CNNs have also been used to predict accurate electrostatic

fields34 from HR-AFM images, while graph neural networks (GNNs)
have been applied to extract molecular graphs35.
In our previous work22, we faced the chemical identification

challenge and showed the feasibility of performing a very accurate
automatic molecular classification with DL techniques for a set of
60 planar molecules, that include the 10 most common atomic
species in organic chemistry, using their theoretically simulated
AFM images. Furthermore, we proposed a variational autoencoder
(VAE)36,37 based method to include the characteristic features of
the experimental AFM images in the training dataset, significantly
increasing the accuracy of the model tested with experimental
images22. However, although this approach shows the potential to
recognize both the structure and composition of molecules
through AFM images, it does not come close to solving the
global identification problem. The classification approach can only
identify molecules included in the classes predefined in the
model. The output is a vector where each component provides
the probability that the input belongs to the corresponding class.
If we consider a small variation of one of the molecules included in
the classification set, just replacing one of the atoms by another
chemical species or by a functional group, the model would not
be able to classify this molecule. At best, it might identify it with
the parent molecule in the classification set, but it would not be
able to discriminate between the two molecules. Given the rich
complexity provided by organic chemistry, even using an
extremely large data set—which already poses fantastic computa-
tional requirements, as the output vector would have the
dimension of the number of molecules in the data set—the
model would fail to classify many of the already known or possibly
synthesized molecules of interest. Thus, the challenge is to build a
DL model that, trained with a large but limited number of
molecules, is able to generalize and identify any possible organic
molecule.
In this work, we address the problem of molecular identification

from a completely new perspective, using visualization techniques
that map images onto images. Image translation has been widely
applied for various purposes, such as image denoising38, data
compression39,40, synthetic data generation41 or image segmenta-
tion42. One of the most widely accepted methods in the
community for these tasks is the CGAN. This enhancement of
the original generative adversarial network (GAN)43 has demon-
strated an outstanding ability to colorize images, reconstruct
objects from edge maps, and synthesize photos from labeled
maps, among other tasks44. In particular, the CGAN has played a
key role in problems such as the fully convolutional translation
from aerial photos to maps44, that can be considered analogous to
our specific goal of molecular identification through ball-and-stick
molecular depictions produced from AFM images.
The architecture of a CGAN includes two neural networks: the

generator and the discriminator. The generator is responsible for
converting the input images into the output ones, whereas the
discriminator tries to predict whether the output image is the real
one (ground truth) or has been produced by the generator. The
competition between these two networks forces them to improve
significantly their performance during the training. For its
prediction, the discriminator compares patches of the generator’s
input image with its output and with the real image. Thus, these

networks specialize in translating and detecting local environ-
ments of the images respectively, making the CGAN particularly
suitable for molecular identification through AFM imaging, since
the contrast features induced by each atom in the images depend
strongly on its chemical environment and very weakly on more
distant atoms.
In our CGAN implementation, the input for the generator is a

stack of 10 constant-height HR-AFM images covering the range of
tip-sample distances commonly used for AFM imaging, spanning a
distance variation of 100 pm. To this end, we have modified the
original CGAN architecture replacing the 2D convolutions in the
first layers of the generator by 3D convolutions that allow
processing multiple images. Our CGAN turns the stack of AFM
images into a graphical representation, the ball-and-stick depic-
tion, where balls of different color and size represent the different
chemical species and sticks represent the bonds between the
atoms, providing complete information on the structure and
chemical composition. The CGAN has been trained and tested
with the Quasar Science Resources-Autonomous University of
Madrid Atomic Force Microscopy Image Dataset (QUAM-AFM)45,
an open-access dataset that includes simulations of theoretical
AFM images for a collection of 686,000 molecules that include all
the chemical species relevant in organic chemistry. The QUAM-
AFM data set have been split into training, validation and test sets
with 581,000, 24,000, and 81,000 structures, respectively. Each of
these sets contain a variety of molecules with different sizes,
chemical compositions and bonding configurations. An extensive
test with molecules randomly chosen from the large test set, that
have not been shown to the CGAN during training, shows the
ability of the model to identify the structure and composition of
any type of organic molecule, achieving the complete general-
ization of the molecular identification problem. Below, we discuss
the main points of our implementation and test quantitatively its
performance with a large set of theoretical images and few
experimental examples taken from the literature, in order to
demonstrate the accuracy and high potential of this approach for
molecular identification.
The problem of molecular identification from a stack of AFM

images has been previously addressed by us framing it as an
image captioning challenge and using multimodal networks46 to
solve it. Each multimodal network (M-RNN) included a CNN for
image analysis and a recurrent neural network (RNN) for language
processing. The first network took as input the 3D image stack and
provided the attributes, the IUPAC terms corresponding to all the
chemical groups present in the molecule. The second M-RNN
exploited both the 3D image stack and the attributes provided by
the first M-RNN to predict the IUPAC name of the molecule, that
completely describes the structure and composition of the
molecule. The determination of the chemical groups within the
molecule had a 95% accuracy, showing that AFM images did carry
significant chemical information and that the CNN is able to
retrieve it. For the prediction of the complete IUPAC name,
although the model outperforms most applications of RNN to
language translation, the accuracy was limited to 76% using the
cumulative 4-gram BLEU metric47, the standard metric for natural
language processing. This performance drop is probably related to
intrinsic limitations of RNNs models and to the IUPAC formulation
rules, specifically designed for humans but not particular suitable
for machine learning applications. The completely different
approach to molecular identification that we propose here is
designed to overcome this language limitation and also to provide
information from images containing groups of molecules bonded
by hydrogen or halogen-bond interactions or molecular fragments
that cannot be described by the IUPAC formulation.
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RESULTS
A CGAN model to identify molecules through their ball-and-
stick depictions
We use a CGAN44 to identify the molecules through ball-and-stick
depictions. They represent each atomic species with balls of
different colors and sizes centered at the position of the atoms,
and define the structure through sticks, joining the balls, that
represent the chemical bonds. Our proposal is based on the fact
that this representation carries chemical information not only in
the balls but also through the length of the sticks, since
interatomic distances depend on the chemical species and the
order of the bond (e.g., single, double and triple carbon–carbon
(C–C) bonds have different lengths).
The model applied for the identification is based on the

implementation of the CGAN proposed in ref. 44. The CGAN model
is composed of two networks, known as generator and
discriminator. Figure 1 shows the structure and layers of each
network. We define the stack of 10 AFM images at different tip-
sample distances as input to the generator and the corresponding
ball-and-stick depiction as output. Our proposal differs from the
original implementation in the first layers of the generator: a
dropout layer with a rate of 0.5 and two 3D convolutional layers
(replacing the original 2D convolutional layers) to process the
image stack. A dropout layer with such a high rate is important for
the model to be able to generalize and make accurate predictions
when dealing with experimental images.
During the training, the networks are confronted against each

other in a zero-sum game consisting of two steps. First, the
generator is fed with a stack of AFM images and tries to generate
the ball-and-stick representation corresponding to the molecule

from which the input AFM images have been simulated. Second,
we feed the discriminator with the AFM image stack (the same
used for the generator) and also with the ball-and-stick depiction.
With this data, the discriminator predicts whether the ball-and-
stick depiction is the ground truth or the image generated with
the generator network. In this way, we train the two networks
together in a end-to-end process in which the first network learns
both to fool the discriminator and to generate images as close as
possible to the ball-and-stick depiction, and the discriminator
learns to guess whether the second input image is real or fake.
From a practical point of view, the discriminator is a network that
is only useful to force the generator to improve. Therefore, once
this objective has been achieved, we discard the discriminator
network. The generator is in charge of generating the ball-and-
stick depiction representing the atoms and bonds, providing a
complete identification of the molecule.
While most of the model details are presented in the Methods

section, there are two technical points that we want to highlight
as they are important in order to explain the remarkable
performance of our approach. The first one is related to how
the discriminator makes its prediction. This is not achieved by a
global assessment of the inputs but by comparing them
segmented into patches of 16 × 16 pixels. This local analysis
based on small patches of the images makes CGAN especially
powerful in AFM image analysis, as the features induced by the
structure and composition on the AFM images depend strongly
on the local chemical environment and smoothly on the global
molecular configuration. The second one exploits the freedom to
incorporate additional terms into the loss function used during
the training. As suggested in the original CGAN implementation44,
a distance L1 (defined as the sum of the absolute difference of the
components of a vector) has been added to the loss function. This
distance, an alternative to the usual Euclidean L2 norm, forces the
generator not only to fool the discriminator, but also to produce
outputs closer to the real ones and with as little blur as possible.

Testing the identification with simulated AFM images
In order to evaluate the accuracy of molecular identification
through AFM with the CGAN, we perform a test with 3015
structures randomly selected from the set of 81,000 molecules
specifically reserved for this purpose from QUAM-AFM (see
Methods). The test was not performed on the complete test set
due to the fact that the evaluation was carried out by human
visual comparison between the target structure and the one
predicted by the model. For each of these structures, we
randomized the selection of the AFM operational parameters
(oscillation amplitude, lateral stiffness of the CO-metal tip bond)
used in the simulations among the 24 possible combinations
offered by QUAM-AFM (see Methods), resulting in 3.015 stacks of
10 tip-sample distance AFM images.
The results of the test shown in Fig. 2 demonstrate that our

method works with outstanding results: theoretically simulated
AFM images contain sufficient information to carry out a
complete chemical and structural identification of the molecule
through the prediction of its ball-and-stick depiction. The
model recognizes both chemically and structurally semi-flat
molecules in complex cases, including structures that a human
expert would not be able to identify. Figure 2a shows the
identification of 2-(2-aminoethoxy)-N-(3,5-dimethoxyphenyl)
acetamide, one of these tough examples. The corresponding
AFM images are characterized by strong distortions of the
structure created by the strong charge accumulation around
the oxygens48. These strongly electronegative atoms hide their
bonds with the sp3 carbons, creating a triangular feature at the
position of the ring and hiding also the presence of the
nitrogen (N) atom attach to it. Nevertheless, the model is able
to differentiate sp3 and sp2 carbons and identify the two amino

Fig. 1 Our implementation of the CGAN structure. During the
training, the generator model a and the discriminator model b are
confronted against each other in a zero-sum game: firstly, the
generator is fed with a stack of AFM images and tries to generate
the ball-and-stick representation. Secondly, we feed the discrimi-
nator with the AFM image stack (the same used for the generator)
and also with the ball-and-stick depiction. With this data, the
discriminator has to predict whether the ball-and-stick depiction is
the ground truth or the image generated with the generator
network. The models include 3D convolutional layers (red boxes),
dropout layers (blue), blocks of 2D convolutional layers (yellow) and
with 2D transposed convolutional layers (green). For a detailed
description of each block and their corresponding layers, including
the activation functions, see Methods.
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groups, leading to a perfect prediction. Figure 2 (b and c) shows
other remarkable achievements of the model, such as the
identification of sp3 carbons, sulfur, oxygen and nitrogen atoms
in different chemical environments and the accurate discrimi-
nation of three different halogen species (chlorine (Cl) in Fig. 2b
and iodine (I) and bromine (Br) in Fig. 2c).
Figure 3 provides a quantitative estimate of the accuracy of our

identification method using a global assessment and two specific
evaluations focused on either structure or composition. The model
achieves a remarkable 74% of perfect predictions, that increase to
95% (96%) when considering only structure (composition). Notice
that, in the total accuracy and the structure accuracy, a prediction
has been considered correct only if there is a perfect match,
whereas the accuracy in the prediction of each atomic species has
been assessed by considering each individual atom in the
molecule as correct or incorrect and assigning to that prediction
the ratio between the number of correct atoms and the total

number of atoms. This method of evaluation penalizes errors in
structure discovery more than in atom determination, since, in all
the predictions, most of the structure is revealed correctly,
providing valuable information about the molecule, in spite of
been considered as incorrect in the determination of the accuracy.
We have explored the influence of the molecular corrugation—

the maximum height difference of the atoms in the molecule
(excluding hydrogen (H) atoms), where the height is defined as
the distance between atoms measured perpendicular to the
molecular plane—in the performance of the model. The force
curves associated with certain atomic species in different
molecular moieties are quite similar. In fact, in some cases, these
curves are almost identical except for a rigid translation,
equivalent to a vertical displacement of the atoms. Thus, we
could expect the model to mistake some of these atoms in a non-
planar structure where they are at different heights. The test set
was split into four subsets according to the maximum height

Fig. 2 Examples of perfect predictions from our CGAN model. (From left to right) AFM images at different tip-sample distances, prediction
performed by the CGAN, real structure and height map for a 2-(2-aminoethoxy)-N-(3,5-dimethoxyphenyl)acetamide, b 3-[2-(4-chlorophenyl)-
1,3-thiazol-4-yl]-1-(5-methylfuran-2-yl)prop-2-en-1-one and c N-(5-bromo-2-iodophenyl)-5-methyl-1H-imidazol-2-amine.

Fig. 3 Accuracy of the model in a test where both the 3015 structures and their simulation parameters have been randomly selected. The
bar charts show (from left to right) the overall accuracy (perfect structure and atom prediction), the accuracy of structure discovery, and the
accuracy in revealing the atomic species. The set of structures has been divided into four subsets according to their corrugation in order to
show the dependence of the model accuracy versus the height difference in the atoms of the molecule. The horizontal dashed line shows the
accuracy over the complete test set. The (total) accuracy has been evaluated considering that the final result is correct only if the prediction is
perfect: it shows all the bonds of the molecule, the number of vertices of each structure (chain or rings), and the proper color assigned to each
atom, with the exception of the hydrogen atoms and its bonds. The structure accuracy has been calculated as the percentage of fully
discovered (perfect) structures out of the total set of structures. The accuracy in the prediction of the atomic species has been evaluated as the
percentage of total hits (correct predictions) over the total number of atoms in the set, without considering the hydrogen atoms. See
Supplementary Table 1 for details.
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difference and the accuracy was evaluated independently for each
subset. According to Fig. 3, both the total and the composition
accuracy decrease linearly with the maximum height difference,
while the structure accuracy shows this linear behavior in the
range [0, 150] pm but has a stronger decay from 150 pm onwards.
Figure 4 provides some important hints on the origin of the

limitations of the model revealed by the statistical analysis
presented above. Starting with the role of the maximum height
difference, the left panels in Fig. 4b–d show two representative
AFM images, the prediction and the real structure for three
molecules that have a strong internal corrugation in their gas-
phase configuration. These images show that the model perfectly
identifies chemically and structurally the top part of the molecules,
but fails with the bottom, where the CO tip cannot retrieve
enough information during constant height imaging, even at the
shortest tip-sample distances, due to the CO lateral relaxation.
These results explain the lower accuracy of the model for the
molecules with stronger corrugation, particularly in the case of the
structure accuracy, that requires a perfect identification of the
whole molecular structure. At the same time, it seems to confirm

that there is a limit beyond which it is not possible to obtain
information from an AFM with the current operation setups and
with a single adsorption orientation of the molecule21.
We do not expect this limitation to be so crucial when dealing

with the identification based on experimental images of the quasi-
planar molecules (with internal corrugation below 183 pm) that
we have been considering so far. In experiments, the molecules
are deposited on a substrate. The final adsorption configurations
are significantly flatter than the gas-phase ones, as the attractive
molecule-substrate interaction compensates the steric hindrance
effects responsible for the internal corrugation, even in the low
reactive substrates commonly used for AFM experiments. This
idea has been tested with the three molecules in Fig. 4b–d. The
left panels of Fig. 4c show that in the gas phase structure, the
model correctly predicts that bromine is a halogen (by bond
length and ball size) but does not determine the color of the ball.
A similar case is presented in Fig. 4d, where several atoms are
misclassified. We have forced these three molecules to acquire a
flat structure. The corresponding AFM images, the new prediction
and the structure are shown on the right panels of Fig. 4b–d. The

Fig. 4 Understanding the origin of some mistakes in the CGAN predictions. a AFM images, predictions and structures for meso-
Dibenzoporphycene (mDBPc) relaxed on a Ag(111) surface (left) and on a NaCl bilayer (right), see ref. 49 for structural corrugation details on
each surface. AFM images, predictions and structures in the gas-phase configurations (left) and in a forced planar structure (right) for the
molecules b 2-quinolin-8-ylisoindole-1,3-dione, c 4-N-(2-bromophenyl)-2-N-phenylpyridine-2,4-dicarboxamide and d 3-amino-2,6-difluoro-N-
(2,3,4-trifluorophenyl)benzamide. AFM images, predictions and structures for e 2-(1-oxo-3H-naphtho[2,3-e]indol-2-ylidene)-3H-naphtho[2,3-e]
indol-1-one and f 2-(4-methyl-2-pyridin-3-yl-1,3-thiazol-5-yl)-5-pyridin-3-yl-1,3,4-oxadiazole in a gas-phase configuration. g, h Comparison of
AFM images of pyrrole and furan.
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prediction becomes perfect with respect to the structure in all of
the three cases, and, composition-wise, fails only in a single atom
in the case displayed in Fig. 4d.
After the analysis presented above, it is sensible to ask if the

choice of training the model with the structures in QUAM-AFM,
that correspond to gas-phase configurations, is the best strategy
for molecular identification based on experimental images. This
choice has been taken in the first place to make the simulation
computationally feasible, as it is simply not possible to perform
the relaxations needed to determine the adsorption configura-
tions of all the molecules in the data set on a number of different
substrates. However, our choice, more than a practical considera-
tion, is actually guided by the fact that the AFM contrast of the
different chemical species is strongly influenced by the chemical
environment. Training the model with the molecular structures in
QUAM-AFM, that, in general, do not correspond to the adsorbed
configuration in the experiments, provides the model with the
necessary information to learn the local relationships that the
different chemical species may have depending on the height.
Instead of learning to identify a structure in one particular
configuration, the model is learning to relate atoms to their
surroundings, allowing it to recognize molecules in different
configurations.
Figure 4a demonstrates this idea. It shows the AFM images

calculated for the stable adsorption configuration of meso-
Dibenzoporphycene (mDBPc) on two different substrates: a more
reactive silver Ag(111) surface and a rather inert sodium chloride
(NaCl) bilayer. The final structures are quite different and neither
of them is flat. This reflect in the different AFM contrast, that is in
excellent agreement with the experiments in both substrates49.
When the stack of images corresponding to these two configura-
tions is shown to our model, the prediction for the structure and
composition of the molecule is perfect in both cases, except for
the position of the two internal hydrogen atoms that are always
very difficult to determine from AFM experiments. This example
with theoretical images and the experimental cases discussed
below show that the training with the highly corrugated gas-
phase configurations, although not enough to keep its global
accuracy in the tests performed with molecules with strong
corrugations, is actually an important asset of the model. These
structures are making the model robust by showing how features
associated with atomic species and molecular moieties evolve
with the variation of height in different chemical environments.
The choice of the molecular adsorption configurations on a
particular substrate for training may lead the model to specialize
excessively and loose the ability to generalize and identify the
same molecule adsorbed on a different substrate. The gas–phase
structures, combined with the choice of images generated with
different AFM operational parameters and the use of an image
data generator (IDG) (see Methods), introduce enough variability
during the training to allow the model to identify the molecule,
despite the differences introduced by the substrate. In summary,
the corrugation of the gas-phase structures, rather than being a
limitation, is enhancing the ability of the model to generalize and
to recognize molecules in different adsorption configurations.
Beyond the subtleties in the AFM contrast created by the

interplay of the chemical nature of the atoms, their chemical
environment and their relative height, we have identified some
misclassifications that occur with some frequency, even in rather
flat configurations. Figure 4e, f shows two examples where the
model swaps a N-H group in a pentagon for an oxygen (O) atom.
In this case, although chemically they have different properties,
the fact that the atoms are very electronegative and have a similar
charge distribution reflects in the similar features they show in the
AFM simulations in a perfectly planar configuration (see Fig. 4g, h).
This fact makes them extremely difficult to identify in the presence
of small variations in height. Another pair that is frequently
mistaken for variations in height is O and fluorine (F) atoms when

connected to an aromatic ring (see Fig. 4d). This case is more
surprising since, even though the two atoms are highly
electronegative and of similar size, the O atom double bonded
to a C atom of an aromatic ring should, at first, show some
distinctive feature with respect to a C-F pair. Although the features
associated to F and O atoms are similar, one would expect them to
be distinguishable in a planar structure. It is not clear whether this
error is due to some unknown effect on the structure or, perhaps,
as they have similar sizes in the ball-and-stick representation, the
model mistakes them under certain conditions.

Molecular identification based on experimental AFM images
The final goal of our CGAN model is to identify molecules from
their experimental AFM images. As discussed above, the range of
AFM operational parameters used to simulate the images
generated for each of the molecules and the use of gas-phase
configurations introduce enough variability during the training to
allow the model to identify the molecule, despite the differences
introduced by the substrate. We have explicitly tested this point
with theoretical AFM images generated for the adsorption
configurations of mDBPc on two different substrates with quite
different reactivity, a Ag(111) surface and a NaCl bilayer (see Fig.
4a). The theoretical AFM images faithfully reproduced the
experimental results49.
Now, we want to assess the accuracy of the model with

experimental results. This test is going to be limited by the scarce
number of published AFM studies that include sets of images as a
function of the tip height. Furthermore, most of these few studies
neither provide sufficient images (10 images, taken at 10 pm
intervals) nor are in the range of tip-sample distances (280–370
pm) which our analysis with simulated images have shown
necessary to properly sample the variation of the tip-sample
interaction and achieve complete chemical identification. Despite
these drawbacks, the results presented below are really promising.
To test the performance of the model with experimental results,

we have selected sets of AFM images originally published in refs.
50–55. In general, fewer than ten images corresponding to different
tip-sample distances were published in these papers, so we have
linearly interpolated the images two by two to extract additional
images to complete the input, the stack of 10 images, required for
the CGAN model. In some cases the experimental results were so
limited, that it was necessary to weigh differently each image to
obtain multiple results from each image pair (see Fig. 5 and
Supplementary Figs. 1 and 2). We have denoised the generated
10-image stack by applying the medianBlur filter with size 3 from
the OpenCV Python package.
It is important to stress that the interpolated images are

generated for the sole purpose of completing the input
dimensions required by the model, i.e., they do not provide
additional information to that supplied by the original images.
Therefore, the test with experimental images is really tough: We
are not only increasing the complexity by using as inputs
experimental images—simply cut and edited from different
publications and that, in spite of the applied filter, always carried
some noise—, but we are also severely reducing the amount of
information with which we feed the model.
A drawback that may hinder chemical identification by

experimental AFM imaging is that the observed interaction
depends on the details of the tip structure, like the attachment
of the CO molecule to the metal tip. Figure 5a shows experimental
AFM images, taken at constant height and acquired with a CO-
terminated tip, for a 1-azahexacyclo[11.7.1.13,19.02,7.09,21.015,20]
docosa-2,4,6,9(21),10,12,15,17,19-nonaene-8,14,22-trione molecule
adsorbed on a Cu(111) surface50. These AFM images (and, by
inheritance, also their interpolations) show an imperfect threefold
symmetry. Although this asymmetry could be related to the
adsorption configuration of the molecule, the discussion in ref. 50
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proves that it is really caused by the flexibility of the CO–Cu bond
coupled with an asymmetric tip. Therefore, the chemical
identification of this molecule has two additional complications,
besides the lack of input data and the switch to experimental
images: First, this structure is not part of the training set, so, in
addition to testing the model with an experimental image, this is a
perfect example to verify its ability to generalize. On the other
hand, because in the theoretical simulations tip irregularities are
not considered, the model has not been trained with images
containing characteristic features induced by these asymmetrical
tips in the experimental images. Despite these drawbacks, the
CGAN is not only able to reveal the molecular structure but also to
predict with perfect accuracy the chemical species that make up
the molecule.
Besides being robust against tip asymmetries, the model seems

to perform, in some case, even better in the determination of the
chemical composition with experimental images than with

theoretical ones. As discussed above, one of the most common
errors in the tests performed with simulated images was to
mistake an O atom for an F atom in complex molecules, as they
produced a similar AFM contrast. However, in the prediction of
this molecule through the experimental AFM images, where the
symmetry is affected by the irregularity of the tip, the model
identifies the three oxygens with absolute accuracy (see Fig. 5a). It
is not possible to make a general statement since the test with
oxygens is limited to their presence in this particular structure, but
this result seems to indicate that our CGAN is able to clearly
differentiate some chemical species, like oxygens and fluorines, in
experimental images.
Our CGAN model seems to work also with constant-height

images taken using different AFM operation modes. Figure 5b
shows the prediction performed for 2-iodotriphenylene on
Ag(111) with a stack of AFM images taken using the measured
oscillation amplitude in a new operation mode, Q-controlled

Fig. 5 Test of the CGAN performance with experimental AFM images. Each panel includes the published experimental AFM images, the
prediction performed with the CGAN and the structure for the corresponding molecule. a 1-azahexacyclo[11.7.1.13,19.02,7.09,21.015,20]docosa-
2,4,6,9(21),10,12,15,17,19-nonaene-8,14,22-trione, b 2-iodotriphenylene, c 21,23-dihydroporphyrin, d dibenzothiophene and e [19]dendri-
phene. Experimental images in (a, c, d, e)50,52–54 were taken in the FM operation mode at constant height, while, in b51, a novel Q-control AM-
AFM mode was used. The color code for the balls representing the chemical species is: carbon (gray), hydrogen (white), oxygen (red), iodine
(purple) and nitrogen (blue). Only 4, 6, 6, 10 and 3 experimental images were published for the molecules in panels a–e, respectively. Thus,
when necessary, we have linearly interpolated these images in order to produce the 10-image stack used by our CGAN model as input (see
text and Supplementary Figs. 1 and 2 for details). Images are reproduced from references50–53 with the permission of the American Chemical
Society (ACS, Copyright (2016)), AIP Publishing, American Association for the Advancement of Science (AAAS), and John Wiley and Sons.
Images from reference54 are reproduced under an ACS AuthorChoice License.
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Amplitude Modulation Atomic Force Microscopy (AM-AFM) with
CO-functionalized tips operated in constant-height mode, pro-
posed in ref. 51. The AFM images resulting from using both phase
modulation in Q-control AM-AFM and frequency modulation (FM)
modes on the same molecule as well as the respective predictions
performed by the model are shown in Supplementary Fig. 1. As
described in the Supplementary Discussion, none of these AFM
images correspond to the AFM operation mode used to simulate
the AFM images employed in the training of the model. This is
clear for the amplitude (Fig. 5b) and phase images, but it is also
the case in the FM images, as the oscillation amplitude is very
different (varying from 45 to 525 pm) in each of the experimental
images, while the10–image stacks used in the training correspond
to different tip-sample distances of closest approach but to the
same oscillation amplitude. Moreover, the tip-height range
covered by the images (64 pm) is significantly smaller than the
100 pm that we consider optimal and has been chosen so that
similar contrast features were shown in the amplitude, phase and
FM images. Finally, we have included in our analysis the amplitude
image at the closest distance, that shows a significantly different
contrast.
In spite of these severe limitations in the input, the model fed

with the amplitude images fully reveals the molecular structure
and the presence of the iodine atom. In the case of phase and FM
images, the model gives a good description of the molecular
structure but fails to provide a clear prediction about the halogen,
since the color is more like the one associated to bromine than the
one corresponding to iodine (See Supplementary Fig. 1). Far from
considering these predictions a failure, these results indicate that
our CGAN model can provide very useful information regarding
the molecular identification when fed with images taken with
different AFM operation modes. Nevertheless, more work is
needed to reach a final conclusion about the merits and
limitations of our model for this particular case,
2-iodotriphenylene on Ag(111), as shown by the analysis of
another series of constant-height images taken in the frequency
modulation mode for the molecule and for the products of a
dehalogenation reaction locally triggered using a voltage: a
triphenylene (TP) radical and the cleaved I atom55 (see Supple-
mentary Discussion). The image features at the halogen position
and its evolution with tip height in Supplementary Fig. 2a are
quite different from those shown in other experimental examples
and from our AFM simulations, and the model predicts a methyl
group instead of a halogen. In the case of the dehalogenation
products (Supplementary Fig. 2b), our model captures the
presence of the cleaved I atom and provides a strongly deformed
structure where the dehalogenated ring is not closed, consistent
with the lack of information in the AFM images due to the strong
bending of the molecule towards the substrate induced by the
interaction of the unsaturated C bond in that ring with the metal.
Figure 5c shows another rather successful identification, in this

case, a 21,23-dihydroporphyrin molecule. The test has been
carried out with interpolations from five experimental images that
cover tip-sample distances varying in a range of 100 pm, although
the average distance seems to be larger than the one used in the
simulations of QUAM-AFM. The model is able to reveal the four
pentagonal rings and the position of the nitrogens.
The predictions of the model have not been so accurate in all

experimental tests. Figure 5d, e shows the test performed with
AFM images of dibenzothiophene and [19]Dendriphene respec-
tively. In the dibenzothiophene prediction, the model gets right
both the number of rings and the number of vertices in each ring,
which is clear in the AFM images taken at shorter tip-sample
distances. However, the model is not able to rescale the central
ring to show the bonds with their correct size. Furthermore,
although the model manages to reveal a slight yellow color at the
sulfur apex, the size of the bonds in the prediction is larger than in
the target, so the prediction is not conclusive. It has to be noticed

that, despite applying a filter, we were not able to remove the
experimental noise completely. Furthermore, the central ring
appears, for some unknown reason, much more deformed than in
the theoretically simulated images. These two features of the
experimental images may account for the failure of the prediction.
However, our previous work22 shows that these problems with
experimental images can be fixed. We proposed a strategy that
significantly improves the accuracy in the classification of a small
set of molecules, including dibenzothiophene, from experimental
images. We implemented and trained a VAE to generate, from just
three experimental images, a set of 540 images that incorporate
characteristic features of the experimental cases. This subset
represented a very small fraction (0.17%) of the total training set
but its inclusion produced an increase in the accuracy of 0.28
(from 0.62 to 0.90) in the particular case of dibenzothiophene and
an increase of 0.2 for the whole set of molecules. This strategy can
be extended to our CGAN model to incorporate during the
training images containing experimental features in order to
improve its accuracy.
The [19]dendriphene prediction is also partly a failure. Although

it reveals a large part of the structure, it does not close five of the
six peripheral rings. Moreover, while in most cases, the prediction
of the presence of carbon atoms is correct, the model tints some
areas of the structure with bluish tones that do not allow to
conclusively determine whether the chemical species is a carbon
or a nitrogen. It has to be noticed that the test has been
performed with only three experimental images, that is, less than
a third of the information with which the model was trained. At
the same time, it is also remarkable, that, even for such a
complicated test and with a very limited input information, the
number of vertices of each revealed ring is correct.

DISCUSSION
In summary, our results show the potential for chemical and
structural identification of molecules encoded in HR-AFM images.
We propose a CGAN to generalize the accurate classification of a
small set of molecules achieved in our previous work22 into a
general purpose tool to completely determine the structure and
composition of arbitrary quasi-planar organic molecules. Our
model performs a direct translation between a stack of 10
constant-height HR-AFM images and the ball-and-stick depiction
of the molecule. We are only limited by the fact that the atoms
composing the molecule have to be in the training dataset. Since
QUAM-AFM45 includes the most relevant chemical species in
organic chemistry, the model prediction is practically
unconstrained.
Molecular identification in both theoretical and experimental

images is highly accurate with a model trained exclusively with
theoretical images. The few results presented for molecular
identification based on experimental HR-AFM images, in spite of
the incomplete information available, are really remarkable. The
ability of the model to reveal molecular structures and chemical
species is truly remarkable, beyond the capabilities of a human
expert in the field. Moreover, these identifications are not
conditioned to a single molecular configuration, since the
differences in height of the atoms in the gas-phase structures
included in the training dataset provide enough information to
identify patches of the image according to the chemical
environment of each atom. In this way, the model has learned
to decipher the distortions produced by each chemical species in
relation to its surroundings regardless of the relative height
difference in the molecule. Given that the presence of side
functional groups and different chemical species lowers signifi-
cantly the molecular symmetry, that it is further reduced during
the adsorption process, we do not expect methods dealing with
symmetry identification in the presence of noise56,57 to be helpful
in improving the performance of DL models in the identification of
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molecules from experimental HR-AFM images. However, they can
be certainly relevant for the scanning probe community working
of the characterization of surfaces of novel materials and 2D
supramolecular structures.
We attribute the high performance of the model to the

consistency and robustness shown by CNNs in the analysis of
images with DL, together with the patch analysis performed by
the discriminator and the use of a suitable loss function, with an
L1 distance, that increase the sharpness of the predictions and
makes the mapping between input and output accurate. The
reduced accuracy shown for structures that have a very high
internal corrugation is not a critical issue when facing the
identification from experimental AFM images, as real adsorbed
structures tend to be flatter than the corresponding gas-phase
ones. Moreover, in these high-corrugation cases, the model
correctly reveals both the structure and the chemical species
located on the top areas of the molecule. The presence of atoms
in the lower areas is indicated with bonds that are eventually
blurred due to the lack of information. Thus, more than a problem
of the model, this reduced accuracy represents an intrinsic
limitation of the current AFM set-ups, that may be fixed by an
alternative operation mode. In this regard, a recent work58 has
shown how the limitations of AFM with bulky molecules can be
overcome with the combination of AFM imaging with Bayesian
Inference and DFT calculations in order to determine the
adsorption configurations for a known molecule. Future work
should explore whether a combination of this strategy with our
models is able to extend the molecular identification to highly-
corrugated structures.

METHODS
QUAM-AFM data set
DL models need large datasets to adjust the weights in each of
their layers. In this work, we take advantage of QUAM-AFM45, an
open-access dataset that includes simulations of theoretical AFM
images, based on the latest HR-AFM modeling approaches14,45,59,
for a collection of 686000 molecules that include 10 different
atomic species (C, H, N, P, O, S, F, Cl, Br, I). Here we provide the
main characteristics that are relevant for our study and refer the
reader to the original publication45 for details. QUAM-AFM focuses
on quasi-planar molecules, that is, molecules which display height
variations up to 183 pm along the z-axis in order to include
aliphatic chains and sp3 carbon atoms (methyl groups) as possible
side groups. Notice that this choice is consistent with our goal to
achieve a complete molecular identification, considering that,
when applying the current HR-AFM constant-height mode to 3D
structures, it is only possible to recover information for the
positions of the atoms closer to the tip, in a height range of 150
pm21. The corrugation histogram obtained from QUAM-AFM
shows that a significant fraction (73%) of the molecules are
almost flat (with corrugations smaller than 25 pm) and that 17.5%
are in the 75–125 pm corrugation range, with similar ratios of 4.3%
(5.2%) for the 25–75 pm (125–183 pm) ranges.
The contrast of AFM images taken in the FM mode with CO-metal

tips depends on parameters, such as the cantilever oscillation
amplitude or the average tip-sample distance, that can be controlled
during operation, and also on the tip nature, in particular, differences
in the attachment of the CO molecule to the metal tip that have
been consistently observed and characterized in experiments59–61. In
order to cover the widest range of variants in the AFM images,
QUAM-AFM was simulated with 6 different oscillation amplitudes of
the cantilever (40, 60, 80, 100, 120, 140 pm), 10 tip-sample distances
(280, 290, 300, 310, 320, 330, 340, 350, 360, 370 pm), an 4 values of
the elastic constant describing the tilting stiffness of the CO-metal
bond (0.40, 0.60, 0.80, 1.00 N/m). These 240 combinations are applied
to each of the molecular structures, resulting in a total of 165 million

gray-scale images with resolution 256 × 256 pixels. QUAM-AFM also
provides the ball-and-stick depictions of each molecule generated
from the atomic coordinates. These depictions share the same scale
used in the AFM images: if we superimpose the two images, each
ball of the representation is centered on the position occupied by the
atom it represents in the AFM images.

CGAN Molecular identification model
The generator for the identification of molecules through AFM
images is composed of a series of similar blocks where the main
difference is the number of kernels applied in each convolution
and the dimensions of each input (see Fig. 1a). The input consists
of a stack of 10 greyscale AFM images (a single channel). This stack
is processed in a dropout layer, with a rate of 0.5, followed by two
3D convolutional layers. The first 3D convolution includes 64
kernels, each of them has (4, 3, 3) size and is applied with a stride
of (3, 1, 1) and padding. The second 3D convolution also has 64
kernels but, in this case, the kernels have size (4, 4, 4) and are
applied with a stride of (4, 2, 2). The output of the second
convolutional layer is resized to (128,128,64) and activated with a
Leaky ReLU (LReLU) function.
From this point on, the encoder consists of seven blocks,

represented by yellow boxes in Fig. 1a. Each block includes a 2D
convolution followed by a batch normalization and a LReLU
activation function with α= 0.2. All kernels of the 2D convolution
have size (4, 4) and are applied with a stride of (2, 2). The 2D
convolutional layers have 128, 256, 512, 512, 512, 512, and 512
kernels, taking as reference the processing direction from the one
closest to the input to the one closest to the compressed
representation space. The outputs of the activations are used both
to feed the next block of the encoder and to feed the decoder
block of the same size. The generator decoder blocks, represented
by green boxes in Fig. 1a, include the following layers: a
transposed convolution, a batch normalization, a dropout layer
with rate 0.2 (only in the three layers closest to the space of the
compressed representation, see Fig. 1), a concatenation with the
output of the corresponding encoder block, and, finally, a Rectified
Linear Unit Activation Function (ReLU) activation (except for the
last block, the one closest to the output, that is activated with an
hyperbolic tangent function). The prediction of the images is done
pixel by pixel. The model predicts the three RGB components that
determine the final color of a given pixel.
The discriminator (Fig. 1b) consists of a sequence of layers,

initiated by a concatenation of all input images (note that we can
consider the 10 AFM images as a single image with 10 channels). It
is followed by a 2D convolutional layer with 64 kernels of size (4, 4)
and stride of (2, 2) activated with LReLU. Then, it has four blocks
consisting of a 2D convolutional layer, a batch normalization and a
LReLU activation (α= 0.2). The convolutions have 128, 256, 512
and 512 kernels with size (4, 4) and stride (2, 2) respectively. The
last layer is a 2D convolution with a single kernel of size (4, 4)
which is activated with the sigmoid function.

CGAN training
The 686,000 structures in QUAM-AFM have been split into
training, validation and test sets with 581,000, 24,000, and
81,000 structures respectively. The test set is chosen to be
particularly large for two reasons. Firstly, to perform a quantitative
analysis with randomly chosen structures in order to avoid an
statistical fluke. Second, it is desirable to have sufficient variety of
structures to be able to show examples that reflect the most
salient strengths and weaknesses of the model.
During training, we randomly choose one of the combinations

of AFM simulation parameters available in QUAM-AFM for each
input stack. This variability in the input data makes sure that the
parameters with which the AFM experiment has been carried
out do not play a decisive role in the success of the
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identification, prevents overfitting, and provides the model with
the ability to generalize. This variability is further enhanced with
the application of an IDG to the training set. This technique,
commonly used in DL, applies different deformations (zoom,
rotations, shifts, flips and shear) to the input images. Let’s recall
that the ball-and-stick depictions included in QUAM-AFM share
the same scale as the AFM images. Thus the IDG has to be
applied to both the input AFM images and the ball-and-stick
depiction during the training: i.e., if we rotate the input AFM
images, then, the corresponding ball-and-stick depiction must
be rotated with the same angle. Otherwise the atomic positions
of the ball-and-stick representation would not match the
corresponding atomic positions of the AFM images, and the
CGAN would not be able to learn a local translation (from the
pixel environment) between the shape and intensity of the AFM
image and the type of atom that caused it. This applies to all the
operations in the IDG except for the shear, that is not applied to
the output ball-and-stick depiction. This is motivated by the fact
that shear represents a deformation that may appear in the
experiments due to noise or tip asymmetries but it should not
be present in the prediction.
We have found that the selection of appropriate deformation

parameters for the IDG applied to the training set during the
fitting considerably increases the accuracy of the model in the test
carried out with experimental images22. An particular example of
the application of the IDG and information on the range values
used for the different operations can be found in Supplementary
Methods (Supplementary Fig. 3).
Regarding the loss functions, the generator of the CGAN was

compiled with mean absolute error (MAE) (using the parameter
λ= 100 defined by Isola et al.44), while the binary cross entropy
was used for the discriminator. The model was minimized by
applying batches of 32 inputs with the Adaptive Moment
Estimator (Adam) optimizer, where the learning rate and first
moment parameters were set to 2 × 10−4 and 0.5, respectively.
The training of the model was carried out during six epochs
(109,000 iterations), displaying 300 predictions of the validation
set to estimate the optimal training point every 10,000
iterations.

DATA AVAILABILITY
The data sets used for the training and testing of the models are part of the QUAM-
AFM data set. QUAM-AFM requires 713 Gb storage and is freely available at our
university institutional repository using the following link: https://doi.org/10.21950/
UTGMZ7.

CODE AVAILABILITY
The detailed information provided about the CGAN (layers, blocks, kernels and
activation functions) and its training is enough to recreate our model using standard
open-access libraries like TensorFlow and PyTorch.
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