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A rule-free workflow for the automated generation of
databases from scientific literature
Luke P. J. Gilligan 1,3, Matteo Cobelli 1,3, Valentin Taufour 2 and Stefano Sanvito 1✉

In recent times, transformer networks have achieved state-of-the-art performance in a wide range of natural language processing
tasks. Here we present a workflow based on the fine-tuning of BERT models for different downstream tasks, which results in the
automated extraction of structured information from unstructured natural language in scientific literature. Contrary to existing
methods for the automated extraction of structured compound-property relations from similar sources, our workflow does not rely
on the definition of intricate grammar rules. Hence, it can be adapted to a new task without requiring extensive implementation
efforts and knowledge. We test our data-extraction workflow by automatically generating a database for Curie temperatures and
one for band gaps. These are then compared with manually curated datasets and with those obtained with a state-of-the-art
rule-based method. Furthermore, in order to showcase the practical utility of the automatically extracted data in a material-design
workflow, we employ them to construct machine-learning models to predict Curie temperatures and band gaps. In general, we find
that, although more noisy, automatically extracted datasets can grow fast in volume and that such volume partially compensates
for the inaccuracy in downstream tasks.
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INTRODUCTION
Since the dawn of modern science, there has been a continuous,
exponential growth in the volume of published scientific
literature1. When related to materials science, such an abundance
of data clearly offers a wide range of possibilities and
opportunities. Materials data, in fact, can provide the foundation
for models and theories to navigate the physical/chemical space
and ultimately drive discovery. Unfortunately, access to informa-
tion from unstructured literature at such a massive scale presents
significant technical and practical challenges. As a result, in
general, curated databases are scarce and often limited to
theoretical data only. This is because for theory data, one does
not need to exploit the literature, but simply run highly
standardized first-principles calculations, which are amenable to
automated collection2–5. Importantly, large-scale theoretical data-
sets have been proven to be a revolutionary tool in the search for
new materials with unique properties and for the discovery of
intricate materials trends. For instance, they have been used to
predict the existence of novel magnets6, to identify materials
regions favorable to superconductivity7, to design novel high-
entropy alloys8, to identify low-thermal-conductivity compounds9,
or to predict the zT thermoelectric figure of merit in inorganic
materials10, just to name a few examples. Furthermore, theory
datasets have been a platform for constructing machine learning
(ML) models with enhanced throughput11–13.
Although no calculation can replace an experiment, databases

containing experimental results are much rarer and typically
smaller. In general, these are extremely labor-intensive to
generate, since the information is not directly collated at the
laboratories but needs to be mined from the published literature.
As a consequence, experimental databases are not comprehensive
but usually list only a handful of properties for each compound,
such as the crystal14–16 or magnetic structure17. Furthermore, they
update slowly and, given the effort needed to construct them,

they are often proprietary in nature, despite the efforts of some
open-access initiatives14,17. Thus, the existing landscape of
experimental datasets is incomplete and fragmented, and most
of the known experimental results remain accessible only through
unstructured scientific literature.
This is a serious drawback for materials innovation, not only

because experimental data corresponds to reality but also
because experimental data may often contain information
inaccessible to simulations or may be located where simulations
are prohibitive or highly inaccurate. It is also important to note
that typical ML models for property predictions are often very
data-hungry, so the absence of large datasets of experimental
data precludes their formulation. Still, there have been a few
successful examples of the use of experimental data only to
construct ML predictors and classifiers for materials properties18–20

and examples of transfer-learning between theoretical and
experimental data21. These suggest that the creation of structured
experimental databases may represent a significant asset in
materials design.
Given the large volume of literature regularly published, this

appears to be a daunting task. In order to understand the scale of
the problem, consider that there are 231 journals listed in the
‘materials science and engineering’ category of the Clarivate
Master Journal List (mjl.clarivate.com/home). If the average
number of articles published yearly in a journal is ~1000, we will
have about a quarter of a million articles with material information
published per year. Clearly, experimental databases of such
capacity cannot be curated with laborious manual methods,
indicating that automatization is the only way possible. The
current state-of-the-art method for automatizing the data-
extraction process from literature is ChemDataExtractor22. Chem-
DataExtractor relies upon rules-based text parsing coupled with
conditional random fields for named entity recognition (NER)23.
Hence, the performance of a new model depends on the ability of
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the user to adequately define rules. Furthermore, since different
quantities can be described by natural language in structurally
different ways, every new extraction task requires the user to
define new grammatical and syntactic rules. These features make
the process still labor-intensive and reduce the large-scale
deployment of such methods.
In recent years, significant progress has been made in

constructing tools that improve our ability to automate further
this extraction procedure. Textual representations that are suitable
for advanced, context-aware, natural language processing (NLP)
have long been a focus of research in this domain. Simple
representations such as one-hot encoding of dictionaries of
vocabulary, bag of words models, or statistical representations
weighting the importance of certain terms over others, such as
term frequency-inverse document frequency (TF-IDF)24, have been
the go-to representations for many of the more conventional NLP
tasks. For instance, they have been successfully used in sentiment
analysis or simple classification tasks. These representations are
still adequate for handling large-scale texts with simple models.
However, in order to operate on a level at which the extracted
individual terms or sentences are processed accurately, we must
turn to more sophisticated methods of representation.
Word embedding naturally follows as a viable candidate for

such applications. These are textual representations that aim to
describe words in a vocabulary as vectors in a high-dimensional
vector space. In this space, the similarity between words is
captured by the projection of one such vector onto the other.
There are numerous algorithms to learn embeddings from a
corpus of documents. Examples of the most widely used
algorithms are word2vec25 and GloVe26, models that have also
been used for scientific text embedding. For instance, the
word2vec algorithm was used by the Materials Genome Initiative
to train a domain-specific materials science embedded represen-
tation27. This embedding was demonstrated to exhibit a good
knowledge of the chemical space, and insights into the physical
properties of materials could even be extracted from purely text-
based representations trained on scientific literature alone.
Transformer networks elaborate on these ideas and are the

current state of the art in the representation of natural language28.
The core concept of a transformer network is the use of self-
attention to capture the syntactic interdependencies between
words, meaning that these networks exhibit a superior ability to
parse the context in which a term appears in a sentence. Arguably,
one of the most prevalent transformer-based models for NLP is
the Bidirectional Encoder Representations from Transformers
(BERT), a large-scale architecture with several hundred million
tuneable parameters29. Since its conception in 2018, BERT has
rapidly become the language platform for models in many NLP
applications, achieving state-of-the-art performance across a
range of benchmarks30,31. Furthermore, there have been a number
of BERT architectures adapted to outperform the conventional
BERT model in various disparate NLP domains, including but not
limited to the fields of general scientific literature32, financial
sentiment analysis33, and biomedical text-mining34. There is also a
previously fine-tuned architecture for the field of materials
science, called MatSciBERT35, which is one of the pre-trained
architectures we have employed in this work.
Currently, much focus is being placed on the use of

autoregressive large language models, as a means of achieving
state-of-the-art performance in a large variety of natural language
tasks. While these models are giving promising results, there are
some significant drawbacks associated with their use. Firstly, their
size imposes heavy hardware requirements at inference time and
even larger requirements for fine-tuning. It is possible to use
services provided by private companies, such as OpenAI, to have
access to these models through API. However, the fees can
become prohibitive for the large number of prompts needed by
an information-extraction workflow. It is also worth considering

that for such large generative language models, there is little to no
ecosystem of domain-specific pre-training, a feature of the BERT
architectures. Indeed, non-domain-specific generative models
have not been shown to be superior to domain-specific BERTs
in the field of material science. Finally, generative models are
known to “hallucinate", meaning that they currently have a
tendency to make up false information in the generated text.
When processing large amounts of data, it is impossible to verify
that a generative model has not manufactured some of the data in
the resulting database. This is a particularly critical problem in the
context of the automatic generation of databases, since each
entry is required to be reliably linked to its source. Common
strategies to limit the effects of hallucinations include iteratively
prompting to double-check the output. However, these
approaches rapidly increase the number of tokens passed as
prompt, hence the computation time and/or the API access cost
for each extraction. For these reasons, we believe that an
information-extraction workflow based on domain-specific BERT
can be useful for the community, since it can be deployed and
fine-tuned on commonly available hardware.
In this work, we introduce a rule-free workflow for the

automatic extraction of information from scientific literature. The
extraction is performed by mean of a sequence of BERT models
finely tuned on specific downstream tasks. The superior contextual
awareness of the BERT representation allows the necessary
grammatical and syntactic rules for extraction to be learnt by
the transformer model from a sample of labeled text. Thus, the
text labeling step now substitutes the design of a rule-based
grammar and it does not require any previous knowledge of
natural language processing or coding to develop new extraction
procedures. This is enabled by our self-contained literature-to-
structured-properties database pipeline, which is here named
BERT Precise Scientific Information Extractor (BERT-PSIE). More-
over, by leveraging the transfer-learning capabilities of BERT
models, the convergence in performance on the downstream
tasks is reached with a relatively small training set of labeled text.
Each entry of the database generated by BERT-PSIE can be linked
to a specific source without any possibility of hallucination, since
all the language models used are trained for classification tasks
and not used in a generative setting. Note that the work
presented here is capable of extracting data only from text, but
not from tables or images. An expansion of our capabilities to
forms of information dissemination different from text is highly
desirable and will be subject of future work.
Value has been already demonstrated for databases automati-

cally generated with previously developed schemes, providing
useful insights into a range of physical and chemical properties of
compounds36–38. More recently, there have also been several
inroads made in the development of transformers for materials
science applications39,40. However, all these attempts present a
common shortcoming. Namely, when validating the quality of the
dataset automatically generated by NLP methods, one does not
have available a reference set of manually curated entries to
compare with. This means that the automatically generated
datasets cannot be tested against an established ground truth
reference. This issue is addressed here by choosing the properties
for which we can obtain a manually curated dataset. The first of
these properties is the Curie temperature, TC, for which we avail of
the combined manually curated databases from Nelson et al.18

and Byland et al.41, and of one automatically generated using
ChemDataExtractor42. The second such property is the electronic
band gap, for which has a manually curated dataset aggregated
by Zhuo et al.20. We will show that with a modest amount of
labeled data, it is possible to train models that have performance
on par with the state-of-the-art rule-based methods. Furthermore,
we demonstrate that the automatically generated data can be
used to construct both TC and band gap predictors, such that they
can already be used for predicting material properties.
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We believe that the extensive and rigorous set of benchmarks,
introduced in this work should be taken as a standard in the
proposal of novel extraction models. This will enable a thorough
comparison highlighting strengths and weaknesses, a comparison
that appears increasingly necessary as the deployment of
large language models in materials science becomes more
widespread43,44.

RESULTS
BERT-PSIE Structure
In this section, we discuss the performance of the NLP workflow
implemented in BERT-PSIE for the automated extraction of
structured data from scientific literature. BERT-PSIE is based on
the concatenation of different BERT models, fine-tuned to perform
the specific tasks necessary for the text-mining pipeline. Our
designed workflow can be adapted to the extraction of any
binary-related information and can potentially be extended to
more complex form relations. In this work, we focus on mining the
TC of ferromagnets and the electronic band gap of semiconduc-
tors/insulators because of the availability of manually curated
databases, which can be used as ground truth in assessing
performance.
It is certainly true that the extraction of inter-related properties

(for instance, a materials property may depend on the experi-
mental temperature) can be more complex, but these are difficult
to benchmark because of the lack of manually curated datasets. In
such case, the extraction should provide the compound and all
the inter-related quantities, simultaneously. The fact that
BERT-PSIE works at the sentence-level may pose a limit to this,
since the different information may be contained in different
sentences. Strategies to overcome such limitations certainly
deserve future work.
The structure of our entire workflow can be appreciated by

looking at the scheme in Fig. 1. Papers are downloaded from the
web by using a keyword-based search with the Crossref REST API
(api.crossref.org). A classifier identifies the relevant sentences from

the downloaded corpus, and a Named Entity Recognition (NER)
module extracts material-property relations from sentences
containing single unambiguous relations. Note that sentences
containing a single entity only, either the compound or the
property, are discarded. Then, a second module performs relation
classification for sentences where multiple mentions of com-
pounds and/or material’s properties are present. The material-
property relations extracted then form the database.
Results are now presented for the entire workflow. In each of

the following sections, we will first consider the database of Curie
temperatures extracted with BERT-PSIE and then the database of
electronic band gaps. Firstly, we discuss the performance
(precision, recall, and F1 score) achieved by the three main
modules. Then, we compare the automatically extracted database
with our manually curated ones18,41,20 and those created with
ChemDataExtractor42. Finally, we will evaluate the performance of
this database in the screening for magnetic compounds by
training ML models to predict the property in question.

BERT models fine-tuning
Let us discuss the Curie temperature database first. The evaluation
metrics for the sentence-level relevancy classifier are presented in
the upper row of Table 1. Precision, P, and recall, R, are both above
0.8, indicating high-level model performance on the test data.
Care was taken to ensure that the training data was as
representative as possible of the literature. However, similarities
in the syntactic structure reporting a temperature value are
unavoidable, a fact that increases the level of noise in the
extracted data. For example, consider the sentence ‘Barium
titanate (BaTiO3) is a ferroelectric with a Curie temperature of
120 ∘C’. In this case, ‘Curie temperature’ refers to a paraelectric-
ferroelectric transition and not to ferromagnetism, but the
syntactic structure is almost identical to what was found when
describing the magnetic TC. Such ambiguity can also be found in
constructions such as ‘The melting temperature of a compound
marks the solid-liquid phase transition. This critical temperature
for Fe is 1538 ∘C’. Since the classification is performed at the

°
°

°
°

Fig. 1 Schematic diagram of the BERT-PSIE pipeline for the automated extraction of compound-property pairs from the scientific
literature. The workflow relies on the combination of BERT models fine-tuned for different downstream tasks such as sentence classification,
named entity recognition, and relation classification. Here we use the Curie temperature as an example. See text for more details.
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sentence level, the content of ‘This critical temperature for Fe is
1538 ∘C’ is evaluated independently from that of the preceding
sentence. Then, it is expected to be erroneously classified. These
limitations are inherent to working at the sentence level, and
further effort is needed in order to resolve the issue effectively.
Here, we mitigate the drawback by selectively analyzing scientific
texts taken from the magnetism subject area.
The second row of Table 1 presents the results for the named

entity-recognition step of our automated extraction pipeline. The
precision, recall, and F1 score of both the classified entities,
compound and Curie temperature, are all consistently very high,
indicating an excellent performance of the BERT model for token
classification. This allows us to extract mentions of compounds
and Curie temperatures from the sentences identified using the
sentence-level relevancy classifier. Furthermore, given the
context-aware nature of BERT-based language models, similar
entities can be discriminated against, based on the syntactic and
grammatical context in which they appear. In practice, our BERT
model can, for the most part, differentiate between temperatures
generally and those specifically mentioning critical temperatures.
It should be noted, however, that this context-awareness suffers
the same weakness as mentioned above in being limited in its
ability to differentiate between different types of critical
temperatures relating to phase transitions. Regardless, it performs
excellently for the purpose of recognizing both compounds and
Curie temperatures.
Relationship extraction has proved to be the most challenging

task in our pipeline due to the sheer quantity of potential
combinations of words in various syntactic structures. This also
constitutes the major challenge when defining rule-based
grammar constructions for methods such as ChemDataExtractor.
The last row of Table 1 summarizes the key evaluation metrics for
the BERT relationship-extraction model. Although this is the
module presenting the lowest scores, the model still exhibits
reasonably good performance and, therefore, it is useful to
associate the correct compound-property pairs, thus improving
the quality of the final database. In the remainder of this section,
different alternative schemes for associating compounds and
properties are compared with this relations classifier system.
Furthermore, we will discuss the effect of considering Curie
temperature values taken from phrases with multiple compound-
property mentions on the integrity of the final extracted database.
Given the good performance of the three modules, a pipeline is

constructed to automate the extraction of property values from
unstructured literature. Approximately 180,000 full-text XML
papers have been downloaded and split into lists of sentences.
These sentences are subsequently run through the sentence-
relevancy classifier, yielding a total of ~55,000 sentences
considered relevant. Here, a sentence will be relevant, if it is
likely to contain a Curie temperature mention. The resulting
sentence list is passed through the named entity recognition

system (NER-BERT). Sentences containing a single mention of a
Curie temperature and a single compound are directly added to
the database. When the sentences contain multiple references of
compounds and/or Curie temperatures, then a list of sentences
with all the possible pairs of entity mentions is built. These are
then classified with the relationship classification BERT model. The
compound/property pair predicted by the model to be correct is
then added to the database.
The data extracted is subsequently post-processed by scaling all

the temperatures to units of Kelvin and by filtering out
compositions that could not be expressed as a combination of
chemical elements (i.e., commercial or colloquial names for
compounds). All chemical formulas are scaled to have normalized
integer coefficients (e.g., Ga0.5Fe2.5O4 becomes GaFe5O8). The final
extraction has given us a database containing 3518 distinct
compound-property entries together with their digital object
identifiers (DOI).
The same workflow is then executed for the case of the

electronic band gap extraction task, and the performance metrics
of each of the steps in our pipeline are summarized in Table 2. The
performance of the sentence-level classifier, first row, is indeed
excellent on the test set, with a perfect recall and a slightly lower
precision at 0.95. These metrics are even higher than those found
for the Curie temperature and indicate an almost perfect ability to
differentiate between sentences that contain or do not contain
information about the band gap of a compound. It is assumed
that the superior performance of this classifier, even with fewer
training examples, is due to the reduction in ambiguity in
reporting band gaps, when compared to the likely similarities in
syntactic structures that result from the reporting of critical
temperatures. Similarly, the NER step consistently remains very
performant, with a high precision, recall, and F1 score. Finally, we
find that the relationship-extraction step for the case of the band
gap outperforms significantly that of the Curie temperature. This is
believed, once again, to be related to the more consistent way in
which band gaps tend to be reported within the scientific
literature, with the sentence structures generally more formulaic
than in the case of Curie temperature mentions. This hypothesis is
further highlighted by the improved performance of extraction
methods relying on the rule associating compounds with band
gaps based on the order in which they appear in the sentence.
This enhancement in performance can be seen in Table 5 and is
discussed further in Section II E.
In this case, ~77,000 papers have been downloaded for the

band gap extraction and split into lists of sentences. Running the
sentence-level classifier yields a dataset of ~126,000 sentences
deemed likely to contain a band gap. The post-processing steps
are performed as previously described, scaling all units to eV in
this case, yielding a final database of 2090 unique compound-
property relationships.

Table 2. Performance of the three modules developed for the band
gap extraction: the sentence-level relevancy classifier, the NER, and the
relation classifier.

Model Entity P R F1 Support TrS TeS

Classifier 0.95 1.00 0.97 404 134

NER Chem 0.80 0.96 0.87 1166 4000 1000

Band Gap 0.78 0.97 0.87 119

Relation 0.88 0.88 0.88 300 80

Results are presented for the test sets. Here we report: precision, P, recall, R,
and F1 scores. The size of the test (TeS) and training (TrS) sets are also given
(number of sentences used). For the case of NER, we report results for both
chemical entities (Chem) and TC, as well as the support.

Table 1. Performance of the three modules developed for the Curie
temperature extraction: the sentence-level relevancy classifier, the
NER, and the relation classifier.

Model Entity P R F1 Support TrS TeS

Classifier 0.83 0.80 0.81 3941 801

NER Chem 0.92 0.86 0.89 754 1769 168

TC 0.97 0.81 0.88 42

Relation 0.72 0.64 0.68 200 50

Results are presented for the test sets. Here we report: precision, P, recall, R,
and F1 score. The size of the test (TeS) and training (TrS) sets are also given
(number of sentences used). For the case of NER, we report results for both
chemical entities (Chem) and TC, as well as the support.
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Comparison with rule-based methods
We now compare the performance of our BERT-PSIE workflow
with the state of the art of rule-based methods. The test has been
designed following the approach introduced in references42,45

and conduced over 200 manually annotated abstracts for both the
compound-Curie temperature and compound-band gap extrac-
tion (200 each). The abstracts are taken from the arXiv dataset46

by running a keyword search on a sample of unused entries in the
database. This means that the content of the test corpus has not
been already included in any other sets used to construct
BERT-PSIE. For the TC the keyword used for the search is ‘Curie’,
but we exclude abstracts containing the term ‘Weiss’. In contrast,
the band-gap corpus is constructed using a keyword search for
abstracts containing any of the terms ‘band gap’, ‘band-gap’, or
‘bandgap’, alongside the term ‘eV’. Random abstracts are sampled
from the resulting corpus to yield a dataset of 200 for both cases.
This selection has the aim to increase the number of positive
extraction targets (support).
Both BERT-PSIE and ChemDataExtractor are run on this test set.

A record in the extracted database will be deemed true-positive
only if all entities in the target compound-property pair are
present and matched to the manual annotation. The number of
true positives, false positives, and false negatives for the extraction
tasks are manually counted for each property extraction, allowing
for the calculation of the precision, recall, and F1 score for each
model. The ChemDataExtractor model for the extraction of Curie
temperature came from the same rule-based pipeline reported in
ref. 42. It has not been possible to include the snowball model of
this extraction pipeline to make it fully hybrid, as the model used
in the work is not readily available. In the case of the band-gap
extraction with ChemDataExtractor, however, the full hybrid
extraction is performed using the model from ref. 45. The results
of this comparison are presented in Table 3.
From the table, it is clear that the precision of both models is

very consistent across both quantities, with the full BERT-PSIE
pipeline slightly outperforming the hybrid ChemDataExtractor
model in the case of the band-gap extraction. In order to isolate
the impact of the relationship-extraction module and to estimate
the amount of noise that this introduces, we also consider the
case where we only extract data from sentences containing a
single compound-property relationship. This means excluding
sentences where multiple TC’s are associated with a list of
compounds, sentences that are prone to intrinsic ambiguity, since,
in natural language there are many different semantic ways to
relate two lists of quantities. We denominate this case as ‘single
mentions’, for which we observe a significant increase in the
extraction precision. However, this gain in precision is compen-
sated for by a severe reduction in the recall, thereby reducing the
overall F1 score. The BERT-PSIE pipeline results are more selective

in the data extracted, as any potential contextual ambiguity in
reporting a given value is far more likely to deter a context-based
system than a rules-based one. This fact results in a general
decrease in the BERT-PSIE recall, when compared to the rules-
based and hybrid pipeline. One can then argue that recall is
generally a less important metric for the fidelity or usefulness of
the resulting database. This point is further investigated by
introducing additional metrics measuring the real-use case of the
extracted data. Their goal is to evaluate the usefulness of the
resulting automatically generated database. This discussion is
reported in sections II E and II F.
The final evaluation for both targets, is performed over the

combination of the values extracted with BERT-PSIE and
ChemDataExtractor (last row of Table 3). This returns a sharp
increase in the recall when compared with either of the methods.
The implication of this result is that the rules-based pipeline and
the BERT-based pipeline have different strengths in extracting
quantities. In fact, the distinct increase in recall implies that there
is quite a little overlap in the quantities extracted by the two
methods. Then, the reduction in precision relative to the individual
BERT-PSIE and ChemDataExtractor is a consequence of both the
true-positive entries in common to the two methods are not
doubly counted, but any incorrectly extracted values are added to
the total database. This leads to an increase in the false positives
relative to the true ones, and hence a reduction of the total
precision.

Extraction performance and database structure
For this section, our discussion begins with the case of the Curie
temperature extraction. Evaluating the metrics (precision, recall,
and F1 score) of a data-extraction method provides only limited
information on its performance in that it gives only general
indications of the quality. Clearly, the ultimate test is set by its
success in the extraction task it has been designed for, namely by
the quality of the data extracted and by their potential use in
downstream tasks (e.g., the construction of ML models). Perform-
ing such an assessment is generally challenging since one lacks
manually curated data that are difficult to assemble because of
the elevated time investment involved. In our case, the situation is
much more favorable, since we can compare our automatically
extracted data with manually curated databases from various
sources. In the case of the Curie temperatures, we avail of the
database of Nelson et al.18. This dataset has been created by
aggregating the AtomWork database47, Springer Materials48, the
Handbook of Magnetic Materials49 and the book Magnetism and
Magnetic Materials.50. Nelson’s database is then combined with
TC values from a dataset manually aggregated by Byland et al.41,
which is mainly focused on, although not limited to, Co-containing
compounds. Thus, this combined database is considered to be our
ground truth, which amounts to 3,638 unique ferromagnetic
compounds and their associated Curie temperatures.
Our results are also compared with a second database, namely

the one obtained by combining the rules-based ChemDataEx-
tractor scheme with a semi-supervised snowball algorithm42. At
this point, it is important to remark that the two automatic-
extracted databases are based on a rather similar corpus of
papers, namely those obtained with a keyword search from
Crossref. This search includes relatively recent articles and
information is extracted only from the text. In contrast, the
database of Nelson et al. is largely based on data reported in
tables and includes much historical information (results published
as early as the fifties). Despite the similarity in their respective
corpora, however, the BERT-PSIE and ChemDataExtractor data-
bases, of several thousand data points each, present a remarkably
small overlap of only 694 compounds. Of similar size is the overlap
between the automated and manual datasets of 687 compounds
for BERT-PSIE vs manually curated and 595 for ChemDataExtractor

Table 3. Performance of the extraction carried by BERT-PSIE and the
rule-based ChemDataExtractor performed on the same corpus.

TC Band gap

Model P R F1 P R F1
ChemDataExtractor 0.67 0.49 0.56 0.68 0.55 0.61

Single Mentions 0.82 0.20 0.32 0.78 0.23 0.35

BERT-PSIE 0.67 0.31 0.42 0.70 0.40 0.51

BERT-PSIE + ChemDataExtractor 0.64 0.64 0.64 0.63 0.72 0.67

The comparison is executed on 200 annotated abstracts for each one of
the tasks, namely the TC and band-gap extraction. The precision, recall, and
F1 score are presented for BERT-PSIE (single mentions only and the full
pipeline), ChemDataExtractor, and the combination of the two methods.
The manually annotated datasets have a support of 45 entries for TC and
109 entries for the band gap.
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vs manually curated. Overall the three datasets (BERT-PSIE,
ChemDataExtractor, and the manually curated one) share only
262 compounds. All comparisons performed in this section are
made by taking the median Curie temperature value for
compounds that contain multiple entries for each dataset.
Before going into the details of the comparison, we observe that

a significant source of error is associated with elemental compounds
(e.g., Fe, Co, Ni, Gd, etc.), where the error is the variance of the
extracted TC compared with our ground truth. This is due to the
general difficulty of the NER in differentiating between an elemental
compound and an element used as a dopant in an otherwise non-
magnetic material (e.g., bulk Mn vs Mn-doped GaAs). As dopants
can appear in a multitude of concentrations and in a large variety of
hosts, erroneous assignments may result in a large spread in the
distribution of the temperatures collated. With this exception, the
distributions of Curie temperatures across the different databases
are in very good agreement with each other, as one can see in the
top panel of Fig. 2. The agreement is particularly close between our
automatically extracted dataset and the one constructed with
ChemDataExtractor, but both present a peak in the distribution at
around room temperature, which is absent in the manually curated
one. There are two possible reasons behind this feature: either there

is a bias in the most recent literature towards critical temperatures
close to 300 K, or errors in the model aggregate TC values close to
ambient temperature. In support of the second hypothesis, it is
worth recalling that mentions of room temperature feature heavily
in sentences containing the target information, even if the room
temperature is not the target temperature. An example of this
situation is the sentence: ‘The magnetization curve at 300 K was
obtained and the Curie temperature was determined by TGA under
a magnetic field, yielding a Curie temperature of 1043 K for Fe.’
Despite these differences, the still good similarity between the Curie
temperature distributions indicates that the relative abundance of
high- and low-temperature ferromagnetic materials has been
adequately captured by our automated extraction technique
without the need for complex grammar-rule definitions.
Further understanding can be achieved by looking at the

relative elemental abundance across the unique compounds
present in a given database (the frequency at which a particular
element appears in the database). This is shown in the lower panel
of Fig. 2, again for all three datasets. As expected, the largest
abundances are found for the magnetic transition metals, some of
the rare earths, and oxygen, a feature shared by all databases and
corresponding to the actual elemental distribution among

Fig. 2 Comparison between the content of the different databases: (red box) BERT-PSIE, (blue box) ChemDataExtractor, and (green box)
the manually extracted database of ref. 18. a Normalized distribution of the Curie temperatures extracted. A peak is visible in the distribution
of ~300 K in both the autonomously extracted databases, which is not seen in the manually extracted one. b Relative elemental abundance
across the compounds present in a database. Although there is general agreement among the three databases, additional peaks are observed
for various elements in the case of automatically extracted data, which are not present in the manually curated dataset. The most severe of
these discrepancies is in the relative abundance of Mn- and O-containing compounds. Note that the automatically extracted datasets and the
manually curated ones are based on different literature libraries.
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magnets. More interestingly, it appears that the automatically
compiled databases overestimate the presence of Mn and O and
that of di- and tri-valent alkali metals (Ca, Ba, Sr, and La). Such an
overestimate with respect to the manually extracted dataset is
significantly more pronounced for the ChemDataExtractor data
than for the ones obtained with our workflow. It is likely that such
a difference in distributions is mainly attributable to the data
primary sources, which are different in the case of manually and
automatically curated datasets. In particular, the most recent
literature used in our extraction and in that performed by
ChemDataExtractor, contains many entries related to Ca-, Ba-,
Sr- and La-containing perovskites (e.g., manganites).
The influence of the primary data source on the final dataset is

further confirmed by comparing the TC distributions of com-
pounds containing the 25 most common elements, which is
presented in Fig. 3. Generally, there is excellent agreement
between the distributions of the two automatically extracted
datasets, which contain entries extracted from similar sources.
Then, BERT-PSIE generally captures a similar distribution to the
manually extracted values, although there are evident discrepan-
cies for certain elements. This may be an indication of the

historical change in research focus between the sources used for
the ground truth compared with the sources for the automatically
extracted cases.
A similar study, with similar results, is performed on the

distribution of the extracted band gaps, which can be found in the
Supplementary Information (SI) (see Supplementary Fig. 3). As for
the case of the Curie temperatures, we find strong similarities
between our database and the one obtained from ChemDataEx-
tractor, but both present some level of disagreement with the
manually curated one. We now discuss the origin of such
disagreement by looking at the extracted band-gap distributions,
see Fig. 4, of the five most common chemical formulas in the
database, namely ZnO, TiO2, C, MoS2, and Si. The most interesting
feature is that while there is a spread of band-gap values for all
five compounds, these are not uniformly distributed. In contrast,
the band gap densities seem to have a clear peak structure, with
multiple high-frequency values appearing. This can be attributed
to different means of obtaining the band gap of a material
(experimental optical, experimental transport, theory, etc.), and to
different polytypes, structures, or dopant-varied compounds.

Fig. 3 Comparison between the TC distributions of compounds containing the most common elements found in ferromagnets. The violin
plots display the TC distribution of the compounds containing specific elements in the dataset automatically generated with BERT-PSIE (red)
and ChemDataExtractor (blue), and in the manually curated ground truth (green). Only the most common elements appearing in the datasets
are displayed here. The dots show the median of each distribution.

Fig. 4 The distribution of band-gap values for the five most common chemical formulas found in the database of band-gaps generated
by BERT-PSIE. The histograms report the relative abundance, while dashed lines indicate gap energies corresponding to specific experimental
measurements or theoretical calculations.
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Going into more detail, consider first the case of ZnO in Fig. 4a.
In the distribution, we find three clearly visible peaks, which are
easily associated with the experimental bulk band gap (3.37 eV51),
the density-functional-theory (DFT) calculated one for bulk ZnO
(0.73 eV51 for PBE-GGA) and the DFT-calculated one for monolayer
ZnO (1.69 eV52 again PBE-GGA). A similar situation is encountered
for Si in Fig. 4e, where the two main peaks are attributed to the
experimental bulk indirect gap (1.1 eV53) and the one returned by
DFT simulations (0.61 eV2, PBE-GGA). A different situation is then
encountered for TiO2 in Fig. 4b, where the two main dominant
peaks both correspond to experimental gaps, but they are for two
different polymorphs, namely anatase (3.2 eV) and rutile (3.0 eV)54.
Finally, MoS2 and C in Fig. 4d, c display more complexity. In the
first case, we find three dominant peaks. In fact, together with the
experimental bulk indirect band gap of 1.29 eV55, many mentions
in the literature concern the experimental band gap of the
monolayer form of MoS2 (1.8 eV56) and the DFT estimate of the

same (1.67 eV57, PBE-GGA). Carbon, in contrast, deserves attention
on its own since a large variety of polymorphs is possible. In fact,
the distribution shows a clear peak for semimetal graphene58 and
one for the bulk diamond structure (5.47 eV59). Then, there is a
uniformly distributed region, which is characterized by band gap
values associated with carbon buckminsterfullerenes, C60. This
extends over the 1.5–2.7 eV range, and has a clear peak at the DFT
value of 1.09 eV (PBE-GGA)60.

Database quality for downstream tasks: Curie temperature
The quality of a material-property database can be quantified in
terms of its usefulness for material design. Once again, we start
the discussion from the Curie temperatures, by first assessing that
the returned value to a query related to a compound present in
the database is reliable. To achieve this goal, we have designed a
‘query test’ comparing the Curie temperatures automatically
extracted with the one present in our reference manually
extracted dataset. In order to make the comparison between
our database and the ChemDataExtractor-generated one not
dependent on the particular class of compounds extracted, we
only compare entries that are shared by all the datasets (262
compounds). The query test results for BERT-PSIE are reported in
Fig. 5, while the performance metrics for the different datasets are
summarized on the left-hand side of Table 4.
As mentioned before, the most challenging step in our

extraction workflow is the relation-classification step. In order to
evaluate the performance of our model for relation classification, a
variety of additional extraction strategies have been attempted
and compared against the ground truth dataset. The first of these
strategies involves, as before, taking only the ‘single-mention’
results extracted from sentences containing only a single mention
of a compound and a single mention of a Curie temperature value.
In this case, we assume that the two entity mentions are related to
each other, thus removing the need for any relation-assignment
step (‘Single Mention’ in Table 4). The second strategy imposes a
rule that associates compound/value pairs based on the order in
which they appeared in the text (‘Order of Appearance’ in Table 4).
Finally, we have taken every possible combination of compound/
value pairs in order to compare our results with random
associations (‘All Combinations’ in Table 4). This choice corre-
sponds to a relation-classifier model that always outputs a positive
classification. Table 4 is complemented by results obtained with
our constructed BERT classifier (‘BERT-PSIE’), with the data
extracted by ChemDataExtractor and by aggregating these last
two datasets (‘ChemDataExtractor + BERT-PSIE’).
As can be seen from Table 4, all of the datasets compiled with

our rule-free pipeline have metrics comparable to those of
ChemDataExtractor, and the one constructed with BERT-PSIE
appears to be the best-performing on almost all the query-test
metrics. In particular, BERT-PSIE returns the best R2 coefficient of
0.81 and root mean squared error (RMSE) of 126 K. Interestingly,
BERT-PSIE gives us a mean absolute error (MAE) slightly larger
than that obtained with ChemDataExtractor. This suggests that
BERT-PSIE achieves an accuracy on-par with ChemDataExtractor
(the two produce datasets equally similar to the manually curated
one), but it is slightly less prone to display large outliers. Note,
however, that the notion of an outlier and its relevance to the
overall performance of a method need to be taken with some
caution in this query test. In fact, if the TC of a compound is
erroneously extracted (the ML model extracts the wrong
temperature), there is no particular advantage of having the
wrong TC close to the real one. This point can be better
understood by looking at the parity plot in Fig. 5, where entries
are either on the parity line (exact extraction) or away from it
without any particular correlation with the actual TC value
(erroneous extraction).

Fig. 5 Query-test for the BERT-PSIE-generated TC dataset.
a Comparison between the TC queried in the dataset automatically
generated by BERT-PSIE and the values contained in the manually
curated dataset. The comparison is performed over the 262
compounds that are shared by all datasets examined in this work.
The median value is returned whenever multiple TC values are
collected for a given compound. b The same comparison is
performed on the dataset resulting by combining the one
generated by BERT-PSIE and the one generated by
ChemDataExtractor.
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In any case, the fact that BERT-PSIE performs better than any
other BERT-based models using different relation-classifier strate-
gies demonstrates that the inclusion of a context-aware mean of
extracting compound-value pairs from literature is advantageous.
Unfortunately, this is not a massive improvement, since the
metrics are rather close to those obtained by considering
randomized combinations of all possible compound-value pairs
(‘All Combinations’). Indeed, more sophisticated methods to
establish the correct compound-property associations will help
in producing a better-automated dataset.
Our second test probes the ability of a given data-extraction

strategy to create datasets of sufficient quality to enable the
construction of predictive ML models. In practice, we want to
establish whether the data extracted can be the platform for
models that predict the TC of unseen compounds. In particular, we
target compositional models, namely ML algorithms using
information directly accessible from the chemical composition of
a given compound as features. For the case of the Curie
temperature associated with the ferromagnetic transition, in fact,
it has been shown that compositional models can achieve good
performance if trained on manually curated data18 (note that the
model mentioned does not describe other magnetic phases, e.g.,
antiferromagnetic structures). In order to test the ability of a
dataset to function as a reliable data platform for ML models, we
train on each automatically generated dataset a random forest
(RF) model that takes as input compositional features, as done in
refs. 18,61. We have chosen the same input features for all the RF
models trained, since, in all the cases considered, we have not
observed any improvement when adding more features. We then
compare the predictions on a set of compounds that are not
present in the training set with the values extracted manually from
the literature. For this test, we consider predictions over 2623
compounds for which we have a manually extracted TC that does
not appear in any of the datasets automatically extracted. With
this choice, both our tests are performed on the same compounds
for all the datasets considered. For compounds with multiple
values of extracted TC, the median value of the collated results is
taken as the associated Curie temperature, according to the
procedure introduced in ref. 18. We have also tested other
summary statistics, such as the mean and the mode, without
finding any significant difference in the results.
Again the results of our test are reported in Table 4 (right-hand

side), where one can clearly see that BERT-based extraction
workflows perform rather similarly to the established rule-based
method. In particular, the full workflow, BERT-PSIE, has an R2

identical to that obtained by ChemDataExtract, with a better RMSE
but worse MAE, we observe for this second test a result similar to

that found for the query test. Most interestingly, we find that the
inclusion of entries extracted in conjunction with the relations-
classification step in the database does not improve the
performance of the predictor. In fact, using single mentions only
returns us the better R2 value of 0.66 and an RMSE of 174 K, while
BERT-PSIE gives us a slightly degraded R2 at 0.65 and an identical
RMSE, although it slightly improves the MAE (by ~2 K). This is
possibly due to the fact that the inclusion of the entries from
multiple mentions inherently adds noise to the database. Thus,
despite the fact that the model can be trained over a much larger
dataset, no significant improvement is detected.
The parity plot of our best RF model trained on the full BERT-

PSIE dataset is presented in Fig. 6. In general, the TC trends are
captured, but it is also clear that the model is significantly inferior
to that presented in ref. 18, which reports a MAE of 57 K. This is
roughly a factor of two smaller than the 126 K obtained for a
random forest model trained on the data extracted with BERT-
PSIE. Although this can be partially attributed to noise in the data,
for instance, to the likely presence in the BERT-PSIE dataset of
critical temperature associated with antiferromagnets, one also
has to consider that the data used in ref. 18 were highly curated
even after the collection. For example, additional data on
paramagnets was included to improve the low-temperature part
of the distribution, while data corresponding to different
concentrations of metallic alloys was selectively excluded to
better balance the chemical distribution. All these post-processing
steps were not performed here, since our task is simply that of
assessing the quality of the automatically compiled dataset. In
fact, one expects that automatically constructed datasets can
reach sizes large enough for such post-processing steps to not be
necessary.
Given the fact that the overlap between our BERT-PSIE dataset

and the one generated by ChemDataExtractor consists of only 694
compounds, we have constructed an additional dataset resulting
from the combination of the two. This combined database
contains 7052 distinct entries and performs best on all the
metrics evaluated in each test (see the last line of Table 4 and the
bottom plots in Figs. 5 and 6). The improvement in performance is
likely due to the much larger size of the dataset (approximately
double the original two) and the corresponding reduction of the
noise present in the median values. When tested against RF
models, the much larger number of compounds allows for a better
sampling of the chemical space, resulting in more accurate
predictions. As it stands, this combined dataset represents the
best database available for ferromagnetic TC, automatically
extracted from scientific literature according to the test designed
here.

Table 4. Performance comparison between the different automatically generated TC datasets against the manually curated one from refs. 18,41.

# Entries Query RF predictions

R2 MAE (K) RMSE (K) R2 MAE (K) RMSE (K)

ChemDataExtractor 4289 0.78 48 137 0.65 123 176

This work

Single mentions 1858 0.77 51 139 0.66 128 174

Order of appearance 2682 0.77 51 141 0.65 126 176

All combinations 4308 0.81 52 127 0.61 134 184

BERT-PSIE 3518 0.81 50 126 0.65 126 174

BERT-PSIE + ChemDataExtractor 7052 0.86 38 109 0.69 118 165

The left-hand side of the table refers to the query test, while the right-hand side refers to the RF TC predictor. Together with the BERT-PSIE and
ChemDataExtractor databases, we also consider different BERT-assembled datasets obtained by using different relation-classification strategies (see details in
the text). The query benchmark is done over the 262 compounds that are shared by all the datasets, while the RF predictions are done over 2623 compounds
that are not present in any of the automatically collated datasets. Values for the best-performing datasets are in bold. Additionally, the last line of this table
shows the performance on these tests for the combined databases generated by BERT-PSIE and ChemDataExtractor, leading to the best results.
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The implication of this is that the quality of automatically
extracted databases improves markedly with an increase in the
number of disparate sources used in the extraction. There is also
an argument to be made that a combination of rules-based and
rule-free methods may be the best-performing strategy for
automated extraction, as seen in Table 3.
A similar study was conducted with respect to the extractions

performed by ChemDataExtractor over the same sentences
deemed relevant by the BERT-PSIE sentence classifier module.
The results can be found in the Supplementary Discussion and
reinforce the similarity in performance of the two approaches.
To conclude, as a final evaluation of the usefulness of the

extracted database, we test the ability of the RF model trained on
the BERT-PSIE dataset to screen unseen compounds with respect
to a certain TC threshold. This test attempts to simulate a common
use case for such ML models. Note that typical magnets employed
as part of some room-temperature technology (e.g., data storage,
electrical motors) need to have a TC above 600 K, so that classifying
magnets according to such a threshold is of significant

technological relevance. We used the RF model trained on the
automatically generated dataset to predict if magnets have a
critical temperature exceeding 300 K, 600 K, and 900 K, respec-
tively. The test set for this predictor is constructed from
compounds that are present in our manually curated dataset,
but not in the one generated by NLP. The results of this screening,
compared with the distribution of the true TC of these compounds
can be seen in Fig. 7. The shaded blue area of Fig. 7 represents the
distribution of values predicted to have a TC greater than the
dashed line, representing the screening temperatures (300 K, 600 K,
and 900 K, respectively). While the recall of this screening is quite
low, the high precision biases the initial distribution into sets with
higher and higher TC, thus demonstrating the usefulness of the
extracted database in screening for compounds with TC above a
desired threshold. The low recall means that certain compounds
with TC above the desired temperature will not be predicted to be
in the set of compounds above the temperature, however, the
compounds predicted to be in this set can be trusted with high
accuracy to have a TC above the desired threshold. Training a
model using the combined datasets from BERT-PSIE and ChemDa-
taExtractor results in a higher screening recall (see Fig. 7). This
provides an example of how the utility of these automated
databases can be improved both by expanding the corpus size
used for extraction and by introducing new extraction techniques.

Fig. 6 Performance of a random-forest model for TC trained over
automatically extracted databases. Parity plot (predicted TC vs
manually extracted TC) for the best RF compositional model
constructed a on the BERT-PSIE dataset and b on the combined
BERT-PSIE and ChemDataExtractor dataset. The test set consists of
the 2623 compounds that are not present in any of the
automatically generated datasets considered in this work but for
which we have a TC manually extracted from the scientific literature.

Fig. 7 Evaluation of the RF models constructed on automatically
extracted datasets as classifiers. a Violin plots showing the TC
distributions of the compounds screened using an RF model trained
on the BERT-PSIE data and compared with the manually extracted
values. The dashed line is the parity line highlighting how the
median of the screened distribution increases as the screening
threshold increases. Despite a low recall, the precision is high
enough to select compounds likely to have a TC higher than a given
threshold. The screening is done on compounds not present in the
training set of the RF. b The same test is performed by training an RF
model on the combination of the BERT-PSIE and ChemDataExtractor
datasets.
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Database quality for downstream tasks: band gap
To further validate the performance of BERT-PSIE, a similar study is
performed, now with the target being an aggregated dataset of
compounds and their associated band gap. For the manually
curated test set in this instance, a database of band gaps from
reference20 is utilized and compared with our results and with the
results of the hybrid ChemDataExtractor model from Dong et al.45,
when run on the same literary corpus. The original dataset from
this paper is not used as a direct comparison between the models,
since the workflow implemented in ref. 45 also separately
processes tables, which are not considered by BERT-PSIE. The
results of the comparison between the two methods on the same
corpus can be seen in Table 5. In this case, the BERT-PSIE pipeline
outperforms or equals the hybrid ChemDataExtractor method by
every metric while extracting a very similar number of unique
compound-band gap relationships. Interestingly, for sentences
containing multiple mentions, the best strategy to sort out
relations seems to be the order of appearance, which outperforms
all other methods. This is in contrast with the degradation in
performance reported for the case of Curie temperature, Table 4,
pointing to an intrinsic difference in the way these two quantities
are reported in natural language. It then appears that reporting
the band gap is far more procedural than reporting the Curie
temperature, thus the use of a more sophisticated method of
establishing the correct associations between compounds and
properties introduces a source of noise. This result is clearly
property-dependent, but it is also fair to note that the difference in
performance is only marginal.
Finally, the parity plot for the query test and that for an RF

model for band-gap predictions are shown in the Supplementary
Figure. The results of the query test are similar to those found for
the Curie temperature, although it seems that a more diffuse
distribution of band gaps is now observed. This is associated with
the ambiguity in the various band-gap definitions noted before
(e.g., the case of C), the ambiguity that is less relevant for the TC.
The RF model, instead, appears to have a slightly inferior R2 than
that constructed for the TC, but benchmarks similarly with models
that can be constructed on manually curated data. In fact, we
obtain an MAE of 0.62 eV, against the value reported on
MatBench62 of 0.33 eV, for the best-performing model trained
on the same dataset.

DISCUSSION
We have proposed a workflow to automatically extract structured
data from unstructured scientific literature. This has minimal need
for an extensive implementation effort and little or no require-
ment for familiarity with complex grammar-rule definitions and
natural language processing. We have then shown some possible

use cases, demonstrating the ability to generate a database of
ferromagnetic Curie temperatures and electronic band gaps
comparable to the one generated using ChemDataExtractor, the
state-of-the-art rule-based method for data mining from the
scientific literature. This work opens the door for rapid and easy
access to experimental-property databases for materials infor-
matics applications.
Crucially, we have carefully benchmarked the constructed

databases against manually curated reference ones through
extensive query tests, which is a step particular to this work.
These have allowed us to critically assess the benefit of certain
design choices in our workflow, such as the relation-extraction
step. Most importantly, we have been able to understand where
improvements can be made and whether these are general or
specific to the physical property extracted.
Finally, we have tested whether our automatically extracted

databases of compounds and their properties can be used as a
platform for constructing machine-learning models, namely
whether the database quality is sufficiently high for integration
in a material-discovery workflow. We have found that the mean
absolute error of chemical-informed random-forest models,
constructed over the automatically extracted database, is always
larger than that achieved with manually curated ones, roughly by
a factor two. Our best results have been obtained for a Curie
temperature database combining data from rule-free (BERT-PSIE)
and rule-based (ChemDataExtractor) methods, owing to the larger
data volume and enhanced diversity. Notably, no manual curation
was performed on the automatically extracted datasets, a fact that
may be responsible for the differences in performance. In contrast,
we have shown that our BERT-PSIE dataset is sufficient to
construct machine-learning classifiers able to identify high-TC
magnets with high accuracy. This fact, together with the
possibility to expand the dataset with the minimum effort offered
by a rule-free strategy, suggests that natural-language-processing
information retrieval can become an important asset in any
material-discovery pipeline.

METHODS
Human and numerical effort
All the BERT models used in this work have been fine-tuned on a
single Nvidia A100 GPU accessed with Google Colab, with each
model requiring <30 minutes for fine-tuning. In particular, we use
an early stopping strategy based on the validation-set loss (more
details are provided in Section I of the SI. As it stands, the time
bottleneck in adapting the workflow to a new task remains related
to the manual labeling of the text necessary for fine-tuning. All in
all, this takes ~1 week. We now describe in more detail the
algorithms and the training strategy used for the various models.

Table 5. Performance comparison between the different automatically generated band gaps datasets against the manually curated one from ref. 20.

# Entries Query RF predictions

R2 MAE (eV) RMSE (eV) R2 MAE (eV) RMSE (eV)

ChemDataExtractor 2185 0.54 0.78 1.34 0.59 0.62 0.87

This work

Single mentions 1,246 0.65 0.67 1.17 0.61 0.62 0.85

Order of appearance 1819 0.67 0.64 1.13 0.62 0.63 0.84

All combinations 2581 0.63 0.71 1.21 0.60 0.63 0.86

BERT-PSIE 2021 0.64 0.67 1.19 0.61 0.62 0.85

The left-hand side of the table refers to the query test, while the right-hand side refers to the RF band gap predictor. Together with the databases constructed
using BERT-PSIE and ChemDataExtractor, we also consider different BERT-assembled datasets obtained by using different relation-classification strategies (see
details in the text). The query benchmark is done over the 231 compounds that are shared by all the datasets, while the RF predictions are done over 2046
compounds that are not present in any of the automatically collated datasets. Values for the best-performing datasets are in bold.
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Literature extraction
The Crossref REST API is used to execute a keyword search over all
literature published by Elsevier. This yields metadata filtered to
ensure that the full-text version of the paper is available for the
purpose of text data mining. The metadata includes both abstracts
and download links to the full-text papers. In the case of the Curie
temperature extraction, the strategy used to build the training set
required for the fine-tuning of the different BERT models starts
from the collection and the manual labeling of 800 abstracts
containing the term ‘Curie temperature’ from this initial search.
We run the Natural Language Toolkit63 (NLTK) sentence tokenizer
on these abstracts and label the tokenized sentences, which
reference a Curie temperature, as relevant and the ones that do
not as irrelevant (step 1 in Fig. 1). This step yielded a database of
~5000 sentences of which 189 are labeled relevant. The labeled
dataset is used to fine-tune a BERT classifier model to find relevant
sentences (i.e., sentences likely to contain a mention of the Curie
temperature). The classifier extracts relevant sentences from the
corpus of the papers. We then manually labeled 200 relevant
sentences extracted from the corpus of the papers whose abstract
was used in the previous step. These extracted sentences are
manually labeled as described in step 3 of Fig. 1 and are then
combined with the labeled abstracts. This combined corpus is
utilized to fine-tune a BERT model for Named Entity Recognition
(NER-BERT).
In the case of the electronic band gap, a slightly different

strategy is developed for aggregating the necessary training data.
The arXiv metadata is downloaded from the Kaggle dataset46 and
an initial corpus of 1000 abstracts for annotation is constructed by
searching the text of the corpus of abstracts for the terms ‘band
gap’, ‘bandgap’, or ‘band-gap’. Contained in these 1000 abstracts
were 171 sentences that contained band-gap values and thus
were considered relevant. A sample of 501 sentences that contain
no mention of band gap, and thus are considered irrelevant, was
added to the relevant ones. This enables the creation of a dataset
for the classifier of 672 sentences, which was split into a training,
validation, and test set of 404, 134, and 134 entries, respectively.
The corpus used for the automatic extraction procedure of the

Curie temperature (band gap) is obtained by executing a keyword
search using the Crossref API for instances of the term ‘magnetic’
(‘electronic’). This yields a database of ~180,000 (77,000) full-text
URLs of papers likely to contain a mention of a Curie temperature
(band gap) value. The papers are then automatically downloaded
and parsed into a list of sentences. A corpus of relevant PDF
documents is also converted into plain text using PDFminer64 and
is similarly parsed into sentences, which are concatenated to the
same list. A list of candidate sentences likely to contain the desired
material property information is then extracted using the BERT
classifier from these corpora, yielding a total of around
55,000 sentences that are deemed relevant for the Curie
temperature and around 126,000 for the electronic band gap.

Relation extraction
The final step of our workflow for the automatic extraction of data
consists of the identification of mentions of chemical compounds
and the associated property (Curie temperature or band gap) in all
the sentences classified to be likely to contain such information.
This task is performed by the NER-BERT model (step 3 of Fig. 1),
which is described here for the Curie temperature (the same
applies to the band gap). For the sentences predicted by the NER-
BERT model to have a single mention of chemical compound and
a single mention of Curie temperature, we assume that the two
quantities are related, and we add them to the database (step 5 in
Fig. 1). If a sentence contains multiple mentions of chemical
compounds and/or several Curie temperatures, the compound-
temperature association will become ambiguous. This ambiguity is

not uncommon in scientific literature, where one can find
sentences like ‘the Curie temperature of Fe and Co are 1043 K
and 1394 K, respectively’. Although easy to resolve for a human
reader, semantic ambiguity becomes a problem for NLP. Here, we
treat the problem as a relation classification task. In practice,
following the approach of Soares et al.65, we fine-tune a BERT
architecture to classify whether a pair of entities in a sentence is
related by the “has a TC of” relation.
The dataset needed for the fine-tuning is generated by

sampling 100 sentences from among those predicted to contain
multiple mentions by the NER-BERT model. For each sentence, all
the possible pairs of compound-TC mentions are considered one
by one, and entity markers are added at the beginning and at the
end of each entity mention. For example, from a sentence
containing two chemical compounds and two Curie temperatures,
we generate four sentences in which a different pair of entities is
surrounded by entity markers. We use the markers [E1start], [E1end]
to identify the compound mentions considered and [E2start] and
[E2end] to identify the Curie temperature mention. Thus, by taking
as an example the sentence, ‘The Curie temperature of
Ga0.5Fe2.5O4 and Ga0.7Fe2.3O4 have been found to be equal to
413 ∘C and 347 ∘C, respectively’ (see Fig. 1), we construct the
following four associations: (1) Ga0.5Fe2.5O4 and 413 ∘C, (2)
Ga0.5Fe2.5O4 and 347 ∘C, (3) Ga0.7Fe2.3O4 and 413 ∘C, (4)
Ga0.7Fe2.3O4, and 347 ∘C. Then, the sentences with the marked
pairs generated are manually labeled for a binary classification
task, where we will deem a sentence positive, if the relation “has a
TC of” is present between the two marked entity mentions and
negative if such a relation is not present. The resulting training set,
after being balanced with respect to the mentions in each class,
consists of 200 sentences, each one containing a different pair of
marked entities. This collection of BERT models trained for
different downstream tasks creates a rule-free pipeline for the
automatic extraction of data from text.

DATA AVAILABILITY
The test abstracts for the direct comparison with rule-based methods together with
the datasets automatically extracted in the main and test extractions are available at:
https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC.

CODE AVAILABILITY
All the BERT-PSIE code necessary to run the automatic extraction of Curie
temperatures and band gaps is available at https://github.com/
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