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Coherent and semicoherent α/β interfaces in titanium:
structure, thermodynamics, migration
Siqi Wang1, Tongqi Wen 2, Jian Han 1✉ and David J. Srolovitz 2

The α/β interface is central to the microstructure and mechanical properties of titanium alloys. We investigate the structure,
thermodynamics and migration of the coherent and semicoherent Ti α/β interfaces as a function of temperature and misfit strain
via molecular dynamics (MD) simulations, thermodynamic integration and an accurate, DFT-trained Deep Potential. The structure of
an equilibrium semicoherent interface consists of an array of steps, an array of misfit dislocations, and coherent terraces. Analysis
determines the dislocation and step (disconnection) array structure and habit plane. The MD simulations show the detailed
interface morphology dictated by intersecting disconnection arrays. The steps are shown to facilitate α/β interface migration, while
the misfit dislocations lead to interface drag; the drag mechanism is different depending on the direction of interface migration.
These results are used to predict the nature of α phase nucleation on cooling through the α-β phase transition.
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INTRODUCTION
Ti alloys have received widespread attention for their superior
mechanical properties, low density and biocompatibility over
several decades1–3. The microstructure of Ti alloys is important
due to its significant influence on alloy mechanical perfor-
mance4–6. The microstructure of many Ti alloys used in structural
applications is a mixture of α (hexagonal close-packed, HCP) and β
(body-centered cubic, BCC) phases. α/β Ti alloys achieve a
favorable balance between strength, ductility, fracture toughness
and formability; this explains their widespread use in aerospace
and other industries4,7,8. The two-phase nature of α/β Ti alloys
implies the existence of several microstructural degrees of
freedom that may be manipulated to achieve the desired
mechanical property profile9. Since the microstructure represents
a spatial distribution of α/β interfaces, understanding the structure
and thermodynamics of this interface is prerequisite to micro-
structure optimization10–12.
The central quantity for determining interfacial thermody-

namics and kinetics is the interface (free) energy. Interface energy
determines the (near-) equilibrium interface morphology13. The
interface energy is the main factor in the capillary driving force in
microstructural evolution14,15. Interface energy is also required for
the prediction of the barriers for precipitate nucleation. Addition-
ally, interface energy is a key ingredient in the theory of interface
diffusion16, faceting-defaceting17, interface segregation18, inter-
granular fracture19, etc20,21. Unfortunately, the determination of
the α/β interface energy of Ti is not straightforward. Li et al.22

obtained the energy of a coherent α/β interface in Ti at 0 K via
density functional theory (DFT) methods. Since β is unstable at 0 K,
they were unable to fully relax the β structure without artificial
constraints. The α and β pure Ti phases only coexist at finite
temperature (without artificial constraint); hence, the interface free
energy should be obtained at finite temperature. Unfortunately, it
is impractical to directly determine the finite-temperature inter-
face free energy via DFT. Another important consideration is that
most α/β interfaces observed in experiments are semicoherent,
i.e., coherent interfaces decorated by misfit disconnections.

Calculation of semicoherent interface energy requires large-scale
simulations which cannot be handled by DFT. Interface energies
are not easily determined from experiments either. While
Murzinova et al.23 estimated the α/β semicoherent interface
energy based on the terrace-ledge model and linear elasticity
using experimentally measured parameters, there is no direct
experimental measurement of the α/β interface energy in Ti or Ti
alloys.
Two recently developed techniques provide a path for us to

determine the finite-temperature energy for the α/β semicoherent
interface in Ti. One is thermodynamic integration with the
adiabatic switching free-energy calculation method24–27. This
method is accurate (with fewer assumptions than the harmonic-
approximation) and has proven efficient in determining the
interface free energy28. Another technique is to use a neural
network potential trained with DFT data. Here, we use the Deep
Potential (DP) neural network potential29 developed by Wen
et al.30. In this paper, we apply both techniques to study the
structure and energy of α/β coherent/semicoherent interfaces at
finite temperatures.
This paper is organized as follows. We first focus on the

thermodynamic properties of the coherent α/β interface in
titanium (i.e., ð0110Þαkð112Þβ and [0001]α∥[110]β) as a function
of strain and temperature. Next, we examine the structure and
properties of the semicoherent interface. This information is then
applied to understand the nucleation and growth of α precipitates
in a β matrix (i.e., cooling from high temperature). The main
findings in this paper are as follows. (i) We predict the free energy
of the most important interfaces (coherent and semicoherent) in
titanium. This represents the first such calculations with DFT-level
accuracy (note that β phase is completely unstable at 0 K and
hence inaccessible to DFT without artificial constraints). (ii) Our
simulations show the equilibrium structure of the semicoherent
interface and its intrinsic defect structure that gives rise to the
widely-observed habit plane. (iii) We demonstrate the mechanism
of interface migration and that this mechanism gives rise to
different interface mobilities in different directions (heating vs.
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cooling). (iv) These accurate thermodynamic and structural results
are applied to make reliable predictions on how precipitation
occurs upon cooling through the α-β phase transition. This paper
provides a roadmap for accurate prediction of interface properties
and motion as well as precipitation in any system, including in
systems with phases that are unstable at low temperature and in
systems where loss of coherency occurs.

RESULTS
α and β phases of titanium
To predict the properties of the α (HCP)/β (BCC) interface in Ti, we
initially determine the phase stability and bulk free energies of
these phases. We perform MD simulations to determine the lattice
constants as functions of temperature and the free energies of the
two phases. This provides essential information on the stability
and metastability of the two phases. The perfect crystals are
simulated using periodic boundary conditions in all directions and
the simulation cell edge lengths and edge angles are free to
change during the structural relaxation.
The single-phase α and β Ti phases were equilibrated at

different temperatures, where the size and shape of the simulation
cell was fully relaxed under zero traction boundary conditions.
Figure 1a shows the simulation results. Each data point represents
an independent simulation at a temperature. Examination of the
temperature dependence of lattice constants shows the tempera-
ture range where α and β are stable/metastable. For the cases
corresponding to the blue open circles (blue crosses), the
simulation starts in the α (β) phase and the structure remains
unchanged during thermal equilibration. The red open circles (red
pluses) indicate that α (β) transforms to perfect β (α) upon finite
temperature equilibration. The red pluses imply that β transforms
to defected α (containing many stacking faults). The yellow
shaded region shows where the two phases coexist (one stable,
one metastable); i.e., 900 K≳ T≳ 1500 K.
The Gibbs phase rule implies that for a single-component (Ti)

system, two phases (α and β) can coexist with one degree of
freedom (temperature or pressure); i.e., two stress-free phases
coexist at a particular temperature for each stress/pressure. The
coexistence temperature occurs where the free energies of the
two phases are identical. Figure 1b shows the change in bulk free
energy per atom with temperature for the α (fα) and β (fβ) phases.
In general, the free energy of each phase decreases with
increasing temperature (positive entropy). The free energy curves
cross at Teq= 1194 K – this is the equilibrium temperature for a
stress-free two-phase system (denoted by the vertical dashed lines
in Fig. 1a, b). Below Teq, the free energy of α is lower than that of β;
i.e., α is more stable than β for T < Teq (β is metastable). The inset of
Fig. 1b shows the free energy difference Δfα→β (≡ fβ− fα) vs.
temperature. Expanding the free energy about T= Teq (to first
order) yields Δfα→β(T) ≈ (mℓ/Teq)(Teq− T), where ℓ is the specific
latent heat. From the inset of Fig. 1b, we find the latent heat of the
α→ β transition to be 75 J g−1, close to the experimental
measurement, 90 J g−1 31.

Coherent α/β interface
A coherent interface can be constructed by matching the lattices
of two phases along the interface plane with a small structural
period. Two lattices cannot typically be perfectly matched at their
equilibrium lattice constants. This implies that one or both lattices
must be strained to match along the interface plane. These
coherency strains necessarily increase the free energy of each of
the strained phases. Although the coherent interface does not
correspond to the most commonly observed habit plane, it is
important because it has the lowest energy among all possible α/β
interfaces. When cooling titanium from the high-temperature β
phase, α phase particles nucleate and grow (see Section

“Discussion”). The dominant orientation relationship is established
in the nucleation stage of precipitation. When the precipitate is
small, interface energy dominates elastic energy and hence the
lowest-energy interface occurs32. As the precipitate grows, elastic
energy becomes increasingly important and the interface goes
from coherent to semi-coherent. The semicoherent interface
consists of large terraces of coherent interface, separated by
disconnections that have both dislocation character (relaxing the
misfit) and step character (leading to a modest interface
inclination from the Burgers/coherent interface relation). We
investigate the semicoherent interface (on the commonly
observed habit plane) in Section “Semicoherent α/β interface”.
Here, we focus on the free energy of the coherent α/β interface

in Ti under different thermodynamic conditions. We first address
the crystallography, then investigate the variation of interface free
energy with temperature at fixed coherency strain and the
relationship between the interface free energy and the coherency
strain.

Fig. 1 Temperature dependences of the lattice constants and free
energies of bulk α and β phases. a Lattice constant vs. temperature
for the initial α (HCP) phase and β (BCC) phase. The red (blue)
symbols denote the cases where the structure changes (does not
change) upon relaxation at different temperatures. The yellow
shaded region indicates the temperature range within which both α
and β are stable/metastable. The dashed line indicates the
equilibrium temperature of the two phases Teq obtained from (b).
b The stress-free free energies per atom vs. temperature for bulk α
(red crosses) and β Ti (blue circles). The inset shows the free energy
difference Δfα→β (≡ fβ− fα) vs. temperature.
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Our two-phase simulation model contains two identical
coherent α/β interfaces; see Fig. 2. The simulation models contain
46,080 atoms in a single-phase α or β system and 47,424 atoms in
the two-phase/interface system. The numbers of atoms are chosen
as a trade-off between finite-size effects and computational
efficiency (the finite-size effects are examined in the Supplemen-
tary Note 2). The coordinate system is chosen such that the e3-axis
is normal to the interface. Periodic boundary conditions are
applied in all directions (so, the system contains two identical
interfaces), as shown in Fig. 2. The simulation cell is relaxed such
that the stress σ33= 0, the strain component ϵα=βi3 ¼ 0 (i= 1, 2) and
ϵα=βij (i, j= 1, 2) are fixed at prescribed values during the
simulations.
The commonly observed α/β interface in Ti exhibits the Burgers

orientation relationship (BOR): ð0110Þαkð112Þβ and [0001]α∥[110]β,
as shown in Fig. 2. The interface of BOR has lower interface energy
than those of other candidate orientation relationships32–34. Given
the equilibrium lattice constants of the bulk α and β phases,
perfect lattice matching in the BOR implies that α must be
compressed and/or β must be stretched along the e1- and e2-axes
at all temperatures.
In our first set of interface simulations, we maintain the

equilibrium lattice constant of β at the temperature of interest and
compress α in both the e1- and e2-directions to match β with the
BOR; i.e., this corresponds to a scenario in which an α lamella
grows from within β. We calculated the interface free energy at
different temperatures by λ integration; see Section “Methods” for
the detailed calculation methods. The results are shown in Fig. 3.
For each coherency strains, the α/β system is only in equilibrium at
one temperature (Gibbs phase rule). For the case where β is at its
own equilibrium lattice constant, the two-phase system is in
equilibrium at 1016 K (black solid circle in Fig. 3). This temperature
is lower than Teq in Fig. 1b because coherency strains in α raise its
free energy such that the red curve in Fig. 1b shifts upwards and
the intersection of two curves shifts towards the left (lower
temperature). The open circles in Fig. 3 correspond to the situation
in which either the α or β is metastable with respect to the other
and the interface does not move within the simulation time. The
interface free energy can still be calculated for the metastable case
by Eq. (15) although it is not thermodynamically well-defined. In

general, we find that the interface free energy decreases with
increasing temperature.
The two phases in this unary system can be equilibrated along a

coherent interface at different strains, corresponding to super-
imposing a biaxial strain on the system described above (Fig. 3).
Each strain state has a unique equilibrium temperature. Suppose
that the structural periods of the coherent interface in the e1- and
e2-directions are p1 and p2. Since α and β match with the BOR
(Fig. 2), p1 is the length of [110]βaβ or equivalently [0001]αcα and p2
is the length of ½111�βaβ=2 or equivalently ½2110�αaα=3, where aα,
cα and aβ are the lattice constants of α and β deformed in
accordance with the coherency strain. Then, the strains in β
parallel to the interface are

ϵβ11 ¼
p1 �

ffiffiffi
2

p
aβ0ffiffiffi

2
p

aβ0
and ϵβ22 ¼

p2 �
ffiffiffi
3

p
aβ0=2ffiffiffi

3
p

aβ0=2
; (1)

where aβ0 is the equilibrium lattice constant of β at the
temperature of interest. We sampled the strain state within the
range: p1 2 ½ ffiffiffi

2
p

aβ0; c
α
0� and p2 2 ½ ffiffiffi

3
p

aβ0=2; a
α
0�. The lower bound

ðp1; p2Þ ¼ ð ffiffiffi
2

p
aβ0;

ffiffiffi
3

p
aβ0=2Þ corresponds to the strain state

ðϵβ11; ϵβ22Þ ¼ 0, for which β is stress-free while α is compressed to
match equilibrium β. The upper bound ðp1; p2Þ ¼ ðcα0; aα0Þ
corresponds to the case where β is stretched to match the
equilibrium α. The cell size in the e3-direction is always fully
relaxed.
For each strain state ðϵβ11; ϵβ22Þ, we find the equilibrium

temperature Teq from the intersection of the free energy-
temperature curves of the two phases for different coherency
strains (similar to Fig. 1b). The mapping of the equilibrium
temperature on the strain space, Teqðϵβ11; ϵβ22Þ, is shown in Fig. 4a.
The variation in equilibrium temperature with strain is≲ 400 K; it is
more sensitive to ϵβ22 than ϵβ11 (because e2 is the close-packed
direction). Based on the red (fα(T)) and blue (fβ(T)) curves in Fig. 1b,
we see that when α is compressed to match β (point ‘A’ in Fig. 4a),
the fα-curve shifts upwards and Teq reduces to below 1194 K.
When β is stretched to match α (point ‘T’ in Fig. 4a), the fβ-curve
shifts upwards and Teq rises above 1194 K.
The interface free energy was calculated for each strain (i.e.,

points ‘A’-‘T’ in Fig. 4a) at the corresponding equilibrium
temperature. The interface free energy mapped on the strain
space, γðϵβ11; ϵβ22Þ, is shown in Fig. 4b. The interface free energy
decreases with increased stretch of β (decreased compression in
α); and vice versa. In the region above the dashed line in Fig. 4b,

Fig. 2 Schematic of the model for simulating coherent α/β
interfaces. Schematic of the simulation cell containing two identical
coherent α/β interfaces. The atoms with darker/lighter color are
located at different layers along the e1-axis.
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Fig. 3 Temperature dependence of coherent α/β interface free
energy. The α phase is strained to be coherent with the unstrained
β. Each error bar on each data point is obtained by six repeated
computations. The data point in black corresponds to the
temperature at which the α/β system is in equilibrium.
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the interface free energy is negative, indicating that the two-phase
system is metastable. This negative interface free energy is
consistent with the metastability of β at large tensile strains in the
e1- and e2-directions. This is evidenced by highly defected β in the
case where the interface free energy is negative; see Supplemen-
tary Note 3.
We replot the data in Fig. 4b as the interface free energy vs.

temperature in Fig. 4c; points ‘A’-‘T’ correspond to the states
labeled in Fig. 4a, b. We find that the data points are clustered into
four groups: ‘A’-‘E’, ‘F’-‘J’, ‘K’-‘O’ and ‘P’-‘T’. Each group corresponds
to the same ϵβ22 and varying ϵβ11 (ϵ

β
11 is varied over a smaller range

than ϵβ22). There is a clear trend that the interface free energy
γðϵβ11; ϵβ22Þ, increases with decreasing Teqðϵβ11; ϵβ22Þ.
The α/β coherent interface can exist over a range of strains and

its energy is a function of those strains. Along a semicoherent
interface (i.e., a coherent interface with widely spaced disloca-
tions/disconnections), the strain state varies with position along
the coherent terraces (i.e., position along the terrace relative to the
positions of the dislocations/disconnections). If we know the strain
distribution along a semicoherent interface (e.g., from continuum
elasticity), we may write the interface energy as

γ ¼ 1
A

Z Z
A
γ ϵβ11ðx1; x2Þ; ϵβ22ðx1; x2Þ
� �

dx1dx2; (2)

where ðϵβ11ðx1; x2Þ; ϵβ22ðx1; x2ÞÞ is from Fig. 4b. Of course, there are
corrections for strain gradients. An alternative approach is to
simply do molecular dynamics simulations on a semicoherent
interface.

Semicoherent α/β interface
As the size of α or β phase grows, the strain energy in the two-
phase system becomes too large to remain coherent. At this point,
the misfit strains can be relaxed by introducing disconnections
along the interface with finite Burgers vector components parallel
to the interface plane. In this section, we investigate the structure
and energetics of the α/β semicoherent interface.
The simulation model of a semicoherent interface is shown in

Fig. 5. According to the phenomenological theory of martensite
crystallography35–37, the semicoherent α/β interface plane should be
a habit plane determined by geometry, as follows. Take the
coherent interface with the BOR as a reference (i.e., the misorienta-
tion angle θ and the inclination angle ϕ of the coherent interface are
defined to be zero). Based on the equilibrium lattice constants at the
equilibrium temperature T= 1194 K (see Fig. 1), a simple calculation

(see Supplementary Note 5 for details) shows that the inclination
angle of the habit plane is ϕ ≈ 10. 9∘ and the misorientation angle is
θ ≈ 0.523∘ (Fig. 5); we construct the simulation cell with ϕ and θ close
to these values. The Cartesian coordinate system is established such
that e1∥[110]β, e3 is perpendicular to the habit plane and
e2= e3 × e1. In practice, we choose the inclination angle ϕ ¼
arctan½j½112�βaβ0=3j=ð5j½111�βaβ0=2jÞ� � 10:7� such that the periodic
boundary condition is satisfied along the e2-axis. The simulation cell
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Fig. 4 The α/β equilibrium temperature and coherent interface free energy under different strain states. a The equilibrium temperature
Teq for a two-phase system containing a coherent interface and (b) the interface free energy γmapped on the strain space spanned by ϵβ11 and
ϵβ22. The dashed line in (b) approximately indicates the boundary between the region of positive γ and the region of negative γ. c The interface
energy as a function of the equilibrium temperature; error bar is attached. In all figures, the letters ‘A’-‘T’ labels are used to identify the same
state.

Fig. 5 Schematic of the model for simulating semicoherent α/β
interfaces. The coordinate system (e1, e2, e3) is attached to the mean
interface plane (habit plane); e3 is the habit plane normal and e1 and
e2 are parallel to the habit plane. The coordinate system ðe1; e20 ; e30 Þ
is attached to the coherent interface plane. The blue lines depict the
interface profile; the yellow regions denote the coherent interface
terraces. The red lines parallel to the e1-axis represent the
disconnections with step height hs; the red line parallel to the e2-
axis is a misfit dislocation with zero step height. ϕ is the inclination
angle of the interface plane (habit plane) with respect to the
coherent interface plane. θ is the rotation angle of α about the e1-
axis with respect to α in the coherent interface model (i.e., the red
lattice in Fig. 2).
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size is shown in Fig. 5. The total number of Ti atoms in the
simulation model is 91,560.
The surface layers are treated as rigid-body slabs with a

thickness of 10 Å. The relative coordinates of the atoms inside the
surface slabs are fixed with the equilibrium lattice constants at the
temperature of interest. The surface slabs are allowed to relax en
bloc such that σi3= 0 (i= 1, 2, 3). The motion of atoms in the
surface slabs is excluded from the λ integration.
The equilibrium α/β semicoherent interface structure obtained

from our simulations is shown in Fig. 6c and e. From the e20 -e30
projection (Fig. 6c), we find that the interface inclination is formed
by superimposing a set of “steps” along the e1-axis on the
coherent interface. The characters of the “steps” can be deduced
based upon the dichromatic pattern (see Fig. 6a). The dichromatic
pattern in Fig. 6a is formed by interpenetrating the BCC (blue) and
HCP lattices (red). Since we use the BCC lattice (β) as our reference,
the coherency strain is applied on the HCP lattice such that it
matches the BCC lattice at the gray points. The gray points form
the coincidence-site lattice (CSL). A CSL unit cell is shaded gray in
Fig. 6a. In the CSL unit cell, the fine grid indicates the
displacement-shift-complete (DSC) lattice. The shift of the whole
HCP lattice with respect to the BCC lattice by any DSC lattice
vector preserves the dichromatic pattern. Following the FS/RH
convention38, we find that each interface step has an associated
Burgers vector bs ¼ ½111�aβ0=12, corresponding to a DSC lattice
vector; see the yellow arrow Fig. 6b. Based on the dichromatic
pattern in Fig. 6a, a shift of the HCP lattice with respect to the BCC
lattice by bs necessarily results in the coincident sites (gray points)
at the layer above the initial coincidence-site layer. This suggests

that bs is associated with a step height hs ¼ 2
ffiffiffi
6

p
aβ0=3. Hence, the

“steps” observed in Fig. 6c are disconnections characterized by
Burgers vector bs and step height hs. To distinguish this set of
disconnections from another set of disconnections which will be
discussed later, we refer to this set of disconnections as “steps”
below (emphasizing the feature that hs≫ ∣bs∣). The steps on the
α/β interface are seen experimentally39, as shown in Fig. 6d. The
ideal step spacing (based on the topological model40) along e2-
axis is 14.34 Å (see Supplementary Note 5 for details). We choose
simulation cell dimension along the e2-axis that allows us to get
close to this ideal value while remaining sufficiently small to be
computationally tractable. The step spacing in our simulation is
13.07 Å.
Figure 6e shows the equilibrium semicoherent interface

structure viewed along the e20 -direction. The interface is
composed of coherent sections and two dislocation lines directed
along the e2-axis, labeled bm1 and bm2. From the dichromatic
pattern in Fig. 6a, the shortest DSC lattice vector parallel to the e1-
axis is ½110�aβ0. The Burgers vector of this disconnection, if it exists,
would be bm ¼ ½110�aβ0. Since the relative shift of two lattices by
bm does not change the coincidence-site layer (the layer formed
by the gray points), this disconnection is associated with zero step
height; to distinguish it from the “step” disconnections discussed
above, we call these “misfit dislocations” (zero step height
disconnections) below. The theoretical value of the misfit
dislocation spacing needed to relax the misfit strain is 412.75 Å
(see Supplementary Note 5 for the detailed calculation method).
We aligned 87 cells of α with 88 cells of β, resulting in a
compressive strain in β of ~ 0.07% and a misfit dislocation spacing

Fig. 6 Semicoherent interface structure. a Reference dichromatic pattern formed by the BCC/β lattice (blue) and HCP/α lattice (red) for the
BOR. The gray points denote the overlapped blue/red points. The gray-shaded region is a CSL unit cell; the narrow yellow-shaded region is a
DSC unit cell. A Burgers circuit showing the closure failure is drawn; it corresponds to the closed circuit in (c). b Enlargement of the region
framed by dashed lines in (a), showing the DSC lattice and the Burgers vector (denoted by a yellow arrow). c, d Show, respectively, the
simulation result and TEM image of α/β interface structure viewed along the -e1-axis, while (e, f) show the views along the e2-axis. In (c, e), the
red and blue atoms (colored according to the common neighbor analysis, CNA59) denote α and β phases respectively. d, f are TEM images
reproduced with permission39 (Copyright 2018 Elsvier).
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of 410.2 Å. Note that ∣bm∣ is large. According to the Frank energy
criterion38,41, the misfit dislocation should undergo dissociation:

bm ! bm1 þ bm2

110½ �aβ0 ! 111½ � a
β
0

2
þ 111

� � aβ0
2

; (3)

where bm1 and bm2 are the Burgers vectors of two full dislocations
in the BCC (β) lattice; we refer to these as “BCC dislocations”. bm1

and bm2 are the two dislocations observed in Fig. 6e. The Burgers
vectors can be confirmed by drawing Burgers circuits with the FS/
RH convention, as shown in Fig. 6e. By examining the Peach-
Koehler force between the two BCC dislocations, we see that they
are elastically attracted to one another (see Supplementary Note 4),
such that the separation between them is finite.
Examination of the transmission electron microscopy (TEM)

image in Fig. 6f39 shows only the bm1 dislocation (confirmed by
drawing a Burgers circuit). While the complementary dislocation
bm2 must exist to accommodate the misfit between α and β, it is
not observed. Perhaps it is out of the field of view of the TEM
image or it glides out of the TEM foil. We also note from Fig. 6e
that the interface plane is locally curved towards α and terminates
at a BCC dislocation bm1. Indeed, Ackerman et al.37 experimentally
observed widely spaced “bumps” on the interface when the
interface was imaged along ½2110�α=½111�β direction.
We can understand the existence of the observed interface

profile as follows. To accommodate the mismatch in the e1-
direction, the two BCC dislocations (from the dissociation of a
misfit dislocation), should be located symmetrically about the
mean interface plane. Analysis of the interaction between the two
BCC dislocations and the steps (with a small Burgers vector bs)
also suggests that the interface which contains a set of steps
should be located with equal distance to the two BCC dislocations
(see Supplementary Note 4). Most of the interface plane is indeed
located between the two BCC dislocations. However, the interface
plane near the misfit dislocation arches towards α to contact one
of the BCC dislocations bm1, as shown in Figs. 6e, 7a. The arch of
the interface can be understood as follows. As explained
previously, the interface plane should be located between the
two BCC dislocations. If so, bm1 would sit inside α. However, bm1 is
a full BCC (β) lattice dislocation which cannot exist within HCP (α)
lattice. Hence, the interface plane has to be curved to guarantee
that bm1 remains within β.
The shape of the steps can be extracted from the x3-coordinates

of the atoms on the β-phase side of the interface, as shown in
Fig. 7a. At finite temperatures, the steps undergo fluctuation,

marking the rise of configurational entropy. Figure 7b shows the
profile of the interface plane (colored contours) and the shape of
the step lines (white curves) projected on the e1-e2 plane (habit
plane). Figure 7c shows a simplified schematic of the node
between a step bs (red curve) and a BCC dislocation bm1 (blue
curve). The step does not simply rest on the interface hump with
the shortest length, but bows slightly in the -e2-direction. This step
bowing is energetically favorable. Based on the simplified model
shown in Fig. 7c, the segments of the step line, ‘BC’ and ‘DE’, lie on
the side faces of the interface hump. ‘BC’ and ‘DE’ are associated
with the dislocation (Burgers vector bs, zero step height). The
tilting of segments ‘BC’ and ‘DE’ increases the segment length
(compared with untilted segments) and the line energy, while
simultaneously reducing the elastic energy since the tilt-induced
screw components have lower energy than edges. The finite tilt
angle of segments ‘BC’ and ‘DE’ is a consequence of the trade-off
between the two factors – the increase of segment length (raising
the energy) and the increase of screw component (lowering the
energy).
To obtain the equilibrium interface free energy, we construct

five atomic models: perfect α bulk, perfect β bulk, α with two
surfaces, β with two surfaces, and a two-phase system with two
surfaces (here, “surface” always refers to the rigid-body surface
slab). The semicoherent interface free energy γ is

γA ¼ F � Nf � γsαA� γsβA; (4)

where F, N and A are the total free energy, the number of atoms
and the interface area of the two-phase system, f is the free
energy per atom of perfect α or β bulk (in equilibrium fα= fβ= f),
and γsα/sβ is the excess energy per unit area due to the presence of
rigid-body surfaces for α/β, respectively. γsα/sβ is obtained by

γsα=sβAsα=sβ ¼ 1
2

Fsα=sβ � Nsα=sβf
� �

; (5)

where Fsα/sβ, Nsα/sβ and Asα/sβ are the total free energy, the number
of atoms and the area of the α/β interface. Based on this approach,
we find that the semicoherent interface free energy is 0.188 J m−2

at T = 1194 K.
The semicoherent interface free energy can be partitioned into

contributions from (1) the α/β coherent interface, (2) a periodic
array of misfit dislocations (each consisting of two BCC disloca-
tions, bm1 and bm2), (3) a periodic array of steps (disconnections
with Burgers vector bs and step height hs), (4) the nodes between
steps and BCC dislocations bm1, and (5) the elastic interaction
between the misfit dislocation array and the step array. We

Fig. 7 Disconnection lines in a semicoherent interface. a Plan view of the interface plane along the -e3-direction (the atoms in α are not
shown). The atoms are colored according to their x3 coordinates. b The interface structure extracted from (a). The color indicates the profile of
the interface plane. Two red regions indicate the interface plane humps. The black lines denote BCC dislocations bm1. The white lines denote
the steps with Burgers vector bs. c 3D schematic of a step bs (red curve) and BCC dislocation bm1 (blue curve) node. The interface hump is
depicted as rectangular.
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estimate these contributions. To validate our calculation result for
the semicoherent interface free energy γsemicoh, we check to see if
γsemicoh approximately equals the sum of the energies due to the
above contributions at 1194 K. The α/β coherent interface free
energy γcoh has been reported in Section “Coherent α/β interface”.
The free energy of an array of misfit dislocations (i.e., a pair of BCC
dislocations) cannot be obtained without the introduction of a
coherent interface. As a crude approximation, we calculated the
free energy of the same set of BCC dislocations in a bulk β crystal
with the same geometry as that of the two-phase system, γmisfit;
see Fig. 8b (see the simulation details in Supplementary Note 3).
We also calculated the free energy of the configuration consisting
of a coherent interface and an array of steps, γcoh+step; see Fig. 8c.
Figure 8e shows the contributions to the interface free energy.

First, γcoh+step is almost twice of γcoh; the difference is associated
with the step array. Second, γsemicoh is close to γmisfit+ γcoh+step;
this is reasonable if we assume that the contributions of (4) and (5)
above are negligible. Third, we note that γsemicoh is dominated by
γmisfit. From the perspective of thermodynamics, the major
difficulty for the formation of semicoherent interfaces is the
introduction of the misfit dislocation array. Banerjee et al.42

experimentally observed that the misfit dislocations come from
the absorption of lattice dislocations from the matrix into a
coherent interface, rather than from atomic relaxation along the
interface.

DISCUSSION
In this section, we discuss several implications of our simulation
results. Considering the fact that the interatomic potential
employed in the simulations (i.e., the DFT-trained, Deep Potential)
successfully reproduces many properties of Ti (including the phase
diagram, crystal structures, defect properties, …)30, we have more
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Fig. 8 Energy composition of a semicoherent interface. a–d Show
the atomic structures of semicoherent interface, an array of misfit
dislocations, coherent interface plus steps, and coherent interface,
respectively. e Shows the excess energies of the structures (a–d).

Fig. 9 Nucleation of α phase from β phase. Schematics of the α-phase nuclei with (a) coherent and (b) semicoherent interfaces. The total free
energy E mapped to the space spanned by the nucleus radius r and the thickness h at T= 700 K for the cases of (c) coherent and (d)
semicoherent nuclei. The points denote the states along the MEP obtained by NEB; the red points represent saddles. e The energy and (f) the
h/r ratio vs. the inclusion volume V along the MEP. The red points indicate the values of E and h/r at the saddle point along the MEP for the
growth of coherent nucleus, corresponding to the red point in (c). g The energy barrier E* and (h) the critical nucleus volume V* vs.
temperature. The black and blue dashed lines indicate the thermodynamic phase transition temperatures for coherent and semicoherent
nuclei, respectively. The red dashed lines indicate transitions between the critical coherent nucleus and the critical semicoherent nucleus.
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confidence in the resultant predictions than for typical MD
simulations.
We first employ the present results to consider the early stages

of nucleation of an α precipitate within a β matrix upon cooling Ti
through the α/β transition. We focus on estimating the nucleation
barrier and critical nucleus size based upon a straightforward
model. Experimental observations42,43 and phase-field simula-
tions32 suggest that the α nucleus is roughly a thin elliptic plate.
We approximate the α nucleus shape as a thin disk, as shown in
Fig. 9, where r and h are the disk radius and thickness. The flat
surfaces of the plate may be ð0110Þα/ð112Þβ coherent interfaces
(Fig. 9a) or semicoherent interface along the habit plane (Fig. 9b),
for which the temperature-dependent coherent/semicoherent
interface free energy is γ(T)—as calculated above. The side surface
of the plate may be approximated as a ð2110Þα/ð111Þβ interface
with free energy γside(T); see Supplementary Note 5. The total
energy of this plate-like nucleus is

Eðr; h; TÞ ¼ πr2h Δf β!αðTÞ þ f elðTÞ
h i

þ 2πr2γðTÞ þ 2πrhγsideðTÞ;
(6)

where Δfβ→α≡ fα− fβ (fα/β is the bulk free energy per unit volume
of α/β) and fel is the elastic inclusion energy (which also depends
on temperature via lattice constant and elastic constant).
According to the mismatch between α and β, we evaluate fel

using the Eshelby’s inclusion method (see Supplementary Note 5).
The energies for the coherent and semicoherent nuclei at T= 700
K are shown in Fig. 9a, b as functions of r and h. Based on the
energy landscape E(r, h; 700K), we searched the minimum energy
path (MEP) and the saddle point by the free-end nudged-elastic-
band method (FE-NEB44,45; see Supplementary Note 5). The energy
and aspect ratio h/r vs. nucleus volume V along the MEP are
shown in Fig. 9c, d.
At T= 700 K, the nucleation barrier is lower for the coherent

plate than the semicoherent plate. For either the coherent or
semicoherent plate, h/r < 0.15, validating the assumption that the
nucleus is a thin plate. When the nucleus volume is larger
than ~ 0.4 × 106 nm3, the energy of the semicoherent plate is
lower than that of the coherent plate, implying that as the initially
coherent plate grows, interface coherency will be lost. After the
loss of coherency, the flat surfaces of the plate will be oriented
along the habit plane and the aspect ratio will become larger. The
crossover in the energies for coherent and semicoherent nuclei
and the resultant loss of coherency were seen earlier in phase-field
simulations32.
Using the FE-NEB method and Eq. (6), we obtain the energy

barrier E* and the critical volume V* associated with nucleation as a
function of temperature; see Fig. 9g, h. When the undercooling
(Teq− T) is small, the energy barrier E* for the semicoherent
nucleus is lower than that of the coherent nucleus; this implies
that the α plate will nucleate with semicoherent interfaces along
the habit plane (see Fig. 9b). However, when the undercooling is

large, the coherent nucleus (see Fig. 9a) is favored at the incipient
stage of nucleation. Figure 9h shows that the critical volume of the
semicoherent nucleus is smaller than that of the coherent nucleus
at all temperatures. Note, however, that α often nucleates with the
aid of ω precipitates46,47 or at grain boundaries of β48. For such
heterogeneous nucleation, the energy barrier and critical volume
will be much lower than our prediction. Nonetheless, the
homogeneous nucleation predictions serve as a guideline for
understanding heterogeneous nucleation effects.
The equilibrium semicoherent interface structure features arrays

of steps and misfit dislocations (both are disconnections). The
interface may migrate via the glide of the steps along the
interface, accompanied by the motion of the misfit dislocations
(dissociated into glissile BCC dislocations). One of the BCC
dislocations (bm1 in Fig. 6e) is on the interface while the other
(bm2) remains within β. Interface migration requires the coopera-
tive motion of the two BCC dislocations. When the interface
migrates towards the β phase (i.e., α grows; Fig. 10a), the bm1

dissociates as

bm1 ! bp þ hci=2
2023
� � aα0

6
! 1010

� � aα0
3

þ 0001½ � c
α
0

2

; (7)

where bp and 〈c〉/2 are the Burgers vectors of the partial
dislocation on the basal plane and the〈c〉 edge dislocation in α,
respectively (Fig. 10a). The two dislocations resulting from the
reaction in Eq. (7) are separated by a stacking fault (green atoms in
Fig. 10a). Experiments49–51 often show fine FCC lamellae and/or
stacking faults within α or near the α/β interface. The formation of
these FCC lamellae and stacking faults may originate from the
dissociation of misfit dislocations accompanying the interface
migration associated with α growth; in other words, the FCC
lamellae and stacking faults terminated at the interface help to
accommodate the mismatch along the interface. The dissociation
(Eq. (7)) leads to the formation of a stacking fault; increase of the
stacking fault area (and thus energy) during interface migration
retards interface migration. When the interface migrates towards α
(β growth; Fig. 10b), the two BCC dislocations, bm1 and bm2, will be
left behind in β. To accommodate the misfit along the α/β
interface, bm1 and bm2 glide to follow the interface migration;
again retarding interface migration. The similar phenomenon, i.e.,
stacking fault formation with interface migration in one direction,
was also found for tilt grain boundaries in FCC metals52. It was
suggested that such direction-dependent stacking-fault formation
could lead to the directionally anisotropic interface mobility.
The above analysis shows that the introduction of steps eases

interface migration while the introduction of misfit dislocations
hinders it. Lattice constant manipulation, for example, by alloying
or straining, may be used to increase/decrease step and misfit
dislocation density. This may be employed to tune the α/β
interface mobility and microstructure (e.g., lamella thickness).

Fig. 10 Semicoherent α/β interface migration. a When α grows (downward interface migration), one BCC dislocation bm1 dissociates into a
hci and a basal bp partial separated by a stacking fault. The HCP unit cell is also shown to identify the relevant Burgers vectors. b When β
grows (upward interface migration), two BCC dislocations are left behind in β and glide with the interface. Atoms are colored by CNA.
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In this work, we investigated the structure and thermodynamics
of the α/β interface in Ti using molecular dynamics, thermo-
dynamic integration and a DFT-trained Deep Potential. Our major
findings are as follows.

(i) The coherent interface free energy depends upon coher-
ency strain (see Figs. 3, 4).

(ii) The structure of an equilibrium semicoherent interface
consists of (a) an array of steps with step height hs ¼
2

ffiffiffi
6

p
aβ0=3 and Burgers vector bs ≈ 0.088hs, (b) an array of

misfit dislocations in the form of a pair of full dislocations in
β (BCC crystal), and (c) terraces with the structure of the
coherent interface. The intersection between a step line and
a full dislocation line results in a local hump in the interface
profile and bowing of the step.

(iii) The equilibrium semicoherent interface free energy is 0.188
J m−2 (at the equilibrium α/β coexistence temperature, 1194
K). The energy associated with the misfit dislocation array
(lattice mismatch along the [0001]α or [110]β direction),
dominates the semicoherent interface free energy ( ~ 88%);
the contribution associated with the coherent terraces is
small (~8.6%)

(iv) The computed coherent/semicoherent interface free energy
was used to predict the energy barrier, critical size and
critical shape of the α nucleus (with coherent and
semicoherent interfaces) within a β matrix. At large under-
cooling (ΔT≳ 300 K), the α precipitate nucleates with
coherent interfaces, which become semicoherent as the
precipitate grows. When the undercooling is small, the α
precipitate forms and grows with semicoherent interfaces.

(v) Analysis of the semicoherent interface structure shows that
while the step array aids interface migration, the misfit
dislocation array hinders it. The misfit dislocation drag
mechanism differs depending upon the direction of inter-
face migration.

METHODS
Interface free energy calculation
The free energy of an atomic system can be obtained by λ
integration based on a set of thermodynamic equilibrium states. λ
is a parameter which is used to smoothly vary the Hamiltonian
between a reference system H0 and the Hamiltonian of the target
system (i.e., the system of concern) H1. The “mixed” Hamiltonian is
H(λ)= (1− λ)H0+ λH1. The free energy of the target system, F1, is
obtained by integration:

F1 ¼ F0 þ
Z 1

0

∂H
∂λ

	 

λ

dλ; (8)

where F0 is the reference system free energy and 〈⋅〉λ is the
ensemble average for a system with parameter λ.
We can perform a nonequilibrium MD simulation in which λ

changes with time λ(t). If the rate of change of λ is infinitesimally
small, we obtain the equilibrium state at each λ, the exact
ensemble average 〈⋅〉λ and an accurate evaluation of the
integral in Eq. (8). However, infinitesimally slow changes of λ
requires infinite simulation cost. We can construct a switching
function λ(t) which changes λ from 0 to 1 (forward) and then from
1 to 0 (backward) with time. The value for the integral Eq. (8) is the
difference between the work done in the forward and backward
processes24–27:

F1 ¼ F0 þ 1
2

W0!1
irr �W1!0

irr

� �
; (9)

where the average irreversible work associated with switching λ
from λ1 to λ2 is

Wλ1!λ2
irr ¼

Z tðλ2Þ

tðλ1Þ

∂H
∂λ

dλ
dt

dt (10)

and t(λ) is the inverse of λ(t).
The choice of reference system for determining the free energy

in λ integration is important. We choose a reference system for
which we can easily determine the entropy (count the number of
states). We choose the Einstein crystal (EC), where each atom is an
independent 3D harmonic oscillator, since only the vibrational
entropy contributes to the free energy53. The N-identical atom EC
Hamiltonian is

H0ðr;pÞ ¼
X3N
i¼1

p2i
2m

þ 1
2
mω2r2i

� �
; (11)

where r and p are generalized coordinates and momenta of
atoms, m is the mass and ω is the oscillator frequency. The
partition function and free energy are

Z0 ¼
Z

exp �H0ðr;pÞ
kBT

� �
drdp

h3N
¼ kBT

_ω

� �3N

; (12)

F0 ¼ �kBT ln Z0 ¼ 3NkBT ln
_ω

kBT

� �
; (13)

where kB and h are the Boltzmann and Planck constants and
ℏ= h/2π.
With Eq. (13), Eq. (9) can be written as

F1ðN; V ; TÞ ¼ 3NkBT ln _ω
kBT

� �
þ 1

2 W0!1
irr �W1!0

irr

� �

þ kBT ln N
V

2πkBT
Nmω2

� �3=2h i
;

(14)

where the last term corrects for the fixed center of mass54. Freitas
et al.28 implemented λ integration with adiabatic switching in the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS)55; we employ this here.
The interface free energy is the excess free energy of the system

due to the presence of an interface separating two phases; the
excess free energy is found by subtracting the bulk free energies
of the two phases from the free energy of the two-phase system.
Frolov et al.56 writes the interface free energy in crystalline
materials as

γA ¼ F � ðζαFα þ ζβFβÞ; (15)

where γ is the interface free energy and A is the interface area in
the two-phase system; F, Fα and Fβ are the free energies of the
two-phase system, and in bulk α and β. ζα and ζβ are the fractions
of two phases:

ζα ¼ NVβ � NβV

NαVβ � NβVα
; ζβ ¼ NαV � NVα

NαVβ � NβVα
; (16)

where (N, V), (Nα, Vα) and (Nβ, Vβ) are the numbers of atoms and
volumes in the two-phase system and bulk α and β. In this way,
identification of the phases to which each atom belongs is
unnecessary.

Free-end nudged-elastic-band method
The free-end nudged-elastic-band (FE-NEB) method is applied to
find the minimum energy path and saddle points in Sec. III. The
NEB force on the ith image (except the end image) is

FNEBi ¼ F?i þ FSi : (17)

F?i is the true force projected along the string normal. FSi is the
spring force:

FSi ¼ k Riþ1 � Rij j � Ri � Ri�1j jð Þτi; (18)
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where Ri is the configuration of the ith image, τi is normalized local
tangent at the ith image, and k is a spring constant. We set k =
50 Å−1 to obtain smooth NEB paths. The minima were obtained
using the Quick-Min (QM) algorithm57 with step size 0.005 and a
stop criteria of jΔFNEBmaxj<1:11 ´ 10�8 (dimensionless). The detailed
algorithm of FE-NEB is given in Supplementary Note 5.

Computational settings
All the MD simulations were performed using LAMMPS55.
Interactions between Ti atoms were described using a Deep
Potential (DP)30. The DP for Ti predictions for basic properties of
HCP, BCC and FCC Ti such as lattice parameters, cohesive
energies, elastic constants, and defect structures/energies as
well as defect properties (surface, point defect, stacking fault, γ-
surface on multiple planes, dislocation core structures) and
transformation and melting temperatures are shown in Wen
et al.30. These are compared with experiment and/or DFT
calculations where available. Overall, the agreement is excel-
lent. This potential can also reproduce features of the thermal
martensite transformation in Ti (see Supplementary Note 1).
The potential and its properties are available from the Deep
Potential library58.

DATA AVAILABILITY
Data supporting the findings of this study are available at https://doi.org/10.24435/
materialscloud:3s-h1, or from the corresponding author on reasonable request.
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