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Automated classification of big X-ray diffraction data using
deep learning models
Jerardo E. Salgado1, Samuel Lerman2, Zhaotong Du3, Chenliang Xu2 and Niaz Abdolrahim 1,3,4✉

In current in situ X-ray diffraction (XRD) techniques, data generation surpasses human analytical capabilities, potentially leading to
the loss of insights. Automated techniques require human intervention, and lack the performance and adaptability required for
material exploration. Given the critical need for high-throughput automated XRD pattern analysis, we present a generalized deep
learning model to classify a diverse set of materials’ crystal systems and space groups. In our approach, we generate training data
with a holistic representation of patterns that emerge from varying experimental conditions and crystal properties. We also employ
an expedited learning technique to refine our model’s expertise to experimental conditions. In addition, we optimize model
architecture to elicit classification based on Bragg’s Law and use evaluation data to interpret our model’s decision-making. We
evaluate our models using experimental data, materials unseen in training, and altered cubic crystals, where we observe state-of-
the-art performance and even greater advances in space group classification.
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INTRODUCTION
The response of materials at extreme pressures strongly depends
on their atomic arrangements and crystal structure. Determination
of the crystal structure of solid and liquid materials is essential for
understanding their mechanical, electromagnetic, and thermody-
namic properties1–3. Powder x-ray diffraction (XRD) is the golden
standard for material characterization, where it produces a pattern
that encodes information about the crystal symmetry, lattice
parameters, types, and packing of atoms at nanoscale domains4,5.
However, current indexing techniques require human intervention
and contextual insights from verified materials5–10. Rietveld
Refinement process requires manual tuning and adjustments such
as peak indexing and parameter initialization for trial-and-error
iterations11,12. These parameters are initialized using known
contextual knowledge such as expected material symmetries,
beam source, crystal, temperature, and grain size. The parameters
are then optimized using a best-fit iterative procedure to replicate
the original experimental diffraction pattern. Automatic classifying
software such as TREOR lacks the accuracy needed for reliable
automated material characterization as it ultimately relies on
human intervention13,14. Furthermore, initialization steps can be
extremely difficult to establish with the presence of a small number
of impurity phases that cause overlapping peaks with the main
phase13. Characterizing materials that have no available contextual
knowledge makes classification even more difficult, time-consum-
ing, and inaccurate. On the data collection side, recent advances in
ultrafast synchronous X-ray diffraction and spectroscopy measure-
ments generate big datasets from millions of measurements; far
over what human experts can manually analyze15–19. Moreover,
advances in computational power have allowed for substantially
more accurate simulations for materials in unexplored conditions.
Therefore, with the critical need for adaptive and automated
analysis of XRD data, we developed generalized deep learning
models for crystal system and space group classification given an
XRD pattern.

Deep learning (DL) is a powerful machine learning method that
can classify a myriad of data20–22. DL models have outperformed
traditional rule-based methods in many areas, such as image
classification23, control24, and natural language processing25

enabling new capabilities in high-throughput data analysis22,26.
With many variables affecting the shape of an XRD pattern, such as
the material’s phase or crystal lattice, it is difficult to characterize a
material if no comparable structures are known. However, DL
models can overcome this issue1 because of the thousands of
tunable parameters that are optimized using big data—allowing
models to make predictions based on learned representations from
the data. Still, for a model to correctly characterize materials and
material transformations, the model must be generalized, i.e., have
the ability to accurately classify a wide array of materials beyond
the training data. Herein, we will also discuss and analyze models’
generalizability by their capacity to uphold high performance across
a variety of inorganic crystalline materials.
There have been previous works on developing various machine

learning and DL methods for diffraction data analysis17,27 for different
purposes such as pattern decomposition, cluster analysis28–31, crystal
structure classification32, structure-property relationships33, and phase
mapping34–36. Park et al.13 introduced convolutional neural network
(CNN) models trained on simulated XRD patterns (synthetic data) for
classifying crystal systems, and space groups. Contemporary models
use standard DL architectures because they proved to be sufficient
on the synthetic data, however, the generalizability of Park et al.’s
model was only tested on two experimental patterns and even failed
on one of them. Similarly, Vecsei et al.37 trained a deep neural
network (DNN) and a CNN, but also evaluated their model’s
performance on the RRUFF experimental dataset. This dataset is a
collection of experimentally verified high-quality spectral data from
well-characterized minerals38. Their best model, the CNN, tested at
86% accuracy on crystal system classification for their synthetic
patterns, but this performance dropped to 56% when evaluated on
the RRUFF data. Vecsei et al.37 also achieved better results from the
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DNN model over CNN. Other works trained similar models to classify
smaller subsets of crystal symmetry classes18 or a narrow specific
group of materials datasets1,18,39. Therefore, there is still a critical need
for a robust model that can classify dynamic and/or unseen real XRD
data from diverse materials.
The focus of our work is to develop a generalized model that is

robust enough to classify the crystal system (7-way classification)
and space group (230-way classification) of materials encountered in
cutting-edge material design. In this paper, we implemented three
main strategies to develop such a model. First, we generated an
augmented synthetic dataset that is comparable to real experi-
mental XRD data. This enhances the model’s ability to classify
patterns irrespective of noise, small peak shifts due to atomic
impurities, grain size, and pattern variations due to instrumental
parameters. Second, we designed architectures and tuned hyper-
parameters to develop models that best fit XRD analysis. Here,
models are designed with the explicit purpose of instilling scientific
classification strategies that are based on real physics. In addition,
we used an adaptation technique to teach our model to account for
experimental factors that are not captured in synthetic data. Lastly,
we used three evaluation datasets that represent materials dissimilar
to those encountered in the training data to explore the model’s
classification strategy. The first evaluation dataset is the experi-
mental RRUFF dataset. The second dataset is a collection of
materials with enhanced magnetic properties selected from the
Materials Project that were not used to train the model or part of the
training data40,41. The third is the Lattice Augmented dataset; a set
of synthetically generated patterns from materials whose crystal
lattice sizes are manually changed. Each of these datasets is used to
evaluate the capabilities of our models outside of synthetic data. We
also elucidate the relationship between model architecture and the
classification process based on Bragg’s Law. In addition, we have
made our entire model development pipeline (from data generation
to model development) available in our Data and Code availability
section. It should also be noted that past studies and this work are
focused on data generated assuming a Cu source, however, the
beam source can be specified by the user to develop a
compatible model.

RESULTS
Training data
A total of 204,654 crystallographic information files have been
retrieved from the Inorganic Crystal Structures Database42. Incom-
plete or duplicated structures were removed for a final count of
171,006 entries (hereafter called 171k). We used the original 171k
files to create 7 synthetic datasets as outlined in the methods.
These synthetic datasets, numbered 1–7, have a unique set of
Caglioti parameters and noise implementations. The supplementary
material illustrates seven different XRD patterns, each correspond-
ing to a set of Caglioti parameters. However, these are not the
datasets used to train the models but instead are used to create the
3 training datasets. The first training dataset is named the baseline
dataset, which is just synthetic dataset 1 at 171k data points. The
second training dataset is the mixed dataset, which was randomly
sampled without replacement from synthetic datasets 1–4, for a
total of 171k data points. The last training dataset is our large
dataset which is a combination of all 7 synthetic datasets for a total
of 1.2 million data points. We use the baseline, mixed, and large
training datasets to train models. More details on the criterion for
pattern engineering processes, noise implementations, and Caglioti
parameters for the synthetic datasets are provided in Methods.
Although our baseline training dataset houses over 171k data

points, not all classes are equally represented. Figure 1a illustrates
the relative distribution of crystal systems and space groups
within the original 171k crystals. For example, triclinic crystals

Fig. 1 Crystal system and space group distributions. Crystal
system and space group distribution of the datasets used in this
study. We have the a 171k dataset, b the RRUFF dataset, and c the
Materials Project (MP) dataset. Inner circle is crystal system number,
name, and count. Outer circles show space groups with a
large count.
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(7904 data points) have much less representation than orthor-
hombic crystals (38,604 data points) which have the largest
representation.

Evaluation data
Our model’s performance on training data is not reported, as all
models converge to ~98% accuracy. Contemporary model
performances are similar and only reported on synthetic datasets
or a small subset of materials13,19,37. Therefore, to test the model’s
capabilities in material development and if the model is well
generalized, we applied it to three additional evaluation datasets
that were not engaged within the training process.
The first evaluation dataset is the RRUFF dataset from the RRUFF

project, a collection of experimental XRD data not seen by the
model38. This dataset will test the model’s ability to classify real
materials whose diffraction patterns are affected by experimental
conditions43. The RRUFF dataset includes 908 entries and the class
distribution for this dataset is shown in Fig. 1b. Figure 2 compares
a pattern generated by our pipeline and a pattern from the RRUFF
dataset that was experimentally recorded. It should be noted that
the experimental XRD patterns provided by RRUFF have peak
locations and intensities that are not simply replicated in synthetic
data. Therefore, this dataset will examine our model’s perfor-
mance on real experimental data that are difficult to characterize
because of the pattern changes that arise from the instrument of
choice, impurities, grain size, preferred crystal orientation, and
other external factors44,45.
The second evaluation dataset is the MP Dataset, which

contains 2253 inorganic crystal materials obtained from the
Materials Project database. The materials were chosen by Shen et
al.40 because of their potential for enhanced electromagnetic
properties. The data distribution is shown in Fig. 1c. We used our
data generation pipeline to produce the XRD patterns of the
selected materials. This evaluation dataset contains a different
distribution than that of the RRUFF dataset and baseline training
dataset and will further test the model’s performance on
distinctive materials that the model has no prior knowledge of.

The third evaluation dataset is the Lattice Augmentation
dataset. Here, we test our model’s performance on synthetic
cubic material patterns with manually expanded or compressed
lattice constants. By deviating lattice constants, cubic structures
still maintain a cubic symmetry but will induce translational shifts
in their diffraction patterns. This is because relative intensities and
distances between peaks elucidate the crystal symmetry in an XRD
pattern and not the angle at which the X-ray beam contacts and
diffracts. For a scientifically sound model, it must be able to
classify XRD patterns based on the relative location and intensity
of the peaks and not the exact location of the peaks. Therefore,
this dataset will test a model’s ability to make accurate predictions
irrespective of crystal lattice size, usually observed in time-
resolved experiments. This property is specifically important for
in-situ dynamic compression experiments in which it is critical for
a model to be able to distinguish peak shifting due to pure
compression of a material system that does not necessarily cause
a phase transformation46–48. In addition, peak shifts are character-
istics of alloying in materials and will test a model’s ability to
account for alloying effects49–51. To generate a Lattice Augmenta-
tion dataset, we take all 29k cubic crystals from the 171k original
crystals and compress/expand them by a specified percentage.
After their sizes are augmented, we generate the synthetic pattern
with our data generation pipeline. We used this procedure to
augment crystals down to 80% and up to 120% of their original
size. This will generate 409k data points.
Ultimately, all three evaluation datasets are used to test a

model’s performance on unseen data. Maintaining high perfor-
mance on these indicates that the model is well generalized for
real-world applications.

Model development
The training data are fed into our supervised deep learning
algorithms for training among seven crystal systems and 230 space
group classes. In this section, we consider three architectures, two
of which are the standard convolutional neural network (SCNN)
architecture, Fig. 3a, and the multi-layer perceptron (MLP) dense

Fig. 2 Diffraction pattern comparison. Comparison of Axinite XRD patterns from two sources: ICSD and RRUFF. The structural chemical
formula is shown. The synthetic profile was generated through our pipeline using the peak shape 1 function, while the RRUFF pattern was
experimentally recorded. Only the 2theta range from 0 to 45° is shown. Although peak positions are similar, there is significant noise in peak
intensities due to difference in impurities and as a result many overlapping peaks.
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network, Fig. 3b, the same as architectures used in works by Park13

and Vecsei37. The third is the no-pooling convolutional neural
network (NPCNN), where the average pooling layers are removed.
MLP architectures are inspired by human neurons, where each
neuron is a linear equation with adjustable parameters and each
connection is a non-linear function to normalize the information.
CNNs function in much the same manner, but instead, each
neuron is a ‘filter’ so that it can be iterated over the entire data
range, leading to smaller model architectures. The SCNNs are
referred to as ‘standard’ because their architecture was originally
used for image classification, and to distinguish them from the
more specialized NPCNN. The NPCNN uses the same parameters
as the SCNN but removes the pooling layers that down-sample
the information from the filter. Model hyperparameter specifica-
tions are shown in Fig. 3 and further detailed in methods.

Using purely synthetic data in model development
Our baseline models were developed using the baseline dataset.
The MLP and SCNN models have ~96% accuracy in 7-way
classification and 94% accuracy in 230-way classification, meaning
the model has fully learned the synthetic training dataset. Models
released as recently as last year13,18,19,37 have also converged on a
testing accuracy of up to 98% on their respective synthetic
datasets. All the studies emphasize their respective architecture as
the reasoning behind their state-of-the-art performance13,19.To
evaluate our model’s performance outside of synthetic data, we
tested our models on the experimental RRUFF dataset. However,
as seen in Fig. 4, the performance on the RRUFF dataset was
alarmingly low at 7-way accuracies of 12% and 22% from the

SCNN and MLP models respectively. 230-way accuracies followed
similar trends at 12% and 17% for SCNN and MLP respectively. The
low performance from the MLP and SCNN models, and by
extension all contemporary models evaluated on synthetic data,
indicates that they are not well generalized to make predictions
on data outside of synthetic data.

Using mix and large datasets for training
Sample thickness, crystal orientation, and experimental conditions
can affect peak broadness, location, and intensity. Therefore, we
used the mixed and large datasets to train a model to classify
irrespective of these external factors. By using the mixed dataset,
we observed an increase in 7-way accuracy at 35% and 64% for
the CNN and MLP respectively. 230-way accuracies are also
reported and have similar trends at 22% and 53%, Fig. 4. With the
mixed dataset being limited to 171k data points, it could equally
be limited in capturing the variability that is observed in real-world
crystals. The large dataset uses several more peak shape functions
and noise implementations, however, models trained on the large
dataset only gained an average marginal 4% increase in
performance for the SCNN and MLP respectively, Fig. 4. This
means that the mixed dataset sufficiently captures variations
implemented in the XRD patterns. We will explore how to adapt
models to these patterns in a more holistic manner in the Domain
Adaptation section. Nevertheless, our mixed and large datasets
teach the model to be invariant to—or irrespective of—external
parameters. Data variations increase model generalizability and
help maintain high performance in real-world applications.

Fig. 3 Model Architectures. Model architecture specifications used. We have a Standard convolutional neural network (SCNN) and b multi-
layer perceptron (MLP) architectures. The input is the XRD pattern, and the output is the desired classification: 1-of-7 crystals systems or 1-of-
230 space groups. The No-Pooling Convolutional Neural Network (NPCNN) has the same specifications as the SCNN, but with removed
pooling layers.

Fig. 4 RRUFF Experimental Performance. Model performances on RRUFF dataset. Y-axis is the accuracy, and x-axis is the dataset used to train
the model. Left is the 7-way, or crystal system, performance. Right is the 230-way, or space group, performance. Each model is color coded
where blue is the standard convolutional neural network (SCNN), orange is the multi-layer perceptron (MLP), and in green is the no-pooling
convolutional neural network (NPCNN).
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Pooling ablation
CNNs in previous studies use standard architectures which include
a series of down-sampling functions called pooling layers13,37. The
layers allow for smaller models; however, information down-
sampling can lead to misclassification, and pooling layers
themselves have also been shown to cause overfitting52–54. Many
of the beneficial properties of pooling layers, such as dimension
reduction, enlarging the receptive field, and learning invariance
features have been achieved with convolutions alone55–59. For
tasks like image segmentation and object detection, where local
information is crucial, state-of-the-art networks often omit pooling
layers to achieve better performance60,61. Removing the pooling
layers from SCNNs will prevent information compression and will
enable the model to extract contextual information from locally
spaced peaks. This is the basis for our NPCNNs–SCNNs with
pooling layer ablations.
In this comparison, we look at models trained on the large

dataset and evaluated on the RRUFF dataset. The NPCNN
increased to 74% accuracy on the 7-way classification. For
reference, the SCNN and MLP had 7-way accuracies of 40% and
67%, respectively, Fig. 4. This trend is exacerbated in the 230-way
classification, where we see a large increase from the SCNN to
NPCNN at 28% and 66% respectively, Fig. 4. Ultimately, the NPCNN
now supersedes the MLP as the best model and has improved
performance. We also analyze some specific cases in the RRUFF
dataset and have added these insights to our supplementary
materials. A more detailed reasoning as to why we observe this
trend is in the Elucidating Model Properties section.

Domain adaptation via data inclusion (souping)
In this section, we train models by using data from the domain
source we are trying to adapt. Here we adapt to the experimental
domain by including RRUFF data in the training algorithm. For
these models, we include 50% of the RRUFF data into the large
dataset to create our final training dataset: ‘Souping Large
Dataset”. The remaining 50% of the RRUFF data is used to test
performance. Souping the model adapts it to uncertainties arising
from experimental conditions like the beam source-subject-

detector distances, temperature, pressure, crystallite size, or
impurities45,62. Thereby, the model learns to differentiate peak
intensity/position changes due to experimental conditions, poly-
crystal properties, or a newly observed atom symmetry. This
adaptation is similar to the experience an experimental scientist
gains by working with the same instrument or the same type of
materials repeatedly. The results of souping models are shown in
Fig. 4. Again, the NPCNNs have the best performance at 86%
7-way accuracy, followed by MLP and CNN. 230-way accuracies
saw similar trends at 77% accuracy for the NPCNN. It is also
important to note that there are only 452 experimental data
points and 1.2 million synthetic data points in this large souping
dataset, but the model was still able to extract valuable
classification insights from the experimental data. These insights
allowed the model to adapt to new parameters that can affect
peak shapes, including but not limited to, defects and impurities.
The improved accuracy shows that the model learned new

classification strategies from architecture optimization. However,
the confusion matrix on the RRUFF data reveals bias in all models
towards space groups with the highest count in the training
dataset, Fig. 5. Here, the y-axis is the actual classification, and the
x-axis is the model’s predictions. We observe that space group two
crystals are erroneously predicted to be space group 6, 8, 9, and
11–15 because they have the largest distribution in the original
171k data, as shown in Fig. 1a. Thus, if the diffraction pattern is
difficult to characterize, then the model assumes it is a space
group with the highest probability of appearing. This flawed
justification leads to higher accuracy but faulty classification
reasoning and ultimately stems from an out-of-distribution
classification. In other words, the model is characterizing materials
that it has little training in classifying. This is a well-known
phenomenon in DL, here caused by an uneven distribution of
classes in the training dataset. It should be noted that a similar
issue is present for other overrepresented classes (space group 62,
139, etc.), albeit to a lesser degree. However, a confusion matrix on
a small portion of data is not enough to determine if the model’s
accuracy was compromised due to class imbalance. Accuracy is
often used to understand model performance, but it does not give
a full understanding of a model’s decision-making process as it

Fig. 5 RRUFF and MP dataset Confusion Matrix. Confusion Matrix for NPCNN trained on the Souping Large Dataset evaluated on two
datasets. The datasets are the a RRUFF dataset and b MP dataset. Only space groups 1–19 are shown. Model erroneously predict many
patterns as space group 2, 12, 14, and 15. These space groups are also overrepresented in the training data.
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fails to determine if the accuracy was affected by biases and
assumptions. In the F1 Score and Bias section, we further analyze
the effect of class imbalance as it can have a negative effect on
performance. We will also discuss various methods to counteract
this issue. Since models gained a significant performance boost
using the ‘Large Souping Dataset’, the models will be fixed to
these hyperparameters and there will be no further training.

Testing model performance on the MP dataset
The Materials Project dataset is a collection of crystals chosen
because of their potential in energy storage technologies. It has a
distribution of space groups different than that of the RRUFF and
training dataset and is shown in Fig. 1c. For instance, there is a
larger representation of Trigonal crystals present whereas the
RRUFF dataset has zero representation of this class. The patterns
were generated using our pattern generation pipeline but the CIFs
were sourced from the Materials Project database. The models
here are all trained using the Large Souping Dataset discussed in
the previous section. The performance of this dataset will test the
model on unseen materials with entirely different structures and
class distributions. To evaluate performance, we use the models
trained on the large souping dataset. Figure 6 shows accuracy
results for 7-way classification of the MLP, CNN, and NPCNN
models which are 54%, 75%, and 67%. The 230-way accuracies are
at 25%, 45%, and 36% respectively. In this instance, the NPCNN is
superseded by the SCNN model. This performance shift arises
from the larger architecture of the NPCNN models, making it less
robust to the materials introduced here. However, they suffer from
the same out-of-distribution problem that was observed in the
RRUFF results. The bias towards space groups 12, 14, and 15 are
visualized in Fig. 5, the confusion matrix of the NPCNN model on

the MP dataset. We further analyze the implications of this
observed class imbalance in the F1 Score and Bias section.
We also analyzed the MP Dataset to further understand the

discrepancy in performance compared to other evaluation
datasets. We found that the MP dataset has a lower average unit
cell volume at 205 (+/−110) _A

3
and lower number of atom sites at

13.42 (+/−6.87) compared to the ICSD dataset average of 1186
(+/−3800) _A

3
and 22.18 (+/−27) average atom sites. Per Bragg’s

law, which establishes an inverse relationship between atomic
plane distance and diffraction angle, smaller unit cell volumes
produce peaks at higher angles. However, we cut off the 2θ angle
resolution to 5–90°, and therefore our models use low-angle XRD
peaks. Consequently, the more important peaks at higher angles
(that appear in the MP dataset patterns) are less seen by our pre-
trained models. Because the NPCNN has no pooling layers, it
extracts more information from peaks, placing more importance
on these low-angle peaks, when in fact, they should be placed on
high-angle peaks. Furthermore, the low number of atom sites, and
in turn the lower number of peaks given for data extraction,
makes it much more difficult for the NPCNN. Conversely, the
SCNN’s pooling layers prevent the model from extracting
positional information, which makes it invariant to translation.
This places less emphasis on peak locality, enabling feature
extraction even with limited resolution, which played a significant
role in its better performance compared to the NPCNN. However,
it is worth noting that the performance difference between the
SCNN and NPCNN was not considerably distinct when compared
to other evaluation datasets.

Performance on lattice augmentation dataset
Volumetric compression of cubic crystals does not change its
symmetry and therefore classification should remain consistent
across all augmentations within the Lattice Augmentation Dataset.
The MLP and NPCNN models trained on the Souping Large
Dataset were used in this study, where Fig. 7 shows the results. For
example, the MLP model has 88% accuracy on cubic crystals that
were 80% of their original size. Both models have exceptional
accuracy across all deviations, even at extreme ends, and the
trend continues in that the NPCNN still leads. Although
performances vary through the entire range, the highest
accuracies are observed for sizes that are closest to the original
size at 98% and 102%. These smaller deviations are a closer
representation of how they emerge in alloy materials50 or in
compression experiments that do not induce a phase change46,49.
This also elucidates a broader classification strategy: classification
based on peak relations: using relative peak intensities and
distances to make crystal system and space group predictions per
Bragg’s Law. Further discussions are in the Elucidating Model
Properties section.

Fig. 6 Materials project performance. Model performance on the
materials project (MP) dataset. 7-way and 23-way accuracy is the
crystal system and space group classification respectively. Here, the
standard convolutional neural network (in blue) is outperforming
the no-pooling convolutional neural network and multi-layer
perceptron models (in green and orange respectively).

Fig. 7 Lattice augmentation performance. Performance of MLP and the NPCNN models on the Lattice Augmentation dataset. For example,
on crystals that were 80% of their original size, the MLP model has an accuracy of 88%, while the NPCNN model has 94% accuracy.
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F1 score and bias
We have repeatedly discussed the presence of overrepresented
space groups and crystal systems in our original 171k data. In this
section, we analyze our model’s predictive power using the
F1 score metric, which is the harmonic average of precision and
recall rates63. Achieving a good F1 score indicates two crucial
aspects of the model’s performance: first, its ability to maintain
precision by refraining from continuously assuming only higher-
represented classes, and second, its recall ability to correctly
classify the unique instances of lesser-represented classes. The
F1 score on the RRUFF evaluation dataset from models trained on
the Large Souping Dataset are 0.859, 0.753, and 0.568 for the
NPCNN, MLP, and SCNN respectively Fig. 8. These scores align with
the accuracy, demonstrating their consistency. Moreover, the MP
results also follow similar trends. Despite the apparent over-
representation of certain crystal systems, our model’s robust
performance in both accuracy and F1 Scores showcases its ability
for nuanced decision-making. However, there is still a clear
imbalance in the data, and solving this imbalance will improve
model performance. One method is data duplication of lesser
represented classes to create a more balanced training dataset.
Another method is to introduce a loss function that penalizes the
model more on lesser represented classes, thereby increasing
model performance when encountering more divergent patterns,
such as those found in the MP evaluation dataset.
We can also gain additional insights by analyzing the relation-

ship between accuracy on the MP dataset and class count in the

training data. Here we use the SCNN trained on the Souping Large
Datset. Figure 9 is a scatterplot that graphs the accuracy of each
space group, where the size of each bubble (i.e. space group) is
proportional to its total count in the training data. Although there
is bias observed from the confusion matrix, there is variability
when it comes to performance and representation. Space groups
with less than 2500 data points are sporadic in their performance
but the model was still able to accurately classify these lesser-
represented space groups. Ultimately, there is a clear relationship
between bias and class representation, a consequence of
overfitting that can be fixed by duplicating lesser-represented
classes in the training data. Furthermore, the model is still able to
accurately classify space groups that it has little experience with.
This attribute is valuable since material design efforts are
developing increasingly divergent microstructures, where models
can leverage a small number of data points.

DISCUSSION
The quality of training data is as important as the quality of the
architecture, and a more holistic representation of the data will
generate better, more robust models for real-world applications.
As such, our data augmentation, via peak shape variation and
merging experimental data into the training algorithm, produces
better results in all of our evaluation datasets.
Although there are many studies on the quality of the training

data13,18,19,37 and feature importance1,18,19,36,51, there are none to
study the effect of deep learning architecture on pattern analysis.
Here, we elucidate the relationship between model architecture
and performance. In XRD pattern analysis, the 2-theta angle at
which peaks emerge depends on the symmetry of the crystal
lattice. This means that in isolation, the peak location does not
provide enough information for classification. Two materials of the
same symmetry group, but of different sizes, will produce
dissimilar peak locations. Therefore, their relative peak intensities,
distances, and ordering elucidate their symmetry.
Hence, deducing the degree to which CNNs and MLPs use local

properties is critical for model development and future works. To
do so, we first present the properties of deep learning layers in
Fig. 10a: translational equivariance, permutation invariance,
positional reasoning, receptive field, and state if or how the layer
elicits these properties. The receptive field is the length of the
segments that the model analyzes, Fig. 10b. Permutation
invariance allows for consistent classification when the ordering
of the data is changed, Fig. 10c. Translational equivariance is a
property that allows models to correctly classify an object in an

Fig. 8 F1 Score on RRUFF and MP datasets. F1 Score for the RRUFF
and MP evaluations datasets. Model are trained using the Large
Souping Dataset. The F1 Scores and in agreeance with our reported
accuracy in Figs. 6 and 4.

Fig. 9 Scatterplot on MP performance. Scatter plot of standard convolutional neural network performance on the MP dataset. Y-axis is the
accuracy and x-axis is the space group. The size of each circle is the count of the space group in the original 171k dataset. For example, space
group 62 has an accuracy of 63%, with a count of over 12,500 synthetic patterns in the 171k dataset.
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image, say a cat, even if it’s shrunk, expanded, or translationally
shifted in any direction, Fig. 10d. Note that not all properties
allotted to the three layers are exhaustive to the complete
reasoning strategy spectrum of individual models. For example,
local non-equivariant MLPs are indeed possible, and this is the
reason we restricted this taxonomy to individual layer operations.
We will individually discuss how the models’ reasoning emanates
from these properties, relates to our observed empirical results,
and the implications of their success or failure on XRD reasoning.
First, we discuss the receptive field, which refers to the length of

the segments that the model analyzes. Convolutional kernels and
pooling layers are applied on local regions of 2theta angles,
whereas dense layers span the full range. This process is shown in
Fig. 10b. The convolutional local property induces spatial
impartiality across local regions of an input. Thus, the kernel has
no concept of absolute angle, but still processes the relative
values of the regions that it is applied to—relative peak
relationships. The operation is local to a small region and
delocalized to an absolute position (2theta angle). As the receptive
field of a CNN’s neurons increases with each application of
convolution, the reasoning of the model grows potentially more
global. In contrast, the MLP layer is analogous to single kernels
that span the global context. In that way, its reasoning specializes
in the absolute points in the input. It is also called a “fully-
connected layer”. As expected, the architecture that is presumed
to emphasize local relationships between peaks performs better.
Ultimately, our SCNNs and NPCCNs are the best fit for diffraction
analysis because they tend to reason based on local relationships
between peaks.
Second, we discuss permutation invariance, via average

pooling, which allows models to be immune to peak re-
orderings entirely Fig. 10c. This property is observed to decrease
the model performance on evaluation XRD data. Although a
convolutional kernel has a relativistic view of peak positions;
average pooling erases positional information altogether via
mean-reduction. Conversely, a dense layer specializes in weights
to each absolute position. Comparing the performances of
permutation-invariant pooling and order-preserving no-pooling

demonstrates the importance of peak positional ordering, that is,
which symmetries are present in the diffraction pattern. Informa-
tion lost because of pooling layers will lose relevant local
information, and presumably the reason why the SCNN consis-
tently performed worse than the MLP in past studies. The pooling
layer helps the SCNN remain translationally equivariant but lose
peak ordering information. Removing the pooling layer helps the
NPCNN remain translationally equivariant, but also retain peak
ordering information. As observed in our results, NPCNN
architecture is critical for model performance.
Lastly, we discuss translation equivariance which is defined as a

functional symmetry across translations. That is, a translation on
the input results in an analogous translation on the output
(feature-map) of the neural network. See Fig. 10d for a
visualization of this equivariance. Reasoning in this manner allows
a neural network to be “unfazed” by small shifts in the relative
peak positions of the XRD pattern. Both the convolutions in
NPCNN and SCNN architectures intrinsically have this critical
property while the MLP does not. This property is tested in the
lattice size augmentation experiment, where lattice deviations of
the same crystal structure generate similar patterns but transla-
tionally shift along the 2theta axis. As expected, the translation
equivariant model, NPCNN, performs better than the non-
equivariant model, MLP.
By analyzing these properties, we observe how a model’s

positional reasoning affects performance. The MLP models use
absolute peak positions as a basis of classification and therefore
lose the emphasis on relative properties, lowering overall
performance. The SCNN has no positional information, which is
not a desirable property in XRD analysis, as shown by its
consistently lower performance in the evaluation datasets. The
NPCNN model has relative peak reasoning, in other words, it uses
relative peak intensities and distances to derive the crystal system
or space group. This reasoning falls most in line with real-world
XRD analysis.
Ultimately, we have developed a generalized convolutional

neural network to classify the crystal system and space group of a
wide array of materials by generating high-quality training data,

Fig. 10 Model architecture taxonomy. Layer taxonomy and the resulting positional reasoning. a Each property of an individual layer.
b Receptive fields and its data segmentation. c Permutation invariance property from pooling layers. d Translation equivariance gained from a
convolutional layer.
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optimizing model architecture specifically for XRD pattern
analysis, and implementing domain adaptation methods.
First, we developed a data generation pipeline for the

production of large XRD datasets that incorporates experimental
effects on diffraction patterns. Our pipeline also has the capability
of simulating materials that undergo alloying and/or dynamic
experimentation, neither of which were ever used to train, or
evaluate, a model in previous works. Our data augmentation
techniques generate patterns that account for many experimental
factors such as sample thickness, grain size, impurities, preferred
crystal orientation, and other external instrumentational factors.
This higher quality data taught our models to discern pattern
changes due to factors that are not encountered in synthetic data,
which until this work was unaccounted for.
Second, our No-Pooling Convolutional Neural Network can

characterize materials based on relative-and-local reasoning
between indexed peaks, a fundamental characterization approach
based on Bragg’s Law. Because our models were trained based on
physics-based classification, we observed increased performance
across all of our evaluation datasets, most notably, on crystal
structures that are representative of alloying, compression, or
expansion. Our models can be advanced to account for dynamic
material transformations and experimental effects which is a key
critical component of cutting-edge materials characterization and
design.
In addition, we used domain adaptation to achieve new

classification strategies in our models and improve performance
on unseen experimental data. Our models learned classification
strategies on a much lower fraction of experimental examples and
applied those insights to unseen experimental XRD patterns.
Domain adaptation adapted our model to external factors that
affect pattern shapes it would not otherwise see under conven-
tional training methods.
Lastly, by evaluating unseen materials, we observe that our

models can learn how to classify said data from relatively few data
points. This property is most important when evaluating out-of-
distribution data or increasingly divergent materials, both of
which are commonly encountered in material development
research.
With the higher quality training data, optimized model

architecture, and adaptive learning technique, we observed
state-of-the-art performance from our convolutional neural
networks.
Furthermore, because DL models are inexpensive to run, they

also offer instantaneous feedback when implemented in an
experimental setting. These properties are not only useful for
material exploration and design but also for eliciting materials
phase transformation behaviors from big data via in situ XRD
experiments. At extreme pressures, phase transformations and
plastic deformations are tremendously difficult to characterize
because of the vast amounts of data; however, with our
automated and validated models, we can fully unlock these
insights.
Future works should focus on developing models that induce

relative peak analysis but be careful to preserve crucial peak
ordering information. New models could also generate data that is
agnostic to the beam source by incorporating momentum transfer
Q instead of 2θ which will ensure compatability across beam
sources64. The distribution of classes is also an issue but can be
resolved by duplicating lower-represented classes. The methods
outlined here can also be used to develop models for other
spectroscopy characterization techniques, such as Raman and
nuclear magnetic resonance. These methodologies are similar in
that they measure intensity with respect to some frame of
reference (Raman shift/ppm), therefore, architectures are easily
compatible.

METHODS
1D XRD pattern generation
To generate synthetic powder XRD patterns we use Bragg’s Law to
calculate peak locations and use the Lorentz multiplier, polariza-
tion factor, and structure factor to calculate peak intensities62.
There are two major factors to determine the Bragg angle: (1)
interplanar distance, and (2) wavelength. Braggs’ law is the
relation between the diffraction angle (Bragg angle), θhkl ,
interplanar distance, dhkl , and the wavelength, λ, as:

sin θhkl ¼ λ

2 � dhkl
(1)

Since we have a fixed wavelength, we calculated planar
distances dhkl using the unit cell parameters. The interplanar
distance is a function of the unit cell parameters (a; b; c; α; β; γÞ
and Miller indices (h; k; l) which allows us to describe every set of
crystallography plane. The general equation to calculate planar
distance is:

1
d2hkl

¼ h2

a2sin2α
þ 2kl

bc cos β cos γ � cos αð Þ þ k2

b2sin2β

h

þ 2hl
ac cos α � cos γ � cos βð Þ þ l2

c2sin2γ

þ 2hk
ab cos α � cos β� cos γð Þ�= 1� cos2ð α� cos2β� cos2γ

þ 2 � cos α � cos β � cos γÞ
(2)

The diffraction pattern has multiple Bragg angles, which lead to
multiple Bragg peaks, and each has its peak intensities.
The peak intensities are affected by structural factors and

external factors. In our synthetic data generation, we used
structure factors, which depend on the atomic structure of the
crystal. The overall equation for intensities is:

Ihkl ¼ K ´ Lθ ´ Pθ ´ Fhklj j2 (3)

Where K is a scaling factor, Lθ is the Lorentz multiplier, Pθ is the
polarization factor, Fhkl is the structure factor. The Lorentz
multiplier and polarization factor are merged as the Lorentz
polarization factor:

LP ¼ 1þ cos22θ

cos θ � sin2θ
(4)

The structure factor is determined by the distribution of atoms
in the unit cell as:

Fhkl ¼
Xn
j¼1

gj � f j � expð2πiðh � xj þ k � yj þ l � zjÞÞ (5)

Where n is the total number of atoms in the unit cell, gj is the
population and occupation factor, f j is the atomic scattering
factor, and x; y; z are the fractional coordinates of the jth atom. The
normal atomic scattering factors are represented as follows:

f j sin θ=λð Þ ¼
X4
i¼1

ai exp �bi � sin2θ=λ2
� �þ c (6)

The scattering factors of chemical elements and ions can be
referenced from the International Tables for Crystallography, Vol.
C65 .
Once positions and intensities are calculated we use a peak

shape function to give the data the appearance of experimental
data. In manual methods, the parameters within the peak shape
functions are determined using a best-fit approach to simulate the
correct observed symmetry and composition. In our pipeline, we
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adopt the Gauss peak shape which is described as:

y xð Þ ¼ G xð Þ ¼ C
1
2
Gffiffiffi
π

p
H
� exp �CG � x2

� �
(7)

Here CG ¼ 4ln2 and x ¼ ð2θi � 2θkÞ=Hk , where 2θi is the Bragg
angle of the ith point of the powder diffraction pattern, and 2θk is
the ideal Bragg angle of the kth Bragg reflection. Full widths at half
maximum, H, give the appearance of Gaussian peaks. It is
calculated using the three free variables U, V, and W in the
Caglioti formula as44:

H ¼ U � tan2θþ V � tan θþW
� �1

2 (8)

Dataset
In experimental data, the shape of the peaks depends on external
factors. Here in this work, four sets of Caglioti parameters are used
to generate 4 synthetic datasets, each with differing peak shapes.
Three additional synthetic datasets were generated by randomly
amplifying the recorded intensities with noise between 0.2 and
2% of its original intensity. Note that the noise amplification is
added before the intensities are normalized, therefore we
maintain an intensity range from 0 to 1000. In total, we generated
seven synthetic datasets where details on the chosen parameters
for each dataset are shown in Table 1.
Ultimately, these datasets represent materials of varying

experimental conditions45. For direct comparison with experi-
mental data and previous literature13,37, we fixed the wavelength
at the copper Kα line (λ= 1.54 Å) and displayed our results as a
function of 2θ. We set the range from 5◦ < 2θ < 90◦ with a spacing
of 0.01◦. We also have trained models on the large range of
5◦ < 2θ < 180◦ but did not observe a significant performance
improvement. Therefore, to be consistent with experimental data,
we used the smaller 2θ range. In addition, we normalize the
patterns such that the largest peak intensity is always one
thousand.

Deep learning architecture
The SCNN is composed of 3 convolutional layers with output
channels [80, 80, 80], kernel sizes [100, 50, 25], strides [5, 5, 2], and
no padding. Each layer has a number of neurons that collect
information from the previous layer. This information is converted
into a specific value by an activation function to be transferred to
neurons in the next layer. The rectified linear unit (ReLU) activation
function is used in our models, following each convolutional layer
is a dropout probability of 30% that arbitrarily skips some neurons
when computing the gradients for training. Consistent with
Vescei’s work37, we include an average pooling layer after each

convolution with kernel sizes [3, 3, 3] and strides [2, 1, 1]. The final
neural feature maps are flattened via concatenation and
processed by a 3-layer ReLU-activated MLP with output dimen-
sions [2300, 1150, number of classes] and dropout probability of
50% during training after each ReLU activation, consistent with
Park13 and Vecsei37.
The NPCNN is composed of 3 convolutional layers, with output

channels [80, 80, 80], kernel sizes [100, 50, 25], and strides [5,5,2]. After
each convolutional layer, there is a dropout probability of 30% and
the average pooling layers are removed. The feature map is flattened
and processed by the same 3-layer MLP featured in the SCNN.
Our MLP model consists of 5 ReLU-activated layers with output

dimensions [4000, 3000, 1000, 800, number of classes] and
dropout probabilities of [60%, 50%, 40%, 30%] after each ReLU
activation during training, also consistent with Park13 and Vecsei37.
In all cases, the loss function that is minimized is softmax-cross-
entropy. We use a batch size of 256 during training and the Adam
optimizer to minimize the loss function.
The performance of the models depends upon their architecture

and the choice of hyper-parameters such as the numbers of
convolutional, pooling, and fully connected layers, the number of
neurons in each layer, the size and number of convolutional filters
with their stride size, and the rate of dropout13. Here, the accuracy is
the total number of correct predictions over the total number of
predictions. We proposed the models performing best on the RRUFF
evaluation dataset after testing a large variety of hyperparameters.
Our code is built on top of Pytorch and the UnifiedML deep

learning library63. The complete source code for our models has
been provided in Data availability.

DATA AVAILABILITY
The data generation pipeline can be found under the UnifiedML GitHub repository:
https://github.com/AGI-init/XRDs. The full crystal data is under license and is not
publicly available as restrictions apply. They can be requested from ICSD (https://
icsd.products.fiz-karlsruhe.de). UnifiedML has dual functionality with the open access
Crystallography Open Database and ICSD.
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