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Towards understanding structure–property relations in
materials with interpretable deep learning
Tien-Sinh Vu 1, Minh-Quyet Ha 1, Duong-Nguyen Nguyen 1, Viet-Cuong Nguyen 2, Yukihiro Abe2, Truyen Tran3, Huan Tran 4,
Hiori Kino 5, Takashi Miyake 6, Koji Tsuda 7 and Hieu-Chi Dam 1,8✉

Deep learning (DL) models currently employed in materials research exhibit certain limitations in delivering meaningful information
for interpreting predictions and comprehending the relationships between structure and material properties. To address these
limitations, we propose an interpretable DL architecture that incorporates the attention mechanism to predict material properties
and gain insights into their structure–property relationships. The proposed architecture is evaluated using two well-known datasets
(the QM9 and the Materials Project datasets), and three in-house-developed computational materials datasets. Train–test–split
validations confirm that the models derived using the proposed DL architecture exhibit strong predictive capabilities, which are
comparable to those of current state-of-the-art models. Furthermore, comparative validations, based on first-principles calculations,
indicate that the degree of attention of the atoms’ local structures to the representation of the material structure is critical when
interpreting structure–property relationships with respect to physical properties. These properties encompass molecular orbital
energies and the formation energies of crystals. The proposed architecture shows great potential in accelerating material design by
predicting material properties and explicitly identifying crucial features within the corresponding structures.
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INTRODUCTION
A central challenge in the field of materials science involves the
use of both experience and theory to explore the compositions
and structures of materials with specific properties and subse-
quently validating them through experimentation. Unfortunately,
the research and development of materials is a time-consuming
endeavor that often relies on serendipity. Materials informatics
(MI) has emerged as a rapidly growing interdisciplinary field
toward addressing these challenges. This concept employs data-
driven methods to extract practical knowledge regarding materi-
als and their related physicochemical phenomena from experi-
mental and computational data, thus ultimately accelerating the
discovery of superior materials1–4.
The majority of MI approaches comprise three key compo-

nents5. The first component comprises datasets containing
information regarding the structure of the materials, measure-
ment results directly related to these structures, and physical
properties relevant to the material development goals. The second
component, that is, representation, quantitatively describes the
data instances in the first component, collecting a primitive
description of materials for identification and analogic inference.
The final component is a system that utilizes machine learning or
data mining algorithms (either a single approach or a combination
of approaches) to extract knowledge from the materials datasets
for specific purposes, such as predicting properties or identifying
new material compositions and structures.
Traditionally, materials have been characterized based on their

elemental compositions and structures. Researchers have primar-
ily relied on their knowledge and experience, often referred to as

tacit knowledge, to predict certain properties of hypothetical
materials with specific compositions and structures. Computa-
tional chemistry approaches based on quantum mechanics,
particularly density functional theory (DFT) simulations, can be
used to theoretically verify the compositions and structures of
these materials through in-silico computational experimentation.
However, despite providing accurate information on the physical
properties of hypothetical materials, computational experiments
have certain limitations. For example, the vast number of potential
hypothetical materials renders the design of materials with
desired physical properties time-consuming and expensive due
to the exhaustive calculations required. Moreover, researchers
require specialized and detailed knowledge to narrow down the
potential compositions and material structures.
Unlike traditional approaches, MI approaches initially involve

the conversion of primitive data descriptions into appropriate
representations that can be used for mathematical reasoning and
inference. In particular, MI systems are given the task of estimating
qualitative and quantitative between materials based on this
transformed representation, allowing them to uncover potential
patterns in the material data6–8. The development of material
representation (i.e., the design of material descriptors or methods
for learning material representation from data) play a crucial role
in MI approaches. This is because the effectiveness of an MI
algorithm highly depends on the material representation, as it
directly affects the algorithm’s performance and facilitates the
explanation and interpretation of the inference process and
prediction results9. Recent advancements in automated experi-
ments and high-performance computers have helped acquire
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substantial experimental and computational data. Consequently,
there is a growing need for the development of explainable and
interpretable MI methods to enhance our understanding of
physical and chemical phenomena.
Recently, various deep learning (DL)-based MI approaches have

been developed to address the challenges associated with
material representation and to predict physical properties10–13. A
typical example is the DL architecture that uses a continuous-filter
convolution layer with filter-generation networks to handle
atomistic systems and accurately predict the properties of
molecular and crystalline materials10. Another example is the
convolutional neural network based on crystal graphs, which can
predict material properties with an accuracy comparable to that of
DFT calculations while also providing atomic-level chemical
insight12. In addition to the aforementioned approaches, research-
ers have developed various other DL architectures to encode the
local chemical environments of atoms and improve the prediction
accuracy by integrating different types of material descriptors,
applying graph neural networks (GNNs), and utilizing many-body
tensor representations11,13. Furthermore, several studies have
incorporated prior knowledge to construct neural network models
that ensure the relationship between structures and properties of
materials is learned accurately14–16.
However, a significant challenge confronted by both traditional

and DL-based machine learning approaches is the issue of
interpretability. Machine learning models often prioritize including
all available information rather than selecting an interpretable
representation to improve prediction accuracy. The relationship
between material representation and its properties is complex and
nonlinear, and as a result, machine learning models acting as
“black boxes” that do not explicitly reveal correlations. Although
statistical evaluations based on existing data often exhibit high
prediction accuracies, estimating their predictive capability for
new materials is difficult. Gaining a comprehensive understanding
machine learning to clarify underlying physicochemical phenom-
ena also remains challenging.
Numerous studies have aimed to enhance model interpret-

ability by incorporating additional information or features. For
instance, graph convolutional networks use SMILES strings to
represent molecules as inputs, which helps identify crucial
fingerprint fragments and facilitating interpretation17,18. Even with

these advancements, these networks still require assistance in
accurately predicting the properties of molecular and crystalline
materials due to the absence of 3D structural information.
Message-passing neural network-based models (MPNNs)19–21

employ heuristic bonding information to capture atomic interac-
tions but encounter several challenges with long-range interac-
tions, feature interpretability, global information representation,
and scalability when handling large molecule/crystal datasets.
With the aim of addressing these limitations, recent works have
turned to transformer-based networks15,22–28, which utilize atten-
tion mechanisms16. These networks offer a promising avenue by
modeling interatomic reactions between constituent atoms
through attention scores, which indicate the significance of each
atom in learning the representation of other atoms. Various
pooling methods like max or average pooling14,15,28–33are then
employed to derive a comprehensive representation of the entire
structure. However, extracting meaningful structure–property
relationships from these transformer-based networks remains
challenging and non-trivial.
In this study, we propose an interpretable DL architecture that

incorporates the attention mechanism to predict material
structure properties and provide meaningful information about
the structure–property relationships. The proposed architecture
initiates by learning the representation of local structures of atoms
within a material structure through the recursive application of
attention mechanisms to the local structures of the neighboring
atoms (Fig. 1a). The local structure of an atom includes the atom
itself (central atom), its neighboring atoms, and the arrangement
of the neighboring atoms around the central atom. Finally, the
material structure representation is derived from the representa-
tions of these local structures of the atoms. This architecture
utilizes the attention mechanism to incorporate information about
the geometrical arrangement of neighboring atoms into the
representations of local structures. Moreover, it quantitatively
measures the degree of attention given to each local structure
from a global perspective when determining the representation of
the material structure (Fig. 1b). Consequently, through the training
of the model with a specific target property, our approach aids in
the interpretation of the structure-property relationships in
materials.

Fig. 1 Illustrations of representations for local structure and material structure. Schematics of (a) the learning recursive representation of a
local structure (central atom and its neighboring atoms) within the molecular structure of phenol (C6H5OH), and (b) measurement of the
global attention given to a local structure when determining representation of the molecular structure. The direction and size of each arrow
indicate the degree of attention given to other atoms when establishing the representation of the local structure of a particular atom.
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RESULTS
SCANN framework
We introduce a DL architecture called the self-consistent attention
neural network (SCANN). The SCANN focuses on representing
material structures from local structures of atoms with learned
weights, thus facilitating the prediction and interpretation of
material properties. The key objective of SCANN is to recursively
learn consistent representations of these local structures within
the material (as shown in Fig. 1a), which are then appropriately
combined to obtain an overall representation of the material
structure.
In this study, each material structure S in a dataset D is

represented using the atomic numbers and the corresponding
coordinates of its M atoms. By employing Voronoi tessellation, a
set of neighboring atoms N i is identified for each atom ai in the
structure S. Then, a vector g0

ij is defined as the geometrical
influence of a neighboring atom aj on atom ai (1 ≤ j ≠ i ≤M) based
on the Euclidean distance and Voronoi solid angle between them
(Supplementary Section IVA). The use of the Voronoi method here
clearly determines the neighboring atoms in a local structure
based on material domain knowledge and in alignment with the
logical design of our method.
SCANN employs an embedding layer to express the atomic

information of each atom ai in S by an h-dimensional vector c0i .
Hereinafter, we denote the matrix C0 ¼ ½c0i �1�i�M as
½c0i �1�i�M ¼ ½c01; c02; :::; c0M�. The SCANN architecture comprises of a
series of L local attention layers and a global attention layer, each
utilizing attention mechanisms16 to represent the local structures
within a material structure and the material structure itself,
respectively. The layer-wise design of the local attention layers
enables SCANN to iteratively learn and enhance the consistency of
local structure representations, thereby providing insights

regarding long-range interactions between these local structures
(Supplementary Section IVB). For instance, the representation
vector clþ1

i of the local structure fai;N ig at the (l+ 1)th local
attention layer can be derived as follows:

clþ1
i ¼ LocalAttention lþ1ðcli;Cl

N i
´Gl

N i
Þ

¼ Attention ðql
i;K

l
N i
Þ þ ql

i

¼ softmax ðql
i
>
Kl
N i
ÞKl

N i
þ ql

i;

(1)

where cli is the central atom at layer lth, Cl
N i

¼ ½clj�aj2N i
denotes its

neighboring local structures, and the geometrical influence of the
neighboring atoms Gl

N i
¼ ½gl

ij�aj2N i
. Herein, the local attention

layer employed key-query attention16 Attention ðql
i ;K

l
N i
Þ, in which

the query vector ql
i and key matrix Kl

N i
are defined as cliW

l
q and

ðCl
N i

´Gl
N i
ÞWl

k , respectively.
Previous studies have commonly represented a material structure

by a combination of its local structures, typically using operators such
as summation or pooling. However, these operators either assume
equal contribution from all local structures (sum and average-
pooling)14,15,28–30 or focus on a single specific local structure (max-
and min-pooling)31–33, which can hinder the elucidation of structure-
property relationships. To address this issue, SCANN represents a
material structure as a linear combination of the representation
vectors of its local structures, with the global attention (GA) scores of
each local structures serving as the coefficients (Supplementary
Section IVC). We preserve the structural information of S from all
representations of its local structures obtained at the final local
attention layer to produce CL, where CL ¼ ½cLi �1�i�M. The global
attention layer subsequently learns a suitable representation of the
material structure by considering representations of its constituent
local structures. This enables the accurate prediction of material

Fig. 2 Overview of proposed SCANN architecture. The SCANN is formed by stacking an embedding layer and local attention layers to learn
the representations of various local structures in a material. In the readout stage, a global attention layer is used to assess the attention scores
of these local structures. The attention score indicates the degree of attention that should be paid to a local structure to accurately represent
the material and predict its physical property. The material representation is linearly combined based on the representations of its local
structures with their corresponding attention scores. Fully connected (FC) layers are applied to the material representation to estimate the
property of the material.
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properties:

xS ¼ GlobalAttention ðCLÞ
¼ SAttention ðQg;KgÞ
¼ ρðQg>KgÞKg

¼ αg Kg;

(2)

where Qg ¼ CLWg
q and Kg ¼ CLWg

k are the query and key matrices,
αg ¼ ½αg1; αg2; � � � ; αgM� are the corresponding GA scores of each local
structure ci. Herein, the global attention layer employed key-query
attention SAttention; however, instead of the softmax function, a
weighting function ρ(. ) is applied to the attention matrix A ¼ Qg>Kg

to evaluate the GA scores. In detail, we obtain sj ¼
PM

i¼1½Að1� IÞ�i;j
as the sum of each column j within the attention matrix A (the
identity matrix is denoted as I). Then, we define
ρðAÞ ¼ softmax ð½s1; s2; :::; sM�Þ. Subsequently, this approach can
measure the amount of attention (GA scores) that should be given to
a local structure by summing all corresponding directional pairwise
attention scores from other local structures (Fig. 1b).
Consequently, the physical property yS of the material structure

S can be predicted from the learned representation xS with fully
connected layers FS, as follows:

ŷS ¼ FSðxSÞ (3)

This design of the SCANN architecture, particularly the inclusion of
a fully connected layer, is tailored to capture the complex and
nonlinear relationships between their representations and proper-
ties. Furthermore, the GA scores αg of the local structures,
obtained from the global attention layer, help indentify key factors
that contribute to understanding the structure–property relation-
ships of the material. A comprehensive depiction of the proposed
SCANN architecture is presented in Fig. 2.

Experimental design
In this study, we implement two versions of deep learning models
using the proposed architecture, each trained independently on
different datasets with distinct target properties, with the aim of
evaluating the architecture’s performance in predicting target
properties and its ability to provide information regarding the
structure-property relationships (interpretability) across five molecu-
lar and crystal structure datasets (Table 1). The properties of these
datasets are determined through quantum mechanical calculations
using DFT. The predictive capability is evaluated by partitioning the
data into train-validation-test sets. The models are then trained on
the training set and optimized to minimize the mean absolute error
(MAE) on the validation set. The MAEs of the predictions for the

target properties on the test sets are reported for comparison with
other models in the literature. Hereafter, the implemented models
based on the SCANN architecture, trained with the respective
datasets, will be referred to as SCANN models. A detailed explanation
regarding the used datasets is given in Supplementary Section IVE.
We evaluated the predictiveness of the SCANN models based

on a comparison with seven DL models using the QM96 and
Materials Projects34,35 (version MP 2018.6.1) datasets. Among the
compared models, SchNet30, MEGNet35, and CGCNN12 utilize
graph neural networks to represent molecules or crystals as
atomistic graphs. Cormorant14 and SE(3)-Trans15 are GNN variants
that incorporate physical constraints, such as covariant or
equivalence principles, on the 3D coordinates of atoms. Con-
versely, ALIGNN36, the current leading network, uses an additional
line graph where bonds serve as nodes, and edges convey angular
information between bonds in addition to the atomistic graph.
This enables ALIGNN to represent the geometrical arrangement of
triplets of atoms in a molecule or crystal.
Furthermore, the interpretability of the SCANN models is

assessed by examining the relationship between the learned GA
scores of the local structures and the corresponding results from
first-principles calculations. The results demonstrate the ability of
the SCANN models to provide valuable information regarding the
structure–property relationships of materials in four scenarios: the
local structures and HOMO/LUMO molecular orbitals (QM96 and
Fullerene-MD37), the deformation energy ΔU and the deformation
of the Pt/graphene structures (Pt/graphene-MD37), and the
derived crystal formation energy and the substitution atom
species and sites of SmFe12-based compounds (SmFe12-CD38).

Evaluation of the predictive performance
Train–validation–test splits are performed in an 80:10:10 ratio to
evaluate the predictive capability of SCANN in predicting five
physical material properties (EHOMO, ELUMO, Egap, α, and Cv) in the
QM9 dataset. Six DL methods with the MAE of the predictions
derived from the models are also employed for comparison. The
evaluation process is repeated five times to obtain an average
MAE for the test set, thereby providing a robust assessment of the
predictive capabilities of the models14,15. Similar to previous
practices30,35,36, our study employs train–validation–test config-
urations of 60000–5000–4239 for the MP 2018.6.1 dataset.
Table 2 presents the average MAE scores obtained from five

training runs of the SCANN models, alongside the scores of
competing models on the QM9 dataset. The ALIGNN outperforms

Table 1. Summary of datasets used in evaluation experiments.

Dataset #Size #Atoms Properties

QM96 130,831 4 to 29 EHOMO, ELUMO,

Egap, α, Cv

Fullerence-MD37 3000 60, 70, 72 EHOMO, ELUMO

Pt/Graphene-MD37 21,666 103 ΔU
SmFe12-CD

38 3307 13 ΔE
MP 2018.6.134,35 69,239 1 to 296 ΔE, Eg

The table shows information of five datasets regarding eight properties
analyzed with the SCANN models, including dataset size (number of
molecules/crystals - #Size), number of atoms present in structures
(#Atoms), and the specific physical properties examined.
EHOMO (meV) Energy of the highest occupied molecular orbital, ELUMO (meV)
Energy of the lowest unoccupied molecular orbital, Egap (meV) Energy
HOMO-LUMO gap, α (Bohr3) Isotropic polarizability, Cv (cal mol−1 K−1) Heat
capacity at 298 K, ΔU (eV) Deformation energy, ΔE (meV atom−1) Formation
energy per atom, Eg (meV) Band gap.

Table 2. Comparative evaluation of SCANN, SCANN+, and six other DL
models predicting five physical properties using the QM9 dataset.

EHOMO ELUMO Egap α Cv

(meV) (meV) (meV) (Bohr3) (cal mol−1 K−1)

WaveScatt39 85 76 118 0.160 0.049

SchNet30 41 34 63 0.235 0.033

MEGNet35 38 31 61 0.081 0.030

Cormorant14 34 38 61 0.085 0.026

SE(3)-Trans15 35 33 53 0.142 0.054

ALIGNN36 21 19 38 0.056 –

SCANN 41 37 61 0.141 0.05

SCANN+ 32 31 52 0.115 0.041

The bold numbers denote the lowest mean absolute errors (MAEs) among
the eight models.
The dash symbol (–) indicates the result has not been reported yet.
EHOMO Energy of the highest occupied molecular orbital, ELUMO Energy of
the lowest unoccupied molecular orbital, Egap Energy gap, α Isotropic
polarizability, Cv Heat capacity at 298 K.
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all competing models across the four properties under considera-
tion. In comparison, the MAEs of the SCANN models are 2 to 2.5
times higher than those of ALIGNN. Despite this gap, SCANN
exhibits competitive performance relative to other remaining
models, particularly in predicting EHOMO, ELUMO, and Egap. For a
comprehensive analysis of the predictive capabilities of these
models, please see Supplementary Section IIIA. The predictiveness
of the SCANN models on the MP 2018.6.1 dataset is detailed in
Table 3. Similar to the result on the QM9 dataset, the ALIGNN
model yields the highest prediction accuracy among all compe-
titors. Meanwhile, the MAEs of the SCANN models for predicting
the formation energy (ΔE) and band gap (Eg) achieve 29 meV
atom−1 and 260 meV, which are 24% and 19% higher than those
of ALIGNN, respectively. Notably, the SCANN model has a
comparable result with the MEGNet model and exhibits enhance-
ments over the CGCNN and SchNet models regarding ΔE
predictions. For Eg, the SCANN model outperforms the CGCNN
and the MEGNet models by 32% and 21%, respectively.
Incorporating conventional prior knowledge (e.g., several dozen

atomic features and bonding information between atoms12,35,36)
or adding physical constraints (e.g., equivalencies, covariates, and
equations14,15,39) to the learning process for structure representa-
tions can enhance the prediction accuracies. For instance, the
ALIGNN model outperformed all competitor models by introdu-
cing additional angular information between triplets of atoms,
while others only considered two-body interactions (distances
and/or bond valences). To improve the descriptiveness for the
geometrical structure of molecules or crystals, we develop another
version of the SCANN, the SCANN+, with minor adjustments to the
original one by employing the Voronoi solid angle embedding
layer and updating the geometrical information through multiple
LocalAttention layers (Supplementary Section IVD). The additional
updates significantly improve the predictive power of the method;
the SCANN+ models outperform all other competitors, except for
the ALIGNN model, in predicting the electronic properties (EHOMO,
ELUMO, and Egap on the QM9 dataset; ΔE and Eg on the MP 2018.6.1
dataset) that are sensitive to the geometrical structure of
molecules or crystals (Tables 2 and 3).
However, these strategies introduce higher dimensionality and

may bring consequent biases into the model by favoring certain
materials, overlooking others, or oversimplifying complex phe-
nomena due to constraints or potential inaccuracies in the
heuristic information assigned during the training phase. Conse-
quently, such issues could hamper the clear understanding of
structure-property relationships, which is the primary objective of
this study. Additionally, for the QM9 dataset, the widely accepted
“chemical accuracy" thresholds are 43 meV for the three energy-
related properties, EHOMO, ELUMO, and Egap; 0.1 Bohr3 for the
isotropic polarizability α; and 0.05 cal mol−1 K−1 for the heat
capacity Cv at 298 K40. Notably, the SCANN models demonstrated
a prediction error of 41 meV for EHOMO, 34 meV for ELUMO and
0.05 cal mol−1 K−1 for Cv, indicating that chemical accuracy
thresholds were achieved for these properties.
In practice, exceeding the threshold for chemical accuracy by

increasing the model’s complexity is unnecessary, particularly
when the data employed are derived via DFT calculations. Such an

approach can lead to overfitting or biases, thereby potentially
sacrificing model interpretability and the elucidation of underlying
chemical principles. Therefore, we investigate the relationship
between the structures of the molecules in the QM9 dataset and
their properties (EHOMO and ELUMO) by using the GA scores
obtained from the SCANN models instead of those from the more
complex SCANN+ model, which possesses higher dimensionality
and more parameters (Supplementary Section IID).
Supplementary Section IIIA presents the evaluation of SCANN’s

predictive capabilities on three in-house-developed material
datasets, demonstrating its broad adaptability and high accuracy
in diverse prediction scenarios. The remarkable prediction
accuracy of SCANN confirms its practical applicability and
suggests that the interpretation derived from the attention scores
provides valuable insights into key structure–property relation-
ships for the investigated material properties. In the following
sections, we examine the correspondence between the obtained
GA scores of the local structures and the corresponding results
from first-principles calculations to assess the interpretability of
the SCANN models (Supplementary Section IIE–G).

Correspondence between the learned attentions of local
structures and the molecular orbitals of small molecules
For the small molecules in the QM9 dataset, the SCANN models
demonstrate a remarkable correspondence between the obtained
GA scores of the local structures and molecular orbitals results
obtained via DFT calculations. As a representative example, Fig. 3
shows the comparison between the GA scores of the local structures
and the HOMO/LUMO orbitals obtained from DFT calculations for
four molecules. Notably, an apparent correspondence between the
relative GA scores of the local structures and the HOMO orbitals of
the dimethyl butadiene molecule (cis-2,3-dimethyl-1,3-butadiene) is
evident (Fig. 3a). Furthermore, the GA scores of the local structures
can be easily linked to the interpretation that dimethyl butadiene
readily undergoes the Diels–Alder reaction. Similarly, the correspon-
dence between the HOMO orbital and the GA scores of the local
structures is apparent for the thymine molecule (5-methyl pyrimi-
dine-2,4 (1H,3H)-dione), which is a nucleobase in DNA (Fig. 3b).
Moreover, similar correspondences are confirmed between the

GA scores of the local structures and the LUMO orbitals obtained
from the DFT calculations for methyl acrylate (methyl prop-2-
enoate) and dimethyl fumarate (dimethyl(2E)-but-2-enedioate).
Methyl acrylate is a reagent that is commonly used in the
synthesis of various pharmaceutical intermediates41, whereas
dimethyl fumarate has been proposed to exhibit immunomodu-
latory properties without causing significant immunosuppres-
sion42; thus, it has been evaluated as a potential treatment for
COVID-1943. The apparent correspondence between the LUMO
orbitals and the GA scores of the local structures of these two
molecules (Fig. 3c, d) further highlight that the attention scores of
the SCANN model provide valuable insights to interpret the
structure–property relationships of molecules. Further investiga-
tions show that the obtained GA scores from the SCANN+ models
are almost consistent with those of the SCANN models for these
molecules (Supplementary Fig. 1).

Table 3. Comparative evaluation of SCANN and four other DL models in predicting two physical properties on the MP 2018.6.1 dataset.

Target Unit CGCNN12 SchNet30 MEGNet35 ALIGNN36 SCANN SCANN+

ΔE meV atom−1 39 35 28 22 29 28

Eg meV 388 – 330 210 260 225

The bold numbers denote the lowest mean absolute errors (MAEs) among the six models.
The dash symbol (–) indicates the result has not been reported yet.
ΔE Formation energy per atom, Eg Band gap.

T.-S. Vu et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   215 



All carbon, nitrogen, and oxygen atomic sites in the QM9
dataset were statistically analyzed for a systematic evaluation of
the GA scores obtained by the SCANN models. Since the GA
scores of atomic sites were normalized to 1, the relative GA
scores were calculated based on the average GA score of the
sp3-hybridized carbon atoms in each molecule. Molecules
without any sp3-hybridized carbon atoms were excluded
(Fig. 4). The analysis of the GA scores for the HOMO energy
reveals that the influence on HOMO follows the order of
oxygen, nitrogen, and carbon. Specifically, sp3-hybridized
carbon sites have a lower influence compared to sp2-hybridized
or sp-hybridized carbon sites (Fig. 4a). These findings align with

the electronegativity and bonding characteristics of the
elements. Oxygen and nitrogen exhibit strong electronegativity
and electron-rich regions in π-bonds, leading to a more
significant electron density shift and higher HOMO energy
localized around oxygen, nitrogen, and carbon sites with
double or triple bonds.
In contrast, the GA scores for the LUMO energy show no

significant difference among the three elements. This observation
is consistent with the understanding that unoccupied orbitals
primarily influence the LUMO energy, resulting in a less
pronounced difference in electronegativity compared to its
impact on the HOMO energy (Fig. 4b).

Fig. 3 Visualizations of structure–property relationships for molecules in QM9 dataset. Correspondence between obtained GA scores and
molecular orbitals of four molecules: (a) dimethyl butadiene, (b) thymine, (c) methyl acrylate, and (d) dimethyl fumarate. For each molecule,
the left side of the figure illustrates the wave function of the HOMO (a, b), or the LUMO (c, d), as calculated using the DFT approach. The
isosurfaces with positive and negative values of the wave functions are represented by blue and red lobes, respectively. The right-side figures
display the GA scores of the local structures derived from the SCANN models for interpreting the corresponding molecular orbitals. The
coloration of atoms indicates their estimated GA scores, while the coloration of links between them does not signify the sign or nodes of the
molecular orbital wave functions.

Fig. 4 Correspondence between obtained GA scores of carbon, nitrogen, and oxygen atomic sites and molecular orbitals of molecular
structures in QM9 dataset. Statistics of the relative GA scores for EHOMO (a) and ELUMO (b) for all carbon, nitrogen, and oxygen atomic sites in
the molecular structures of the QM9 dataset, calculated based on the average GA score of sp3-hybridized carbon atoms in each molecule.
Gray, blue, and red lines and filled regions represent the statistics for carbon, nitrogen, and oxygen sites, respectively.

T.-S. Vu et al.

6

npj Computational Materials (2023)   215 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Correspondence between the learned attentions of local
structures and molecular orbitals of fullerene molecules
To further evaluate the interpretability of the proposed method,
the correspondence between the obtained GA scores of the local
structures and the molecular orbitals obtained from DFT calcula-
tions for fullerene molecules is examined. Supplementary Fig. 2
shows the GA scores of the local structures for the HOMO and
LUMO energies of the C60 molecule (Ih symmetry). In this case, the
target molecule has a truncated icosahedral structure composed
of 20 hexagons and 12 pentagons, with all carbon atoms
exhibiting equivalent local structures. The SCANN model estimates
identical GA scores for all local structures of the C60 molecule, thus
indicating its ability to handle large and symmetric molecules.
As the number of carbon atoms in the fullerene molecule

increases, the symmetry of the C70 (D5h symmetry) and C72 (D6h

symmetry) molecules becomes slightly broken, and the local
structures of the carbon atoms in these molecules are no longer
equivalent. Figure 5 demonstrates the significant correspondence
between the GA scores of the local structures and the HOMO and
LUMO results obtained from DFT calculations for the C70 and C72
molecules. The GA scores of the local structures in the C70 and C72
molecules exhibit a five-fold (top view) and six-fold (top view)
symmetry upon the prediction of the HOMO energy, respectively.
These results align with the structural symmetry and degenerate
HOMO orbitals of the two fullerene molecules. Notably, the C70
molecule possesses an additional 10-carbon ring, forming a plane
symmetry, resulting in a planar symmetry of its HOMO with the
node situated on that ring’s plane. The SCANN model reveals a
clear correspondence between the HOMO of the C70 molecule and
the GA scores of the local structures (Fig. 5a), along with the LUMO
and their corresponding GA scores. Furthermore, the shapes of
LUMO and HOMO of the C72 molecule exhibit a perfect
correspondence with the GA scores of the local structures
obtained using the SCANN models (Fig. 5b). Compared to C60,
the C72 molecule has an additional ring of 24 carbon atoms with
six-fold symmetry, consisting of 12 pairs of carbon–carbon bonds
in five-membered carbon rings. The high GA scores of the local
structures in the ring indicate the localization of the LUMO of the
C72 molecule on the ring. In contrast, the HOMO orbitals are
located on two opposite sides of the ring and are also captured by
the local structures with high GA scores. This evaluation
experiment provides further confirmation that SCANN-derived
GA scores offer valuable insights for understanding the
structure–property relationship, even for large molecules.

Correspondence between the learned attentions of local
structures and structural deformation in Pt/graphene
Figure 6a presents the GA scores of the local structures obtained
by the SCANN model for predicting the deformation energy of a
system comprising a platinum atom adsorbed on a graphene
flake. The deformation energy is defined as the difference
between the total energy of the deformed and optimized
structures. A detailed examination of the obtained GA scores
reveals that local structures with high GA scores possess relatively
elongated carbon–carbon bonds (Fig. 6b). Additionally, the carbon
atoms that form high local curvatures upon the formation of a
convex from the planar structure of the sp2 hybridization bonding
network received high GA scores (Fig. 6c).
The results obtained from the experiment on the system where

a platinum atom was adsorbed on a graphene flake reveal that the
GA scores obtained by the SCANN model exhibit a high
correspondence with the observed structural deformations. In
particular, the high GA scores for the increased carbon–carbon
bond lengths and the convexed carbon atoms align well with the
contribution to the deformation energy, as determined by DFT
calculations. This finding indicates that the GA scores generated
by SCANN are reliable indicators of structural deformations in such
systems, demonstrating the model’s capability to capture and
interpret the underlying material instability. These results validate
the usefulness of SCANN in understanding and predicting
structural deformations in materials, particularly in cases involving
the interaction of different elements or adsorption onto surfaces.

Correspondence between the learned attentions of local
structures and stability of SmFe12-based crystal structures
The SCANN model’s ability to predict the formation energy of
SmFe12-based crystal structures is evaluated by analyzing the GA
scores of atomic sites. The focus is on understanding the effects of
substituting Fe sites with other elements on the derived formation
energy and the stabilization of the crystal structure, as well as the
influence of the elemental substitution on the formation energies
of other Sm and Fe sites. It should be noted that the GA scores of
the local structures are normalized to ensure that the sum of the
attention scores of all local structures in the crystal structure is
equal to one.
For instance, Fig. 7a shows the GA scores of the local structures

obtained using the SCANN model for predicting the formation
energies of the SmFe12, SmFe11Mo, SmFe11Co, and SmFe11Al
crystal structures. For the optimized SmFe12 crystal structure, all Fe
sites receive identical GA scores, indicating a symmetric cage of Fe
atoms surrounding the Sm atoms. Additionally, the negligible

Fig. 5 Visualizations of structure–property relationships for fullerene molecules. Correspondence between obtained GA scores and the
molecular orbitals of (a) C70 and (b) C72. For each molecule, the left side of the figure illustrates the wave functions of the degenerate HOMO
(bottom) and LUMO (top) orbitals, as calculated by the DFT approach. The isosurfaces with positive and negative values of the wave functions
are represented by the blue and red lobes, respectively. The figure on the right displays the GA scores of local structures obtained using the
SCANN model for the corresponding property. The coloration of atoms indicates their estimated GA scores, while the coloration of links
between them does not signify the sign or nodes of the molecular orbital wave functions.
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difference in GA scores between the Sm and Fe sites suggests that
when analyzing the formation energy of the SmFe12 crystal
structure, greater attention should be given to the Fe sites rather
than the Sm sites. This implies that Sm atoms are comfortably
placed within the cage of Fe atoms in the SmFe12 crystal structure.
For the crystal structures with Mo substitutions, the GA scores of

the Mo and Sm sites are estimated to be the same as those of the
Fe sites. However, for crystal structures with Co or Al substitutions,
the GA scores of the Co and Al sites are significantly higher than
those of Fe sites. The GA score results for the three crystal
structures indicate that Mo substitution has little effect on the
cage of Fe atoms, whereas the Sm sites become nonnegligible in
interpreting the formation energy of the SmFe11Mo crystal
structure. This suggests that Sm atoms are less comfortably
placed within the Fe and Mo atom cages in the substituted crystal
structure. By contrast, for crystal structures substituted with Co or

Al, the GA scores of the Co and Al sites are significantly higher
than those of Fe sites, indicating that the Co and Al sites should be
the central focus of attention when interpreting the formation
energy of the SmFe11Co and SmFe11Al crystal structures,
respectively. Moreover, the GA scores of Fe sites exhibit a slight
decrease, indicating that the Fe atoms become more comfortably
placed in the substituted crystal structures.
To validate the aforementioned interpretation, the ratio of the

GA scores of the substitution sites to the minimum GA scores
among the Fe sites was calculated for each crystal structure.
Subsequently, the relationship between this ratio and the
estimated formation energies of the structures was investigated
using DFT calculations. Figure 7b shows that the crystal structures
substituted with a single type of element can be divided into two
groups: one with Cu, Zn, and Mo substitutions, and the other with
Al, Ti, Co, and Ga substitutions. Interestingly, it was observed that

Fig. 7 Visualization of relationship between structure and formation energy obtained from SCANN model for crystalline magnetic
materials in SmFe12-CD. a Visualization of the GA scores estimated by the model for atomic sites in the SmFe12, SmFe11Mo, SmFe11Co, and
SmFe11Al crystal structures. b Correlation between the ratio of GA scores of the substitution sites to the minimum GA scores among the Fe
sites and the formation energy, as calculated via the DFT approach, in crystal structures substituted by a single type of element.

Fig. 6 Visualization of relationship between the adsorption energy and the deformation of a graphene flake with a platinum atom
adsorbed on a graphene flake. a Visualization of the GA scores obtained from the SCANN model for the Pt/Graphene system with a
deformation. The coloration of atoms indicates their estimated GA scores, while the coloration of links between them does not signify the sign
or nodes of the molecular orbital wave functions. Structural visualizations of the high attention local structures during the deformation: (b)
elongated carbon--carbon bond, and (c) convexed carbon--carbon configuration. The distance from the carbon atom to the adjacent carbon
atom (in Å) is highlighted to show the distortion caused by the deformation.
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crystal structures with higher local structure GA scores for the
substitution sites possess lower formation energies, whereas those
with lower local structure GA scores for the substitution sites
possess higher formation energies. These results highlight the
potential of the SCANN model in estimating the local structure GA
scores for a rational discussion of SmFe12-substituted crystal
structures and their formation energies. While additional first-
principles calculations are necessary for each specific crystal
structure to fully understand the relationship between the
substitution elements, the substitution sites, and the crystal
structure stability, these results indicate the potential usefulness
of SCANN. The local structure GA score provides valuable
information and indicates key focus points for understanding
the stability of crystalline material structures. Thus, this study
offers valuable insights that can contribute to the development of
more efficient and effective methods for designing crystal material
structures.

DISCUSSION
This study proposes SCANN, an attention-based DL architecture
designed for material dataset analysis. SCANN leverages attention
mechanisms to learn from material datasets, predict material
properties, and interpret the underlying characteristics of material
structures. By applying attention recursively to neighboring local
structures, SCANN learns representations of atomic local structures
in a self-consistent manner. The architecture then combines these
local structure representations to create a comprehensive
representation of the entire material structure, enabling precise
property predictions. During the learning process, global attention
scores are estimated, indicating the importance of each local
structure in representing the overall material structure. Experi-
mental results based on five molecular and crystalline material
structure datasets demonstrated the excellent predictive cap-
ability of SCANN for different material properties. Furthermore, an
in-depth qualitative analysis of the global attention scores of local
structures revealed that the trained models can extract essential
information from material datasets, facilitating a deeper under-
standing of the structure–property relationships in both molecular
and crystalline materials. The ability of the proposed architecture
to interpret the attention scores can aid in identifying critical
features and accelerating the material design process.
However, it is important to acknowledge that the interpret-

ability of attention scores in DL models is still a subject of debate
and lacks clear guidelines44–46. Several factors need to be
considered, such as the correlation analysis of attention scores,
alternative interpretability metrics, and counterfactual analysis, to
validate meaningful explanations of the relationships. Additionally,
the quantification and assessment of uncertainty in attention
score estimation are essential. Despite these challenges, the
findings of this study demonstrate the potential of attention
mechanisms in uncovering valuable information that can provide
a the better understanding of structure–property relationships in
materials.

METHODS
Characterization of material structure
Given a material structure S with the property of interest yS 2 R
containing M atoms (AS ¼ fa1; a2; � � � ; aMg), we consider the
structure S as a geometrical arrangement of M local structures.
Each local structure consists of a central atom, its neighboring
atoms, and their arrangement around the central atom. To
determine the neighboring atoms and segment each material
structure into local structures, we employ the definition of
O’Keeffe47,48 instead of the assumption about chemical bonds
between the atoms in the structure. According to O’Keeffe’s

definition, all atoms at these atomic sites share Voronoi
polyhedron faces with the atomic site of an atom under
consideration (the central atom of the local structure) and are
regarded as neighboring atoms. Subsequently, the local structures
of the neighboring atoms are referred to as the neighboring local
structures. By incorporating the information from the Voronoi
polyhedron faces, we assess the geometrical influences of
neighboring atoms on the central atoms for conveying the
structural information of structure S to SCANN for learning the
appropriate representation of S.
For each atom ai in the structure S, by using the Voronoi

tessellation, we can determine N i � AS, which contains N atoms
whose atomic sites share Voronoi polyhedron faces with an
atomic site of ai. Subsequently, the geometrical influence of a
neighboring atom aj 2 N i on atom ai is represented by a vector
gij 2 Rh, which is defined by the element-wise multiplication of
the Euclidean distance dij (Å) and Voronoi solid angle48 θij∈ [0, 4π]
information between the atoms, as follows:

g0
ij ¼ DEðdijÞ ´ θij

max ðθikÞ ; (4)

where DE(dij) is a distance embedding layer representing the
distance dij as an h-dimensional vector (Supplementary Section
IIB). As a result, for each atom ai, we obtain a matrix G0

N i
¼

½g0
ij �aj2N i

representing the geometrical influences of the neighbor-

ing atoms of atom ai. Each row of the matrix consists of a vector
g0
ij that represents the geometrical influence of atom aj on atom ai.

Local structure representation
Similar to other DL architectures, the SCANN employs an
embedding layer (Supplementary Section IIA) to express the
atomic information of each atom ai in S as an h-dimensional
vector c0i (2 Rh). Through training, the vector representation c0i is
updated and refined to represent the atom more appropriately for
accurately predicting property yS of material structure S.
To learn representations for local structures in material

structure S, a local attention layer that utilizes the atomic and
geometrical arrangement of atomic sites is proposed. The
design of the local attention layer is based on the dot-product
key-query attention16, Attention ðq;KÞ ¼ softmax ðq>KÞK,
where q 2 Rh and K 2 Rh ´ h denote the query vector and key
matrix, respectively. In addition, SCANN consists multiple local
attention layers to iteratively update the representation of local
structures in a layer-wise manner; the (l+1)th local attention
layer uses the representations of local structures constructed
from the lth layer as inputs. As a result, this design enables
SCANN to efficiently capture information on long-range
interaction between local structures in the material structure.
For instance, the representation clþ1

i (2 Rh) of local structure
fai;N ig at the (l+ 1)th local attention layer is derived from the
representation vectors in the preceding layer of itself (cli), its
neighboring local structures (Cl

N i
¼ ½clj �aj2N i

), and the geometrical
influence of the neighboring atoms N i on atom ai (GN i

) as
follows:

clþ1
i ¼ LocalAttention lþ1ðcli;Cl

N i
´Gl

N i
Þ

¼ Attention ðql
i ;K

l
N i
Þ þ ql

i ;
(5)

where ql
i ¼ cliW

l
q and Kl

N i
¼ ðCl

N i
´Gl

N i
ÞWl

k ; W
l
k;W

l
q 2 Rh ´ h are

learnable parameters of the local attention layer and are shared
between local structures. For the SCANN model, the geometry
influences at each layer is kept the same as initial layer gl

ij ¼ g0
ij .

The detailed implementation of the local attention layer is
described in Supplementary Section IIC.
Owing to the application of multiple local attention layers, the

attention information regarding a target property between local
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structures in a material structure S can be passed through the
attention relationships between neighboring local structures. In
our evaluation experiments, SCANN models employ L local
attention layers, with the value of L tailored to optimize
performance for each dataset, as explained in Supplementary
Section IIIB. Consequently, we preserve the structural information
of S from the representations of all its local structures obtained
from the final local attention layer, to produce CL, where
CL ¼ ½cLi �ai2AS

.

Material structure representation
To represent a material structure S, simple operators, such as the
sum or pooling operator, are typically applied to integrate the
representations of all local structures in S. However, such
operators consider that either the contribution of each local
structure to the final structure representation is equal (sum and
average-pooling operator)14,15,28–30 or that the property depends
on only the specific local structures in the material structure
whereas the others have zero impact (max- and min-pooling
operators)31–33. Therefore, designing appropriate combination
operators for specific target properties is challenging and requires
prior hypotheses regarding the structure–property relationships.
To overcome this problem, SCANN again utilizes the dot-product
key-query attention16 to coherently learn the representation of
local structures and integrate them into the representation of
material structure in a target-dependent manner.
An attention mechanism-based layer, called the global atten-

tion layer, is proposed to quantitatively model the attention
distribution required across each constituent local structure. This
layer aims to obtain a more appropriate representation for the
entire structure S. The global attention layer is designed to learn
an optimal representation of structure S from data, which
subsequently facilitates the construction of a highly accurate
predictive model for the target property yS. The representation
vector xS of the structure S is formulated by aggregating the
representations of all the constituent local structures according to
the obtained global attention (GA) scores, as shown below:

xS ¼ GlobalAttention ðCLÞ ¼ ρðAÞKg

¼ αg Kg ¼ PM
i¼1 α

g
i k

g
i ;

(6)

where A ¼ Qg>Kg 2 RM ´M, which Qg ¼ CLWg
q and Kg ¼ CLWg

k are

the query and key matrices, respectively; further, Wg
k;W

g
q 2 Rh ´ h are

the learnable parameters of the global attention layer. A weighting
function ρ(.) is applied to the attention matrix A to evaluate the GA
scores paid to the local structures. As a result, we obtain
ρðAÞ ¼ softmax ð½s1; s2; � � � ; sM�Þ, in which sj ¼

PM
i¼1½Að1� IÞ�i;j is

the sum of each column j within the attention matrix A (the identity
matrix is denoted as I).
The function ρ(.) is designed based on the assumption that

heightened attention should be allocated to local structures
whose representations are crucial for accurately representing the
other local structures in S. This attention allocation allows a the
precise prediction of target property yS. In essence, a local
structure that garners higher cumulative attention scores from all
the other local structures should be prioritized when representing
material structure S. As a result, the degree of attention to a local
structure fai;N ig in S is quantitatively modeled by summing all
the attention received from other local structures. For a detailed
implementation of the global attention layer, please refer to
Supplementary Section IID.
Consequently, the physical property yS of the material structure S

can be predicted from the learned representation xS, as shown below:

ŷS ¼ FSðxSÞ; (7)

where FS : Rh ! R is represented by two fully connected (FC)
layers. The weight matrices and bias vectors of the network are
learned by training the prediction model.
Furthermore, the GA scores αg ¼ ½αg1; αg2; � � � ; αgM�, which

describe the degree of attention given to the corresponding
local structures for representing S, are used to reveal critical
aspects that help interpret the structure–property relationship
of interest. Notably, the attention to local structures discussed
here signifies the amount of information these local structures
contribute to appropriately represent S for the accurate
prediction of yS.

SCANN+

The SCANN+ introduced the embedding vector for the Voronoi
solid angle θij as follows:

g0
ij ¼ DEðdijÞ ´AEðθijÞ; (8)

where DE(dij) and AE(θij) are the distance and angle embedding
layers corresponding to the distance dij and angle θij of an h-
dimensional vector (Supplementary Section IIB). In addition, the
geometry influences between the neighbor clj and the center cli
are updated based on the following formulation:

glþ1
ij ¼ Flgð½cli � gl

ij � clj �Þ þ gl
ij; (9)

where⊕ denotes the concatenating vectors and Fg : Rh ! Rh is
a fully connected (FC) layer.

Model training
The training of the DL model using the proposed architecture
begins with the initialization of all learnable parameters. All
weighting matrices such as Wl

q , W
l
k , W

g
q, and Wg

k are initialized to
random matrices using Glorot Uniform49, while the entries of all
bias vectors are initialized to zero. The dropout layer and attention
dropout16 are applied in the local attention layers with a rate of
0.1 for better regularization.
In the training process, all parameters of the proposed DL

model are updated by minimizing a loss function using Adam
optimization50 with a scheduled learning rate decay ranging from
5 × 10−4 to 10−4. To predict the physical property yS of a material
structure S in training dataset D, the loss function is defined as
follows:

L ¼ 1
jDj

X

S2D
ðyS � ŷSÞ2 (10)

Each model is trained on an individual Tesla A100-PCIe graphics
processing unit (GPU) with a memory capacity of 40 gigabytes.
Remarkably, there are fewer than one million parameters in
SCANN, primarily affected by the configuration settings of the
number of LocalAttention layers (L). Supplementary Table II
contains the epoch-wise time cost with a batch size 128 for the
QM9 dataset. SCANN excels in term of training times per epoch
and is distinguished by its commendable memory efficiency, and
it is thus highly suitable for practical deployment.

Dataset information
QM96. This computational dataset comprises of data of 133,885
drug-like organic molecules composed of C, H, O, N, and F. However,
3054 files were removed due to the questionable geometric
stability14 that 130,831 molecules remained were used for the
experiments. Five physical properties from the QM9 dataset are used
as targets for evaluating the predictive capability of the SCANN
models. These properties include the energy of the highest occupied
molecular orbital (EHOMO), the energy of the lowest unoccupied
molecular orbital (ELUMO), the gap between the energies (Egap=
ELUMO− EHOMO), the isotropic polarizability (α), and the heat capacity
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at 298 K (Cv). In the experiment, the predictive capability of the
SCANN models is compared with that of recent state-of-the-art DL
models14,30,35,39.

Fullerene-MD37. This is an in-house-developed computational
material dataset comprising the data of three well-known
fullerene molecules, viz. C60 (Ih), C70 (D5h), and C72 (D6h). It
includes optimized structures and 3000 deformed structures
obtained from molecular dynamics simulations (1000 structures
for each molecule). The HOMO (EHOMO) and LUMO (ELUMO)
energies of these structures are determined using DFT calcula-
tions, similar to the approach used in the QM9 dataset.
Experiments are performed on this dataset to evaluate the
predictive capability of the SCANN models for HOMO and LUMO
energies and to assess the interpretability of the models’
predictions for these properties. A distinctive feature of all
structures in this dataset is that they only contain carbon atoms.
Furthermore, due to the symmetric nature of fullerene molecules,
the local structures within each molecule are highly similar with
only minor differences. Therefore, this dataset allows for a precise
evaluation of the interpretability of the SCANN model. In the
evaluation experiment using this dataset, SCANN models pre-
trained on the QM9 dataset are applied to train the prediction
models for the HOMO and LUMO energies of the fullerene
molecules.

Pt/graphene-MD37. This dataset is also an in-house-developed
computational material dataset representing a system composed
of a platinum atom adsorbed on a graphene flake terminated by
hydrogen atoms51,52. It consists of data from approximately 21,000
optimized and deformed structures generated through molecular
dynamics simulations. The adsorption energies of these structures
are determined using DFT calculations, similar to the approach
used in the QM9 dataset. There are two main purposes of the
experiments conducted on this dataset is twofold–to evaluate the
predictive performance of the SCANN models for deformation
energies of the structures (ΔU) and to assess the interpretability of
the models’ predictions for these deformation energies. The
structural characteristic of this dataset is the presence of a two-
dimensional honeycomb network of carbon atoms forming the
graphene flake. Although the local structures of each carbon atom
in the system exhibit slight distortions from the ideal sp2

hybridization structure52, this dataset enables a quantitative
evaluation of the interpretability of the SCANN models in terms
of the distortion of the honeycomb network on the graphene
surface.

SmFe12-CD38. This dataset is an in-house-developed computa-
tional material dataset containing the data of crystalline
magnetic materials. It comprises the data from 3307 optimized
structures of SmFe12-based compounds, along with their
corresponding formation energies (ΔE) as the target properties.
The dataset was generated by introducing partial substitutions
of Mo, Zn, Co, Cu, Ti, Al, and Ga into the iron sites of the original
SmFe12 structure, which exhibits notable magnetic properties.
Subsequently, the structures were optimized, and their forma-
tion energies were assessed using DFT calculations. A detailed
explanation regarding the DFT calculation method used to
create this dataset can be found in a previous work38. By using
this dataset, the predictive capability of the SCANN models for
the formation energies of the structures (ΔE) and the
interpretability of the models are quantitatively evaluated to
investigate the structural stability of the SmFe12-based
structures.

MP-2018.6.134,35. This dataset is a time-versioned snapshot of the
Materials Project dataset. Since solid-state datasets are continu-
ously updated, we specifically chose the MP version used by

previous works to facilitate a direct comparison of model
performance with the literature. We specifically utilized the
Materials Project version that was updated until June 1, 2018,
which encompasses 69,239 crystal structures. Two physical
properties from the material dataset are used as targets for
evaluating the predictive capability of the SCANN models. These
properties include the DFT-computed formation energy per atom
(ΔE) and the band gaps (Eg). In the experiment, the predictive
capability of the SCANN models is compared with that of recent
state-of-the-art DL models.
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