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Trajectory sampling and finite-size effects in first-principles
stopping power calculations
Alina Kononov 1✉, Thomas W. Hentschel2, Stephanie B. Hansen3 and Andrew D. Baczewski 1✉

Real-time time-dependent density functional theory (TDDFT) is presently the most accurate available method for computing
electronic stopping powers from first principles. However, obtaining application-relevant results often involves either costly
averages over multiple calculations or ad hoc selection of a representative ion trajectory. We consider a broadly applicable,
quantitative metric for evaluating and optimizing trajectories in this context. This methodology enables rigorous analysis of the
failure modes of various common trajectory choices in crystalline materials. Although randomly selecting trajectories is common
practice in stopping power calculations in solids, we show that nearly 30% of random trajectories in an FCC aluminum crystal will
not representatively sample the material over the time and length scales feasibly simulated with TDDFT, and unrepresentative
choices incur errors of up to 60%. We also show that finite-size effects depend on ion trajectory via “ouroboros” effects beyond the
prevailing plasmon-based interpretation, and we propose a cost-reducing scheme to obtain converged results even when
expensive core-electron contributions preclude large supercells. This work helps to mitigate poorly controlled approximations in
first-principles stopping power calculations, allowing 1–2 order of magnitude cost reductions for obtaining representatively
averaged and converged results.
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INTRODUCTION
High-performance computing has revolutionized materials
science, enabling prediction, design, and unprecedented under-
standing of materials properties to complement and accelerate
experimental efforts. Modeling dynamic, nonlinear responses to
stimuli such as laser and particle irradiation falls among the most
computationally demanding types of materials simulations,
requiring real-time evolution of extended systems containing
hundreds of atoms and thousands of quantum-mechanical
electrons1–3. For materials in extreme conditions, high tempera-
tures result in orders-of-magnitude increases in the number of
partially occupied electronic orbitals, either requiring additional
approximations4–6 or further escalating computational resource
requirements to millions of CPU hours or more per calculation7. In
this context, deliberate design of simulations is crucial for
maximizing insight while maintaining feasible computational
costs.
Here, we focus on calculations of electronic stopping power, the

rate at which a moving particle loses energy to electrons. This
fundamental quantity is critically important to diverse fields. For
example, radiation therapy relies on stopping powers to predict
particle ranges and precisely target tumors8. Stopping powers also
underlie radiation damage to materials in space and nuclear
energy applications9,10. In materials imaging and processing
techniques, energy deposition by focused ion beams relates to
electron emission, sample damage, and defect engineering11,12.
Finally, achieving ignition in fusion energy research relies on
fusion products redepositing their kinetic energy into the fuel13.
First-principles simulations using real-time time-dependent

density functional theory (TDDFT) can offer accurate predictions
of electronic stopping powers and insights into underlying
physical processes14–20, often in more detail than possible
experimentally. However, computing average stopping powers

that are comparable to experimentally observable and practically
relevant values can pose a challenge. While an individual TDDFT
calculation simulates a single projectile traversing a specific path,
stopping power experiments measure energy loss distributions for
finite-width ion beams, often incident on polycrystalline or
disordered samples21–23. Moreover, applications either also
employ finite-width ion beams (e.g., materials imaging and
processing) or involve randomly oriented radiation (e.g., equip-
ment in space and fusion fuel). Therefore, sensitivities to the
projectile’s trajectory can limit the utility of TDDFT stopping power
predictions. Such sensitivities often occur for projectile velocities
beyond the Bragg peak and mainly affect contributions from core
electrons, or more generally, spatially non-uniform electronic
orbitals14,17,24.
Meaningful average stopping powers can still be obtained from

first principles by averaging6,17,25–27 or carefully integrating28,29

the results of several TDDFT calculations using distinct projectile
trajectories. The significant computational cost of this approach
makes it tempting to select a single trajectory presumed to be
representative of an ensemble average. For solids, one possible
choice is the centroid trajectory, wherein the projectile travels
along a crystallographic direction with a path given by the
geometric centroid of a symmetry-irreducible cross-section of the
crystal structure25,30 (see Fig. 1). This method appears adequate
when core-electron contributions are small, but becomes inaccu-
rate for fast projectiles and high-Z targets29. Alternatively, a
randomly chosen trajectory can achieve good agreement with
empirical data even when core-electron contributions are
important14. In this case, trajectory choice may constitute an
uncontrolled approximation, thus necessitating quantitative
methods for assessing any given choice.
Recently, Gu et al. developed an innovative pre-sampling

approach31 that averages results from several short trajectories
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carefully selected such that, in aggregate, they representatively
sample a disordered system. Here, we present a complementary
method that uses a quantitative metric to guide a priori selection
of a single, representative projectile trajectory for first-principles
calculations of electronic stopping power. Using proton stopping
in aluminum as an exemplar, we demonstrate the utility of such an
approach even in a crystalline material, as we find that achieving
agreement with empirical data requires a high-quality trajectory
despite widespread presumptions that a random choice suffices.
While both methods can reduce computational costs associated
with averaging over multiple long trajectories and help obtain
reliable results even in the absence of experimental data to
validate against, we expect that our approach will be more
efficient than the one proposed by Gu et al.31 in the case of heavy
ions that experience relatively long transient behavior32 before
entering the steady-state stopping regime.
In addition to trajectory-dependent core-electron contributions,

finite-size effects limit the accuracy of first-principles stopping
power calculations, particularly for fast projectiles with velocities
above the Bragg peak. Typically, TDDFT calculations are expected
to underestimate stopping powers by neglecting long-wavelength
plasmonic excitations that a finite periodic supercell cannot
support33. We examine variations in computed stopping powers
for different supercell sizes and projectile trajectories and reveal
significant departures from this model of finite-size errors. Finally,
we extend our trajectory optimization framework with a second
quantitative metric that enables a priori selection of trajectories
that minimize finite-size effects.
Together, the two trajectory metrics developed in this work

allow deeper understanding and opportunities for mitigation of
previously poorly controlled approximations in TDDFT simulations
of energetic particles traversing matter. This contribution
advances the accuracy and efficiency of first-principles stopping
power calculations with wide-ranging implications for computa-
tional studies relating to radiation therapy, materials in extreme
conditions, ion-beam imaging and patterning techniques, and
self-heating of fusion fuel.

RESULTS
Sampling close collisions
Obtaining an application-relevant result from a single TDDFT
stopping calculation requires choosing a trajectory along which
the projectile experiences an environment that quantitatively
resembles those likely to occur in that application. In particular,
close collisions between the projectile and host nuclei can involve
(semi)core-electron excitations that introduce sharp features in
the stopping forces and can dominate the average stopping

power14. Thus, representatively sampling close collisions is
essential for computing accurate stopping powers, and we expect
that the distance between the projectile and the nearest host
nuclei at all points along the trajectory provides a compact
description of the environment that determines the average
stopping power.
This notion previously inspired a method for assessing the

quality of different trajectories in disordered systems31. In what
follows, we present a quantitative metric that enables rigorous
comparisons among different trajectories and their attendant
stopping powers. Furthermore, we show that such an approach is
critical for selecting trajectories even in crystalline materials
because not all randomly oriented off-channeling trajectories are
equally representative of an average environment over the course
of a typical few-fs simulation time. Unrepresentative finite-length
off-channeling trajectories lead to poor estimates of average
stopping power and could skew averages based on naive
trajectory sampling.
To evaluate the quality of a given trajectory over a path length

x, we first calculate the distribution Ptraj(δNN, x) of nearest-
neighbor distances δNN between the host nuclei and the
projectile along the trajectory. Since the ultimate TDDFT
simulations only span a few fs, the projectile does not have time
to significantly deflect from its initial velocity and we assume that
it travels in a straight line. Thus, computing Ptraj(δNN, x) relies only
on the geometric specification of the supercell and does not
require expensive TDDFT simulations. We exclude data during the
first 4Å of the projectile’s path since the ultimate stopping power
extraction will ignore this early transient regime (see Supple-
mentary Note 1). This cutoff distance is specific to a proton
projectile, and higher Z projectiles would have longer transient
regimes32, further motivating optimization of a single represen-
tative trajectory.
We then compare Ptraj(δNN, x) to an ideal distribution Pideal(δNN)

generated by calculating distances to nearest host nuclei from
randomly sampled points within the supercell. This choice of
Pideal(δNN) represents the distribution experienced by randomly
oriented radiation or a focused ion-beam interacting with
randomly oriented grains within a polycrystalline sample. Earlier
work by Gu et al. instead generated a reference distribution by
sampling along a 500 μm-long trajectory31, a method that should
lead to the same distribution provided that the selected reference
trajectory representatively samples the entire supercell. Other
choices may be more suitable depending on the specific
application, e.g. a focused ion-beam aligned with a lattice vector
of a single crystal.

Fig. 1 Trajectories through FCC aluminum that are discussed in this work. a side view and b back view of the geometry. Red and yellow
balls represent the projectile’s initial position, and arrows indicate the direction of motion. The hyperchanneling and centroid trajectories are
parallel to a lattice vector, unlike the off-channeling trajectories considered by Schleife et al.14 and in this work. In b the dashed triangle
indicates the symmetry-irreducible cross-section of the lattice. The red ball lies at the centroid of this triangle.
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The Hellinger distance DH between the two nearest-neighbor
distributions, given by

D2
HðxÞ ¼ 1�

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PtrajðδNN; xÞPidealðδNNÞ

q
dδNN; (1)

provides a quantitative measure of how well a trajectory samples
the simulation cell. Notably, DH is bounded between 0 and 1, with
DH= 1 achieved when the two distributions have no overlap and
DH= 0 achieved only when the two distributions are identical.
Supplementary Note 2 discusses numerical evaluation of Eq. (1).
Minimizing DH for a target simulation length will enable

selection of optimally representative trajectories. We chose the
Hellinger distance over other possible ways to quantify the
similarity of two distributions because it satisfies the mathematical
properties of a metric. In particular, DH is symmetric and obeys the
triangle inequality, allowing sensible comparisons of two different
trajectories by replacing Pideal(δNN) in Eq. (1) with the nearest-
neighbor distribution of the second trajectory. We compare the DH

metric used in this work with the overlap index used by Gu et al.31

in Supplementary Note 3.
As the proton travels, Ptraj(δNN, x) evolves and so does DH(x). All

but a few pathological random trajectories will asymptotically
approach DH= 0 as the total distance traversed tends to infinity,
but the impact of finite-size effects (e.g., spurious interactions
between the projectile and its wake) will also grow with the total
distance. Thus, a “good” trajectory should achieve a small DH after
the projectile travels a relatively short distance so that a single,
reasonably short TDDFT calculation suffices to obtain an accurate
estimate of the average stopping power. In the following, we
investigate the behavior of DH for a range of trajectories and the
implications for stopping power results.
In Fig. 2a we consider the case of FCC aluminum and compare

the nearest-neighbor distances occurring along several trajec-
tories (including those illustrated in Fig. 1) and the corresponding
distributions Ptraj(δNN, x) sampled over a path length of x= 80 Å.
Both the hyperchanneling and centroid trajectories lie parallel to
a lattice vector and thus sample periodic environments,
producing nearly static nearest-neighbor distributions and
asymptotically constant DH values of about 0.67 and 0.33,
respectively (see Fig. 2b). Of course, DH remains relatively large
for the hyperchanneling trajectory because its nearest-neighbor
distribution is severely skewed toward large δNN.
While the centroid trajectory significantly improves DH over the

hyperchanneling trajectory, its nearest-neighbor distribution is
bimodal, oversampling near points of closest and furthest
approach at δNN ≈ 0.75 and 1.5Å while lacking close collisions
with δNN < 0.5 Å. Failure to capture the ideal nearest-neighbor
distribution explains the poor performance reported for the
centroid trajectory in regimes where core-electron excitations
contribute significantly to electronic stopping power29. We also
find that other channeling trajectories with different impact
parameters are similarly restricted to DH > 0.3 (see Fig. 3a) and
therefore do not representatively sample the supercell.
In contrast, both the off-channeling trajectory considered by

Schleife et al.14 and the other “good” off-channeling trajectory
identified in this work approximate the ideal distribution more
closely and continue to reduce DH as the proton travels farther,
reaching much lower DH values of 0.05–0.06 by 80 Å. Even when
the projectile starts at a high-symmetry point within the crystal
structure, the vast majority of possible directions of motion
achieve DH < 0.3 by the time the projectile travels 80 Å
(see Fig. 3b). Some but not all exceptions lie at channeling
directions. For a finite simulation length, DH can be very sensitive
to trajectory direction, with small changes in the trajectory angle
sometimes leading to order-of-magnitude changes in DH. Among
fully random trajectories where the projectile’s initial position and
direction of motion are both uniformly sampled, only 1.3%

perform as poorly as channeling trajectories with DH still
exceeding 0.3 after the proton traverses 80 Å (see Fig. 2c).
To verify the utility of our trajectory metric and deduce a

threshold DH value for accurate stopping power predictions, we
also consider three “bad” random trajectories that either under-
sample (bad 1 and bad 2) or oversample (bad 3) close collisions
with δNN < 0.5 Å (see Fig. 2a). Unlike channeling trajectories, DH

continues to decrease along these bad off-channeling trajectories,
but much more slowly than the good off-channeling trajectories,
only achieving DH= 0.17–0.35 by the time the proton travels 80 Å.
Finally, we perform TDDFT stopping power calculations as

described in “Methods” for the off-channeling trajectories
examined above. Although the two good trajectories exhibit
differing dynamical behavior, the average stopping powers
extracted after the proton travels 80 Å agree within 1% and
reproduce empirical data from the SRIM database34 within 3% (see
Fig. 4). Meanwhile, stopping powers computed using the bad
trajectories deviate from empirical data by up to 60%. As
expected, trajectories that undersample close collisions (bad 1

Fig. 2 Geometric analysis of various trajectories through ambient
aluminum (see Figs. 1 and 3). a Nearest-neighbor distances (left)
and distributions (right) experienced by the projectile along each
trajectory. The nearest-neighbor distribution after the projectile
travels 80Å along each trajectory is compared to the ideal
distribution sampled from random points within the supercell
(yellow). b Hellinger distance (see Eq. (1)) from the ideal distribution
achieved by each trajectory as a function of total distance traveled
by the projectile. The gray area indicates the 4Å transient regime
ignored in the analysis. c Distribution of DH values achieved at 80Å
by 1440 random trajectories with uniformly sampled initial positions
and directions of motion. Yellow shading indicates DH < 0.1, the
target identified for representative sampling of the supercell in
this work.
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and bad 2) underestimate stopping power while the trajectory
that oversamples close collisions (bad 3) overestimates stopping
power. Based on these findings, we propose that DH≲ 0.1 suffices
for representative sampling of the nearest-neighbor distribution in
these stopping power calculations. Notably, 27% of random
trajectories still exceed this threshold after the projectile travels
80Å (see Fig. 2c), highlighting the importance of careful trajectory
selection for accurate and efficient stopping power predictions.

Mitigating finite-size effects
Finite periodic supercells limit the wavelength of plasmonic
excitations that a plane-wave TDDFT calculation can capture, often
leading to underestimated electronic stopping powers at high
projectile velocities33. Finite-size errors caused by this plasmon
cutoff can be estimated from linear response theory35, which
describes the stopping power in terms of the frequency and wave-

vector dependent dielectric function ϵ(k, ω):

SðvÞ ¼ 2Z2

πv2

Z 1

0

dk
k

Z kv

0
dωω Im

�1
ϵðk;ωÞ

� �
; (2)

where Z= 1 and v are the projectile charge and velocity,
respectively. Imposing an upper limit of kcut= 2π/L for the k
integral in Eq. (2), where L is the length of the cubic supercell,
provides an estimate of the contribution from long-wavelength
plasmons that the TDDFT calculations neglect.
Here, we employ the Mermin model dielectric function36, which

includes electron-ion collisions to improve over the uniform
electron gas assumption underlying the Lindhard dielectric
function and thereby achieves closer agreement with TDDFT
response properties7. We then evaluate the integrals in Eq. (2)
numerically as described in recent work7 with a constant electron-
ion collision frequency of 0.1 atomic units (at. u.). The contribution
of long-wavelength plasmons becomes significant when the
integration limits contain the plasmon pole, i.e., when kcutv≳ ωp,
where ωp ≈ 16 eV is the aluminum plasma frequency. Indeed, for
L= 12.15 Å the linear response formalism predicts sizeable finite-
size errors for velocities above ωp/kcut ≈ 2 at. u. (see Fig. 5).
However, we find that differences between stopping powers

computed using TDDFT with different size supercells only loosely
correlate with finite-size errors estimated from linear response. As
shown in Fig. 5, the relative difference between TDDFT results

Fig. 3 The trajectory metric DH after a proton travels 80Å along different trajectories. a The proton moves in the x direction and its initial
position is varied within a symmetry-irreducible cross-section of the lattice (see Fig. 1b). b The proton begins at a high-symmetry point within
the lattice (the yellow ball in Fig. 1) and the direction of its velocity is varied over an octant of the unit sphere. The x, y, and z directions
correspond to channeling trajectories. Stars outline trajectories examined in this work with colors corresponding to those in Fig. 2.

Fig. 4 TDDFT simulation results along some of the trajectories
considered in Figs. 1–3. Instantaneous a stopping work and
b extracted stopping power as a proton traverses aluminum with
4 atomic units of velocity. Results predicted by an earlier TDDFT
study14 and the SRIM empirical model34 are shown as gray and black
dotted lines, respectively. Note that the blue curves represent new
calculations using the same trajectory as the earlier study14.

Fig. 5 Fractional finite-size errors estimated as the relative
difference between valence-electron stopping powers computed
with (12.15Å)3 and (16.2Å)3 cubic supercells, (S(16.2)−S(12.15))/
S(16.2). TDDFT results are compared to dielectric-based predictions
using corresponding plasmon wavelength cutoffs (see Eq. (2) and
accompanying text). Error bars estimate uncertainties in the TDDFT
data arising from variations in extracted average stopping powers as
a function of total simulation time, taken as the standard deviation
of results after the proton travels between 60 and 80Å.
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calculated using (12.15 Å)3 and (16.2Å)3 cubic supercells often
significantly exceeds the values predicted using the dielectric
model. This discrepancy is especially notable for slow protons with
v≲ 2 at. u., where the TDDFT data still contains finite-size errors
even though long-wavelength plasmons cannot be excited within
linear response. Moreover, for some proton velocities, the smaller
supercell actually produces greater stopping powers than the
larger supercell, a negative finite-size error entirely inconsistent
with the plasmon-based interpretation of finite-size effects.
As another effect not captured by the plasmonic model, the

choice of trajectory influences finite-size errors independently of
the fidelity of close-collision sampling. In Fig. 6, we compare
stopping powers computed using three different size supercells
and four different proton trajectories. In addition to the two
successful trajectories examined in “Sampling close collisions”
(Fig. 6a, b), we consider two other choices among those shown in
Fig. 3b that achieve comparably small DH values while traversing
the simulation cell at different angles (Fig. 6c, d). Contributions
from valence and core (2s and 2p) electrons were isolated through
the use of different pseudopotentials (see “Methods” for more
details). Close agreement of the converged core-electron stopping
powers verifies that each trajectory adequately samples close
collisions with aluminum ions.
While the core-electron contributions in Fig. 6 show little

variation with supercell size, the valence-electron stopping powers
are quite sensitive to both finite-size effects and projectile
trajectory. Computed valence-electron stopping powers do not
grow monotonically with increasing supercell size for the
trajectories examined in Fig. 6a–c, sometimes exhibiting negative
finite-size errors similar to the behavior appearing in Fig. 5. The
magnitude of discrepancies between results computed with
different size supercells also depends on the projectile trajectory:

for instance, Fig. 6d shows much greater differences among
valence-electron contributions than the other cases.
We attribute the occasionally negative and surprising trajectory-

dependent nature of finite-size errors in TDDFT stopping power
calculations to artificial interactions with previously excited
electrons. In particular, if the projectile passes near its earlier path
after re-entering a periodic supercell, then it interacts with an
excited electron density rather than pristine material, distorting
stopping power results. Such “ouroboros” effects are especially
severe for channeling trajectories: upon reentry, the projectile
traverses the exact same path, at which point the instantaneous
stopping power begins to depend on supercell size14. Ouroboros
effects can also pollute results for off-channeling trajectories, since
the projectile has a finite interaction radius that may partially
overlap with previously excited regions. Even if the projectile
remains relatively far from previously traversed material, it could
still interact with earlier electronic excitations that have propa-
gated into its path. We distinguish these different types of artificial
interactions as static and dynamic ouroborous effects,
respectively.
The prevalence of ouroboros effects can be estimated by

considering the minimum distance DO between periodic images
of the projectile’s path. This distance is upper-bounded by the
simulation cell dimensions and decreases as the projectile crosses
periodic boundaries. In the limit of large DO, the projectile remains
far from earlier excited material, and ouroboros effects should be
minimal. In a metallic system, localized excitations only involve
core atomic orbitals and are well-confined within the Wigner-Seitz
radius rWS of the host nuclei. Therefore, we expect that ensuring
DO > rWS (1.58Å for FCC aluminum) eliminates static ouroboros
effects. Even for the lowest DO tested, 1.3Å for the smallest
supercell in Fig. 6d, finite-size effects do not influence the core-
electron stopping power because the 2s and 2p electrons are
further localized within about 0.5Å of aluminum nuclei.
Dynamic ouroboros effects, on the other hand, are harder to

characterize and avoid. Given a Fermi velocity of ~20Å fs−1 in
aluminum, single-particle excitations could traverse the (16.2Å)3,
256-atom supercells used throughout this work in <1 fs, a time
scale comparable to the duration of the TDDFT simulations. First-
principles calculations of plasmon dispersion in aluminum37

suggest similar propagation speeds for collective excitations.
Since an off-channeling projectile must travel around 80Å in order
to adequately sample the nearest-neighbor distribution in this
material (see “Sampling close collisions”), it crosses the periodic
boundaries multiple times, leading to typical DO distances of
around 3Å that electronic excitations traverse over an even
shorter time scale.
However, proton projectiles can be expected to induce fairly

weak charge perturbations, as evidenced by the relative success of
linear response treatments of proton stopping powers7,14,38. So,
dynamic ouroboros effects could be small compared to other
sources of error. Furthermore, alternating artificial interactions
with excitations that involve excess or reduced electron density
relative to the pristine material could have partially canceling
influences on the average stopping power. Indeed, the valence-
electron stopping powers reported in Fig. 6 differ among each
other by at most 31% of the total stopping power, whereas poor
sampling of close collisions affected total stopping powers by
almost a factor of 2 in Fig. 4. In Fig. 7, we show that DO≳ 3Å
already achieves acceptable convergence of valence-electron
stopping powers.
As an alternative to maximizing DO for a single, long trajectory,

ouroboros effects could be minimized by combining results
computed from many short trajectories that do not cross periodic
boundaries. Such a strategy could help further disentangle
different sources of finite-size errors, including ouroboros effects
and the lack of long-wavelength plasmons. However, since each
simulation begins with a transient period, this approach would

Fig. 6 Average stopping powers as a proton with 4 atomic units
of velocity traverses aluminum along four different off-
channeling trajectories that achieve DH < 0.1 by the time the
proton travels 80Å. Results are compared for a the trajectory used
throughout this work, b the trajectory used in an earlier study14, and
c, d two other off-channeling trajectories. Total stopping powers
(purple) are decomposed into contributions from valence (blue) and
core (red) electrons for the 256-atom, (16.2Å)3 supercell used
throughout this work (solid) and a smaller, 108-atom, (12.15Å)3

supercell (dashed). Valence-electron results for a larger, 500-atom,
(20.25Å)3 supercell are also shown (dotted). Horizontal lines indicate
converged values for the first trajectory with a (16.2Å)3 supercell.
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require longer total simulation times to accumulate enough data
within the steady-state regime to representatively sample close
collisions in aggregate. At the same time, short trajectories may
reduce the simulation cell size needed for converged results,
creating a trade-off in computational cost. We expect that a hybrid
strategy involving a few intermediate-length trajectories that may
cross periodic boundaries but nonetheless maintain a large DO

would favorably balance these considerations, and the optimal
trajectory length would depend on the stopping medium and
projectile parameters.
Regardless of trajectory length, the fact that finite-size effects

predominantly influence valence-electron contributions to stop-
ping power can be exploited to reduce computational costs
associated with first-principles stopping power calculations. Core
contributions typically dominate computational costs because
explicitly modeling core electrons dramatically increases the
spectral range of the Kohn-Sham Hamiltonian, generally requiring
higher plane-wave cutoff energies, smaller time steps, and/or
more solver iterations in implicit time-stepping algorithms such as
the one used in this work39. Since core contributions are not very

sensitive to ouroboros effects or supercell size, they can be
efficiently calculated using smaller supercells. Meanwhile, valence-
electron contributions can be separately converged with respect
to the DO metric and supercell size while pseudizing core
electrons to allow cheaper time evolution.
In this work, applying this scheme to separately compute core

and valence-electron contributions using (12.15 Å)3 and (16.2 Å)3

supercells, respectively, would have allowed a seven-fold speedup
over using (16.2Å)3 supercells to compute both core and valence-
electron contributions simultaneously. In fact, this strategy would
have still resulted in a nearly three-fold speedup if the larger,
(20.25Å)3 supercell had been used to further reduce finite-size
effects in the valence-electron contribution. These savings are
relative to the ~5 × 105 CPU-hours used to perform each
production calculation in this work, which computed proton
stopping powers in aluminum by including core contributions in
(16.2Å)3 supercells (see “Methods” for more methodological
details).

DISCUSSION
Figure 8 compares our final electronic stopping results as a
function of proton velocity to those predicted by the SRIM
empirical model34 and reported in an earlier TDDFT study14 that
used the same level of theory (see “Methods”). Overall, we find
good quantitative agreement between the two TDDFT datasets,
with modest discrepancies arising from a combination of partially
canceling factors. First, the earlier study14 verified convergence
with respect to plane-wave cutoff energy for a channeling
trajectory, but we show in Supplementary Note 4 that converging
energy transferred during close collisions occurring along off-
channeling trajectories requires higher cutoffs. In particular, we
find that the 680 eV cutoff used in that work14 underestimates
high-velocity stopping power by ~5%.
Another source of discrepancies arises from different pseudo-

potentials: this work used the PAW method40 within an extension
of VASP41,42, while the earlier study14 used norm-conserving
pseudopotentials43,44 within Qb@ll45,46. In Supplementary Note 5,
we show that even when all other parameters are fixed or
separately converged as appropriate, the PAW and VASP
methodology used in this work produces about 10% lower
stopping powers than the harder, norm-conserving pseudopo-
tentials within Qb@ll. Additionally, a 2.5% uncertainty in extracted
stopping powers arises from variations with respect to the data
range included in the stopping power extraction (see Supple-
mentary Note 1). Further benchmarking of different TDDFT codes,
pseudopotentials, basis sets, and other methodological details will
be important for reducing uncertainties in first-principles stopping
data47.
To enable detailed interpretation of discrepancies in computed

results and reduce computational costs associated with obtaining
representative average stopping powers, we presented a quanti-
tative metric to evaluate the quality of ion trajectories in first-
principles electronic stopping power calculations. The approach
resembles the one proposed by Gu et al.31 and considers the
distribution of nearest-neighbor distances experienced by the ion
along its path, which allows scrutiny of how representatively
different trajectories sample the close collisions that determine
core-electron contributions. Optimizing trajectories via this metric
can help compute stopping powers more accurately and
efficiently, and we expect that straightforward extensions of this
metric to disordered systems at high temperatures and hetero-
geneous systems including compounds, alloys, and mixtures will
be even more impactful.
We also identified cost-reducing strategies to systematically

characterize finite-size errors. Our analysis of velocity- and
trajectory-dependent finite-size effects revealed behavior incon-
sistent with the prevailing plasmonic model33, which we explain

Fig. 7 Convergence of valence-electron stopping power with
increasing DO, the minimum distance between periodic images of
the projectile’s path, for a proton traversing aluminum with 4
atomic units of velocity. Both the stopping powers and DO values
reported were taken after the projectile traveled 80Å through the
material. Colors indicate proton trajectory, while symbols indicate
supercell size: triangles, squares, and circles correspond to results
from (12.15Å)3, (16.2Å)3, and (20.25Å)3 supercells, respectively. The
shaded area indicates DO < rWS, and the dotted line indicates
stopping power extracted from the simulation parameters used
throughout this work.

Fig. 8 Electronic stopping power of protons in ambient aluminum
as predicted by this work, an earlier RT-TDDFT study14, and the
SRIM empirical model34. The valence-electron contribution was
computed by pseudizing all but the outermost 3 electrons per
aluminum atom, while the total stopping power also included
excitations of explicitly modeled 2s and 2p semicore electrons.
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through “ouroboros” effects wherein the projectile fictitiously
interacts with previously excited electrons. Thus, we propose
considering convergence with increasing distance between
periodic images of the projectile’s path, rather than increasing
supercell size alone. Accumulating results over multiple shorter
trajectories can further reduce ouroboros effects and offer more
information about the origin of finite-size errors, though transient
behavior at the beginning of each simulation causes tradeoffs
between trajectory length, finite-size errors, and computational
cost. Finally, we showed that finite-size errors primarily influence
valence-electron contributions to stopping power, enabling
convergence without the high computational costs incurred by
explicitly modeling core electrons in large supercells.
In summary, poor trajectory choices influence both core-

electron contributions and finite-size errors, causing large errors
of up to 60% in state-of-the-art calculations of proton stopping
powers in aluminum. Similar magnitude effects can be expected
in high-Z, low-density, and/or heterogeneous materials with
highly non-uniform electron densities, where representatively
sampling close encounters between the projectile and target ions
is especially important. On the other hand, we expect particularly
severe finite-size errors due to ouroboros effects for metallic
systems, high-density materials, and/or trajectories closely aligned
with simulation cell vectors because these situations involve
factors that tend to strengthen artificial interactions between the
projectile and its wake: delocalized excitations, smaller supercells,
and/or close proximity between the projectile and previously
disturbed material. Both close-collision sampling and ouroboros
effects gain further importance for high-Z projectiles and
velocities above the Bragg peak, regimes where core-electron
processes and higher-energy excitations exacerbate sensitivities to
projectile trajectory and simulation cell size.
Overall, our combination of approaches facilitates systematic

control and analysis of two important approximations in first-
principles stopping power calculations: the choice of projectile
trajectory and finite supercells. These strategies will not only
enhance the accuracy and efficiency of TDDFT stopping power
calculations, but also prove valuable for higher levels of theory48,49

and quantum simulation algorithms on quantum computers50,51

as their viabilities improve.

METHODS
TDDFT simulations
The real-time TDDFT calculations were performed with an in-house
extension39,41,42 of the Vienna ab initio simulation package
(VASP)52–54. Ground-state orbitals from density functional theory
with a Fermi smearing of 100 K served as the initial condition for
solving the time-dependent Kohn-Sham (KS) equations. Plane-
wave cutoff energies of 750 eV achieved sufficiently converged
results, and large supercells allowed reciprocal space sampling
using the Γ point only. Supplementary Note 4 describes the
convergence of these parameters in more detail. The adiabatic
local density approximation (ALDA)55,56 was used for exchange and
correlation (XC), and we verify the accuracy of ALDA relative to
adiabatic versions of PBE57 and SCAN58 in Supplementary Note 6.
The electron-ion interaction was treated with the projector

augmented-wave (PAW) method40, explicitly including 3 or 11
valence electrons per aluminum atom. The two aluminum
pseudopotentials allowed access to different contributions to
the stopping power, with 3-electron calculations isolating the
response of valence electrons, 11-electron calculations addition-
ally including core contributions, and the difference between 11-
electron and 3-electron results isolating core contributions.
Supplementary Note 5 further discusses the influence of the
pseudopotential approximation beyond the number of electrons
explicitly modeled.

The TDDFT simulations held ionic velocities fixed while
propagating the KS orbitals according to the Crank-Nicolson
algorithm. For protons with velocities of 1.5 at. u. or more, the time
step was chosen to scale inversely with proton velocity such that
the proton traverses about 0.02Å within each time step. For
slower protons, smaller time steps of 0.3–0.4 as were needed to
achieve converged results (see Supplementary Note 4 for more
details).

Stopping power extraction
The ultimate stopping powers were computed from the time-
dependent force on the proton, including Hellmann-Feynman and
Pulay terms, but not the fully energy-conserving form ref. 59,
which is expected to be insignificant over the few-fs time scales
simulated in this work. Data during the first 4Å of the proton’s
motion were excluded from the analysis to allow for dynamical
ionization of the suddenly accelerated proton. The time-
dependent force was integrated along the proton’s path to
obtain the stopping work, or cumulative energy deposited by the
proton into the electronic system. The slope of the least-squares
linear fit of the stopping work then produced the average
stopping power. In Supplementary Note 1, we compare different
procedures for extracting an average stopping power from TDDFT
data and show that the methodology described here converges to
within 2% after the proton traverses 75 Å, whereas other
procedures can be much more sensitive to the precise endpoint
of the analysis and take longer to converge.

DATA AVAILABILITY
The datasets computed and analyzed during the current study are available from the
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