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Exploring high thermal conductivity polymers via interpretable
machine learning with physical descriptors
Xiang Huang 1, Shengluo Ma1, C. Y. Zhao 1, Hong Wang 2 and Shenghong Ju 1,2✉

The efficient and economical exploitation of polymers with high thermal conductivity (TC) is essential to solve the issue of heat
dissipation in organic devices. Currently, the experimental preparation of functional polymers with high TC remains a trial-and-error
process due to the multi-degrees of freedom during the synthesis and characterization process. Polymer informatics equips
machine learning (ML) as a powerful engine for the efficient design of polymers with desired properties. However, available
polymer TC databases are rare, and establishing appropriate polymer representation is still challenging. In this work, we propose a
high-throughput screening framework for polymer chains with high TC via interpretable ML and physical feature engineering. The
hierarchical down-selection process stepwise optimizes the 320 initial physical descriptors to the final 20 dimensions and then
assists the ML models to achieve a prediction accuracy R2 over 0.80, which is superior to traditional graph descriptors. Further, we
analyze the contribution of the individual descriptors to TC and derive the explicit equation for TC prediction using symbolic
regression. The high TC polymer structures are mostly π-conjugated, whose overlapping p-orbitals enable easy maintenance of
strong chain stiffness and large group velocities. Ultimately, we establish the connections between the individual chains and the
amorphous state of polymers. Polymer chains with high TC have strong intra-chain interactions, and their corresponding
amorphous systems are favorable for obtaining a large radius of gyration and causing enhanced thermal transport. The proposed
data-driven framework should facilitate the theoretical and experimental design of polymers with desirable properties.
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INTRODUCTION
Polymers are extensively used in industry and daily life, owing to
various advantages of chemical inertness, mechanical flexibility,
and lightweight1. As the organic electronics are becoming smaller
while the power density keeps increasing, the thermal manage-
ment and heat dissipation capability have attracted significant
attention2,3. However, conventional polymers are thermal insula-
tors with reported thermal conductivity (TC) in the range from 0.1
to 0.5 Wm−1 K−1, preventing the development of organic
electronics4. Polymers with high TC are urgently demanded in
organic energy storage and electronic devices to accommodate
revolutionary innovations in organic electronics and optoelec-
tronics5. The polymer morphology and topology were found to be
closely related to TC6. Increasing the crystallite orientation and
crystallinity can significantly reduce the phonon scattering and
enhance the TC along the chain directions, which has been
demonstrated by both experiments7–12 and theoretical simula-
tions13–15. A recent study has fabricated polyethylene (PE) films by
disentanglement and alignment of amorphous chains with a
metal-like TC of 62 Wm−1 K−1, over two orders of magnitude
greater than that of classical amorphous polymers7. Moreover,
molecular dynamics (MD) simulations have suggested that
individual crystalline PE chains have a very high or even divergent
TC16. These findings provide opportunities for solving the heat
dissipation problem of polymer devices.
Intra-chain atomic interactions are usually much stronger than

inter-chain interactions in polymers, and enhancing the intra-
chain thermal transport of polymers is essential to improve their
TC. Experimental techniques such as micro-mechanical stretch-
ing7,8, electrostatic spinning9,10, and nanoscale templating11,12 are
effective in improving the crystallinity of polymers and obtaining

more consistent chain orientation, resulting in an increase in the
TC of amorphous polymers by 1–3 orders of magnitude. Strategies
such as applying mechanical strains17,18, parallel-linking of
chains19, and modulation of dihedral energy20 in MD simulations
suggested that ordered chains and large radius of gyration (Rg)
are favorable for high TC of polymers. According to Debye’s
theory, the TC of the polymer k can be expressed by the phonon
group velocity vg , mean free path l and volumetric heat capacity
Cv , i.e., k ¼ vgCvl. In general, the vg and Cv of polymers mainly
determined by the characteristics of the repeating units and the
strength of the backbone bonding in the individual chain21. Thus,
it is possible to realize the high TC polymer by adjusting the
repeating unit of polymer chains, which also facilitates under-
standing the heat transport mechanisms along the chain for
polymers with different hierarchical structures.
Despite the fact that the chain structure of polymers exhibits

great influence on the thermal characteristic, the polymer library is
quite large, with as many as 108 monomeric organic molecules
known to exist in chemical space22. Current research on the TC of
polymers is still an Edisonian process, guided by intuition or
experience in a trial-and-error approach that is time-consuming
and expensive23. Most of the studies are conducted on simple
structures such as PE5,7,16, which makes it difficult to grasp the
general rule of the factors affecting the TC of polymers and to
discover polymer molecular structures with high TC in huge
chemical space.
The field of polymer informatics24, associated with the

development of artificial intelligence and machine learning (ML)
methods, attempts to utilize the data-driven centric method for
physical property regulation or device development of organic
materials to resolve the conflict between structural freedom and
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efficiency/cost in the traditional trial-and-error approach. The
research on polymer informatics has attracted extensive attention
and succeeded in recent years25–27, involving the prediction of
organic optical28–30, electrical31–33, and thermal properties34–38.
Particularly, several efforts emerged in the search or design of
structures with high TC as related to crystalline polymers36,
amorphous polymers37,38, and copolymers39. Most of these studies
have employed graph descriptors37 or polymer chemistry
fragment statistics36,38,39 to describe monomer structures in
informatics algorithms, also called fingerprints or representations.
The graph descriptors generated rely on molecular/monomer
graph information, formulated by knowledge domain feature
engineering40 or by attempting to form general descriptors41.
Moreover, descriptors such as molecular access systems
(MACCS)42 are obtained through statistics of different chemical
fragments, and are closely related to molecular graphs. Subse-
quently, they are collectively referred to as graph descriptors.
Fingerprints are required for the unique, complete, minimal
representation of each candidate, and successful fingerprints are a
challenging task43. Besides, polymers are composed of many
repeating units, which are more complex than organic small
molecules and require accurate capture of information on
monomer connection sites32. Graph descriptors have long been
applied and validated in the development of drug-like small
molecules44, and the availability of open-source toolkits such as
RDKit45 and Mol2vec40 has facilitated their accessibility, which is
also one reason that graph descriptors are popular in polymer
informatics. However, the graph descriptor is in the form of a
string of numeric vectors. The completeness of the molecular
structure determines the coupling association between the digits.
Hence, the relationship between molecular monomers and
material properties is difficult to grasp.
Exploring the ensemble of physically independent descriptors

for the representation of molecular structures is important in
qualitative structure-property relationship modeling and enables
more intuitive guidelines for molecular structure evaluation46.
Feature engineering for the collection and reduction of physical
descriptors are critical steps in determining effective capabilities in
polymer informatics. The development of automatic, universal and
efficient tools for the calculation of descriptors of organic
molecules is of interest to researchers, which translates the
chemical information encoded in the symbolic representation of
molecules into useful numbers or some standardized experi-
mental results47. Several open-source and commercial soft-
ware47–49 are available to calculate various types of molecular
descriptors such as carbon atomic number, molecular weight, and
Extended Topochemical Atom50, which have been successfully
applied in organic chemistry synthesis51, molecular antibacterial
activity prediction52, and so on. In addition, the parameter
conditions in experiments or simulations affect the molecular
properties. For instance, the force-field-inspired descriptors such
as types of bond, angle, and dihedral have been validated for the
prediction of the specific heat of polymers, even if the datasets are
from experiments35. The dimensionality reduction of polymer
features is another concern, as some descriptors may have little
relevance to the target property, and a low-dimensional descriptor
space is much easier to build up for the ML model53. Feature
extraction and selection are the dominant approaches to reduce
the dimensionality of features. Feature extraction creates subsets
from the original data space, such as principal component analysis
(PCA), where the specific meaning of the new features obtained is
difficult to understand54. Feature selection retains the physical
meaning of individual descriptors, while filters based on correla-
tion evaluation have dependencies on mathematical models, like
the Pearson and Spearman coefficients that consider the linear
and monotonic relationships of the data, respectively55. Further,
the filter methods do not involve ML models, which may lead to
the inapplicability of the gained features. The wrapper-based

feature selection techniques combine ML models to eliminate
redundant features, including recursive feature elimination (RFE),
sequential feature selection (SFS), and exhaustive feature selec-
tion56. Testing different subsets of descriptors for informatics
algorithms is the crucial feature of the wrapper approaches, and
the key is the strategy of combining different descriptors. Typical
RFE seeks to improve model performance by continuously
reducing the low-impact features from the remaining features in
iteratively constructed ML models, which refer to the ranking of
feature weights assigned by models such as random forests54.
Thus, the RFE relies on the feature weight evaluation mechanism
of the ML models.
Herein, focusing on the challenges of polymer monomer

representation and feature selection, we propose an ML
interpretable framework integrated with high-throughput MD
simulations for the discovery of polymer structures with high TC,
as illustrated in Fig. 1. It consists of four components: 1) polymer
library construction; 2) MD simulation for the TC of polymers; 3)
monomer feature representation and hierarchical down-selection;
4) ML models construction for TC prediction. The training data
were collected from literature57,58, and candidates from the
databases of PoLyInfo59 and PI1M60 were applied for the virtual
screening of high TC structures. All polymer monomers were
identified by the SMILES (simplified molecular input line entry
system) strings and formed one-dimensional polymer chains by
replication. The TC of training datasets was calculated by MD
simulations with the second generation of the general AMBER
force field—GAFF261. Inspired by drug-like molecular representa-
tion and molecular force fields, we obtained 320 physical
descriptors by Mordred software47 calculation and force field
parameter file extraction, and retained 20 optimized descriptors
by hierarchical down-selection. We then trained random forest
(RF), extreme gradient boosting (XGBoost) tree-based models, and
multilayer perceptron (MLP) neural network models separately to
establish the relationship between the optimized descriptors and
the TC of these benchmark polymer datasets. Further, we analyzed
the feature importance of each optimized descriptor and
extracted the chemical heuristic for high TC polymers design
through SHAP analysis62. Using the trained ML models, 107
promising polymers with TC greater than 20.00 Wm−1 K−1 were
identified, which are served for symbolic regression to derive
mathematical formulas for expressing the TC of promising
polymers. Last, we discussed the thermal transport mechanisms
of polymer chains and analyzed the intra-chain thermal transport
linkages of polymers with different hierarchical structures. Overall,
the proposed approach is beneficial for theoretical or experi-
mental investigations of high TC polymers.

RESULTS
Distribution of polymer datasets in chemical space
Polymer data from literature57,58 were utilized as the benchmark
database for training ML models, as well as PoLyInfo59 and PI1M60

databases were used for the virtual screening of polymer
structures with high TC. The polymers are classified into 19
classes such as polyolefins, polyethers, and polyamides according
to different elements and chemical functional groups63. To
validate the distribution of the selected 1735 benchmark data
over the other two datasets, their chemical structures were
visualized in 2D space by the uniform manifold approximation and
projection64, where the chemical structure of each monomer was
transformed into the Morgan fingerprint41 of a 1024 vector with a
radius of two atoms. It is observed that the polymer structures in
the selected benchmark dataset (Fig. 2a) are well covered by the
chemical space distribution of those in the PoLyInfo (Fig. 2b) and
PI1M (Fig. 2c) databases. Note that the PI1M dataset was
generated by a generative model of a recurrent neural network
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trained with data from PoLyInfo, which fills the sparse region of
the chemical space of the PoLyInfo dataset, but the distribution is
consistent60. Thus, the ML models trained with the selected data
are well able to learn the chemical features of all candidates and
can be effectively adopted for the virtual screening of polymer
structures with high TC. In addition, we counted the distribution of
polymer TC in the benchmark dataset in Supplementary Fig. 1,
which has a wide range and most of the polymers have TC less
than 10Wm−1 K−1, and only a few polymers have TC greater than
30Wm−1 K−1 (Insert in Supplementary Fig. 1a). The unbalanced
data distribution makes the discovery of high TC polymer

structures a difficulty. To better improve the ML models general-
ization across the entire TC range, our learning problem was
framed in logarithmic scale, i.e., log2TC, as the target property for
ML models65.

Polymer descriptors hierarchical down-selection and ML
Models Training
Polymer descriptors are hierarchically down-selected in three
stages: removing features with low variance, primary filtering
referred to different correlation coefficients, and final selection
assisted with the ML model (shown in Supplementary Note 2). The

Fig. 2 Visualization of polymer data distribution in a 2D space by UMAP. a, b and c correspond to the selected, PoLyInfo, and PI1M
datasets, respectively.

Fig. 1 Schematics of high-throughput screening of polymers with high TC via interpretable machine learning. which is implemented in
four components: 1) polymer library construction, 2) MD simulation for the TC of polymers; 3) monomer feature representation and
hierarchical down-selection; 4) ML model construction for TC prediction.
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collected initial monomer physical descriptors are composed of
286 Mordred-based and 34 MD-inspired descriptors. The descrip-
tors of MD-inspired and Mordred-based descriptors are listed in
Supplementary Note 3. The removal of low variance descriptors is
intended to eliminate descriptors with variance less than a specific
threshold, whose contribution to the target property of all
polymer data (log2TC in this work) is considered to be nearly
consistent. After the variance threshold was set to 0.10, the 264
descriptors were reserved for the next stage. We established the
weight assignment mechanism based on the different correlation
coefficients for further primary filtering of the descriptors, due to
the various attentions of their mathematical models. The Pearson,
Spearman, and Distance coefficients are used to evaluate linear,
monotonic, and non-linear relationships between data, respec-
tively, while the maximum information coefficient (MIC) reflects
the association of two variables through information entropy,
whether linear or nonlinear. The reliability of MIC depends on the
data sample size and the value is reliable only with large datasets.
The four metric coefficients of Pearson, Spearman, Distance, and
MIC were incorporated and each was assigned a weighting factor
of 0.25, and the thresholds were set to 0.05, 0.05, 0.153, and 0.132,
respectively. The 53 descriptors with a cumulative weight value of
1 were retained through VAM. Random sequential feature
selection (RFSF) combined with the RF model was then developed
for optimized descriptors determination. Considering all possible
combinations of descriptors for ML model training is time-
consuming and expensive, so traditional SFS usually leads to
sub-optimal solutions, where the recommended ensemble of
optimized descriptors is not unique, and is influenced by the input
order of the descriptors66. Here, we disrupted the order of the
input descriptors before each run, then combined them with 100
RF model training cycles, and acquired the final optimized
descriptors based on a statistical approach. The threshold value
depends on the occurrence times of the descriptors in 100 RF
model training runs, and descriptors with a frequency larger than
the threshold value were retained. We measured the performance
of RF models trained by different descriptor ensembles with
thresholds ranging from 0.39 to 0.32 in Supplementary Fig. 3,
separately. By balancing the mean-square error (MSE) of ML model
and the number of descriptors, 20 optimized descriptors were
finally selected with a threshold of 0.34. The results of the
optimized descriptors based on VAM and RSFS are shown in Fig.
3a, and their detailed descriptions are listed in Supplementary
Note 4. Moreover, Fig. 3e exhibits the Pearson correlation matrices
of the correlations among optimized descriptors (Other metrics,
see Supplementary Fig. 2). It is found that most descriptors are
positively correlated with each other and negatively correlated
with TC. Only three descriptors are positive for TC, two of which
are MD-inspired descriptors. For example, the descriptor MW_ratio
reflects the ratio of the molecular weight of the mainchain to the
molecular weight of the monomer, with values between 0 and 1.
The MW_ratio of 1 indicates that the polymer is without side
chains, which reduces the loss of heat flux along the chain and
makes it possible to get large TC.
Figure 3b shows the results of the RF model trained with the

optimized descriptors, with training and test R2 of 0.87 and 0.84,
respectively. To verify the extensibility of the optimized descrip-
tors, XGBoost and MLP models were deployed for training (see
Supplementary Fig. 4). The accuracy R2 of the training and test sets
for XGBoost is 0.95 and 0.87, and that for MLP are 0.81 and 0.88,
respectively, which is comparable or even better than the RF
model. Therefore, these three models are utilized in the
subsequent discussion.
The prediction accuracy of ML models at different down-

selection stages is illustrated in Fig. 3c (training and test data set
prediction in Supplementary Fig. 5). The extra PCA with more than
95% variance was performed to compare with RFSF technology.
According to the relationship between the number of principal

components and the cumulative variance in Supplementary Fig. 6,
at least 19 components are required to exceed 95% variance. It is
close to the number of sets of optimized descriptors. As seen in
Fig. 3c, the tree-based models of the RF and XGBoost maintain
relatively low MSE and high accuracy R2 (See Supplementary Fig.
8) even with large descriptor dimensions because of their strong
ability to prevent overfitting of the data. Moreover, the feature
down-selection process is usually accompanied by the loss of
information, which results in a decrease of model accuracy.
However, the feature down-selection process also reduces the
redundancy between data which suppresses the overfitting and
improves the accuracy of the MLP model. Overall, the accuracy of
all three models trained with the optimized descriptors from RFSF
is higher than that of the models trained with the PCA-derived
descriptors, which demonstrates the effectiveness of our
approach.
The ML models with different graph descriptors were applied

for comparison in Fig. 3d (training and test data set prediction in
Supplementary Fig. 7). The Mol2vec40 is an unsupervised ML
approach to learn vector representations of molecular substruc-
tures, which requires a benchmark dataset for molecular structure
training. Here, the pre-trained polymer embedding model was
from elsewhere60, which was created using the PoLyInfo and PI1M
datasets. The MACCS42 descriptor is the structural key-based
descriptor with 166-bit keyset. The Morgan and Morgan count
(cMorgan)41 descriptors are the extended connectivity fingerprints
that capture molecular features relevant to molecular activity. The
results in Fig. 3d and Supplementary Fig.8 reflect the superiority of
ML models trained with the optimized descriptors, no matter the
models of RF, XGBoost, and MLP. The down-selection processes of
physical descriptors examine individual/combined descriptors in
relation to TC, while the graph descriptors aim to represent
molecular/monomeric information as completely as possible.
Whilst the elements or groups in the molecular graph have been
indicated to correlate with the TC of polymer chains36, it is more
intuitive and effective to predict the log2TC of polymer chains
using the associated physical descriptors. But not absolute, which
is also related to the parameters such as chain stiffness67. We also
evaluated ML models with a hybrid descriptor set composed of
the optimized descriptors and one of the graph descriptors in
Supplementary Fig. 9a and 9b. The performance of ML models
trained with hybrid descriptors shows only a small improvement
or even is comparable to that of trained with optimized
descriptors, which reflects the fact that the optimized descriptors
cover relatively complete information about the polymer struc-
tures. Furthermore, we applied the optimized descriptors or graph
descriptors to train the directed message passing neural network
(DMPNN) models in Chemprop68, as shown in Supplementary Fig.
9c, d. Although the limited amount of data in the available
benchmark dataset makes it difficult to output a high-
performance DMPNN model, the performance of the optimized
descriptors is the best compared to other descriptors. This
illustrates the potential of optimized descriptors for applications
in diverse and complex ML models.

Physical insights from an interpretable ML model
Figure 4 summarizes the effect of the features using SHAP, for the
RF model trained on optimized descriptors. The SHAP approach
attempts to address the unexplainable black-box challenge of ML
algorithms by calculating the marginal contribution of features to
the model output62. Hence, the features of each polymer structure
in training data sets are assigned the SHAP values separately. As
shown in Fig. 4a, the importance ranking of the optimized
descriptors was referenced to the average SHAP value. Among the
top 8 optimized descriptors, the number of MD-inspired and
Mordred-based descriptors is equal, which reflects that the
construction of the RF model is a joint contribution of these two
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types of descriptors. The distribution of SHAP values for each
descriptor is displayed in Fig. 4b, and the depth of shade of data
points in the beeswarm plot represents the magnitude of TC of
polymer structures in the training set. The distribution of SHAP
values for the top-ranked features is relatively wide, and is
monotonic about the feature values overall (Supplementary Fig.
10).
Here, we highlight the two MD-inspired descriptors of cross-

sectional and Kd_average. The most important descriptor of cross-
sectional indicates the effective cross-sectional area of the
polymer chain, which is intuitive in relation to the TC. From Fig.
4c, the SHAP value for cross-sectional decreases monotonically
with the descriptor. In 1-D polymer chains, the effective cross-
sectional area relies on factors such as the complexity of the side
chains and the chain orientation. Polymers with small cross-
sectional areas facilitate the construction of centralized phonon
transport channels along the backbone, and reduce the heat flux
dissipated through the side chains. Thus, the TC is negatively
related to the cross-sectional area, and polymers with high TC
usually have a small cross-sectional area (Supplementary Fig. 11a).
Moreover, the polymer chain structure is absent of disorder

compared to the amorphous structure, maintaining the symmetry
of the crystal and reducing phonon scattering. However, the
polymer chains may rotate and become disordered due to
temperature and other effects, resulting in a rapid decrease in
TC69. The close correlation between the dihedral energy constant
and polymer chain stiffness has been demonstrated, and the
dihedral angle force constant Kd has been artificially increased in
MD simulations to maintain PE chain stiffness and increase TC20,69.
The Kd_average is the average of all types of dihedral force
constants from GAFF2 force field for polymer chain, which is
roughly proportional to the corresponding SHAP value in Fig. 4d.
Especially for polymer structures with great kd_average
(>4 kcal mol−1) usually have large SHAP values and TC (Supple-
mentary Fig. 11b). Notably, the TC of polymer chains is influenced
by multiple parameters and it is difficult to have the individual
descriptor to determine its value. One example is that crystalline
polynorbornene has been proven to be weakly sensitive to chain
stiffness, even if increasing the dihedral angular force constant
term in MD simulations69. This confirms the significance of our
proposed ML framework for predicting the log2TC of polymers.

Fig. 3 Polymer descriptors down-selection and ML models training. a Optimized descriptors acquired by down-selection with four
coefficients - Pearson, Spearman, Distance, and MIC coefficients - and RF model. b Accuracy of RF model based on optimized descriptors,
where training R2 is 0.875 and test R2 is 0.844. c Mean-square error (MSE) of ML models at different down-selection processes, including initial
(Init.), mathematical correlation (Cor.) coefficients screening, and RF model optimization (Opt.) stages. And, an additional PCA approach was
applied to compare. d MSE of ML models with different polymer representation approaches. The violin plot represents the distribution of
values, individual subsamples are shown in gray, and the mean and standard of MSE in black. e Pearson correlation matrices showing
correlations among optimized descriptors and TC. The inset is the statistics of the Pearson coefficients distribution.
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Discovery of high TC polymers
The reliability of the optimized descriptors has been exhibited by
the performance of the various trained ML models. Next, we
applied these ML models to predict the log2TC of polymer
structures in the PoLyInfo and PI1M databases, in order to virtually
screen promising polymers with high TC. The predicted polymer
TC versus cross-sectional area from the ensemble of optimized
descriptors combined with RF, XGBoost, and MLP are visualized in
Fig. 5a–c, respectively. Where stars indicate polyethylene with
log2TC of 3.91, 4.66, and 5.30 predicted by RF, XGBoost, and MLP,
respectively, and that calculated by MD simulation is 5.28. The
dependence of TC on the cross-sectional area is evident here, as
almost all of the predicted high log2TC polymers have small cross-
sectional areas. Moreover, since PI1M has the same chemical
distribution space as PoLyInfo and fills the sparse area, which
covers most of the log2TC range of PoLyInfo and enriches the
polymer structures in the high log2TC region.
Comparing the results from different ML models, the tree-based

models of RF and XGBoost predict the log2TC of polymers in a

narrower space than that of the MLP. Though the excellent
performance of the tree-based models in preventing overfitting,
the extrapolation of the models is usually inadequate and the
predictions are still limited to the range of log2TC of the polymer
structures in the training set. In contrast, the neural network
model of MLP usually has better extrapolation capability, and is
superior in finding small data such as high log2TC polymer
structures, despite the relatively low training accuracy R2 of the
model. This finding is similar to a previous study of predicting the
permeability of gas separation membranes using ML23. As well,
previous work has revealed the length dependence of the TC of
polymer chains. Within a certain length range, the diverging
thermal conductivity k and chain length L can be fitted by k∼ Lβ,
where β indicates the relatively dominant phonon transport
mechanism70. Here, we considered polymer chains with TC
greater than 20.00 Wm−1 K−1 with an effective length of 50 nm
as the outstanding polymers with high TC. Then, a balanced
strategy to integrate the performance of three ML models was
devised to recommend promising polymer structures for the

Fig. 4 Analysis of feature importance using SHAP on RF model trained by optimized descriptors. a Average SHAP values for 20 optimized
descriptors. b Represent the SHAP values of each descriptor related to training data set polymers in a beeswarm diagram. c, d SHAP values for
the Cross-section and Kd_average of the training data set polymers as a function of descriptor value. The cross-section is the effective cross-
sectional area of the polymer chain, and the Kd_average is the average value of force constants of the dihedral angle from the GAFF2 force
field.
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calculation of TC by MD simulations. We identified the polymer
structures in the PoLyInfo dataset with RF, XGBoost, and MLP
predictions of log2TC up to 3.51, 3.50, and 4.33, and only the
polymer structures with no less than 2 occurrences were picked
for MD simulations. As a result, 24 polymer structures with high TC
were discovered and verified. Similarly, we implemented this
method to identify 84 high TC polymer structures in the PI1M
database. After de-duplication, totally 107 high TC polymer
structures were found in this work, and the Synthetic Accessibility
(SA) scores were calculated as shown in Fig. 5d. The specific
polymer structures can be seen in Supplementary Note 8. From
Supplementary Fig. 12, we can see that most of the high TC
polymers are simple linear or contain aromatic rings in the
mainchain, which have small repeating unit lengths and no side
chains. The SA score was initially utilized to estimate the synthetic
accessibility of drug-like molecules based on molecular complexity
and fragment contributions71, and was subsequently adopted for
polymers37,38. The SA score values ranged from 1 to 10, and
synthesis is more difficult as the value increases. To take into
account the effect of monomer linkages, polymer molecules with
a polymerization degree of 6 were calculated for the SA score.
Among them, 28 polymer structures with SA no more than 3.00,
including polyethylene, polytetrafluoroethylene and poly(p-phe-
nylene), and etc. Although it is currently difficult to fabricate each
of these structures, we believe that more polymers like PE chains
will be prepared for exploring the limits TC of polymers by
combining advanced processes such as micromechanical stretch-
ing, electrostatic spinning, and nanoscale templating preparation
in the near future5,7,16.

Symbolic regression for TC prediction of promising polymers
Since the TC of polymer chains is influenced by complex multi-
parameters, it is difficult to predict trends in TC values for different
polymers from any single descriptor. Symbolic regression (SR)
attempts to accelerate the discovery of materials with superior

properties by relating available descriptors through mathematical
formulas to construct new combinatorial features72. SR does not
require massive datasets, as long as a high consistency and
accuracy73. The 107 promising polymer structures
(TC > 20.00 Wm−1 K−1) with optimized descriptors were utilized
for SR, where the ratio of training to test set was 3:1. The
mathematical formula was acquired and selected using an
efficient stepwise strategy with SR based on genetic programming
(GPSR) as implemented in the gplearn code74. The hyperpara-
meters setup and the detailed formula determination process can
be found in Supplementary Note 9. Pearson coefficients are first
applied to filter optimized descriptors and create sub-descriptors,
and an updated ensemble of 22 descriptors was obtained. The
frequency of occurrence of optimized descriptors in 158
mathematical formulas (PC values �0.85 and complexity �10) is
displayed in Fig. 6a, and the first eight descriptors were finally
retained. It is worth emphasizing that the MD-inspired descriptors
of cross-sectional area (cross-sectional) and dihedral force
constants (Kd_average) appeared in each of the formulas. In Fig.
6b, we calculated the Pearson coefficients of the new set of
descriptors with the TC, the results suggest these descriptors are
closely associated with the TC. Subsequently, we reset the grid
search hyperparameters in gplearn and used R2 as the evaluation
metric. Only formulas with high R2 and low complexity (length of
formula) are considered suitable for the prediction the log2TC of
polymer structures75. Thus, 9073 mathematical formulas with
complexity within 30 and R2 over 0.6, which are characterized by
complexity and accuracy R2 via density plot in Fig. 6c. The four
points of c, d, e, and f at Pareto front were identified by Latin
hypercube sampling approach76,77, and their corresponding
formulas are expressed in Supplementary Table 8. The complex-
ities of the four formulas are in the range of 20–30, and the fitting
accuracies are all greater than 0.70. Moreover, the training
accuracy is mostly positive to complexity. For example, the
formula represented by point c with a complexity of 20 has a
relatively low accuracy R2 among the four points, but the fitting

Fig. 5 Prediction of high TC polymers in PoLyInfo and PI1M databases using constructed ML models. a, b and c based on RF, XGBoost, and
MLP models, respectively. d Synthetic accessibility (SA) score versus calculated log2TC of screened high TC polymers (TC > 20.00 Wm−1 K−1).
The star indicates PE, and the TC in this work is 38.98 Wm−1 K−1.
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results are consistent with the MD calculated log2TC, as
demonstrated in Fig. 6d. Meanwhile, all four identified formulas
include the descriptors of the Cross-sectional, Kd_average and
Nd_average, which verified that the TC of polymer chain is
strongly correlated with the parameters such as cross-sectional
area and dihedral stiffness. These formulas are meaningful in the
initial rapid screening of high TC polymer chain structures.

Thermal transport mechanism of promising individual
polymer chains
Taking into account factors such as TC and SA score, eight
polymer structures (see Fig. 7a) were chosen for the analysis of
phonon dispersion relations. Currently, polymer structures like [*]
C=C[*] and [*]N=N[*] are challenging to be synthesized
experimentally, but are contributing to our understanding of
polymer thermal transport mechanisms. All of these polymer
molecules are π-conjugated structures except for the PE and the
Polytetrafluoroethylene (PTFE), which are simple linear structures.
In π-conjugated polymer molecules, the overlap of p-orbitals has
enhanced restraint in inhibiting chain rotation and forming the
rigid backbone15. Figure 7b illustrates the phonon dispersion
relations, which were obtained by phonon spectral energy density
(Phonon-SED) analysis78, The detailed description of the Phonon-
SED approach can be found in the Method part. Since the acoustic
modes are dominated by the thermal transport of heat carriers in
polymer chains, phonon modes with frequencies below 25 THz are
demonstrated. Moreover, the phonon group velocity vg is
approximated as the average of the slopes of all acoustic
branches15,67. The volumetric heat capacity Cv of each structure
was evaluated from corresponding amorphous polymers, we
constructed an amorphous system containing about 10,000 atoms
according to the repeating units, respectively, and calculated the
value of Cv after the equilibrium simulation at 300 K, more details
can be found in Supplementary Note 10. So far, the phonon mean
free path was derived from l ¼ k=vgCv . Since the MD simulation

did not reach equilibrium for the model of [*]N=N[*], we failed to
obtain its Cv and l. The approximations of the above calculations
allow the results to be rough, but it do help us to understand the
underlying thermal conductivity mechanisms of these promising
polymer structures by comparing the relative trends of the
relevant parameters, as listed in Table 1.
The volumetric heat capacity of the eight polymer structures

varies from 2.70 to 3.74 J cm−3 K−1, which is not critical to the high
TC of polymer chains21. As for the phonon group velocity, the six
π-conjugated polymers have large values (more than 5900m/s)
due to overlapped p-orbital and delocalized electrons. Addition-
ally, the small atomic mass enables a large phonon group velocity.
The PTFE has a smaller phonon group velocity than that of PE due
to the relatively larger mass of fluorine atoms compared to
hydrogen atoms. The phonon mean free path provides valuable
insights into phonon transport in the polymer chains. Overall,
simple linear polymer chains easy to have long phonon mean free
paths, especially for linear π-conjugated polymers such as [*]
C=C[*]. These structures have large chain stiffness and few atoms
except for the backbone, thereby having weak phonon-disorder
scattering.

Thermal transport linkages between the various hierarchical
polymer structures
To explore the thermal transport linkages between the different
hierarchical structures of polymer chains and amorphous poly-
mers, we selected 58 structures from 107 promising high TC
polymer chains and calculated the TC of the corresponding
amorphous polymers (ATC) using reverse non-equilibrium mole-
cular dynamics (NEMD) simulations79, as listed in Supplementary
Table 4 and shown in Fig. 8a. Here, ATC was specifically defined as
the TC of the amorphous polymer to distinguish it from that of
polymer chains. Amorphous polymers normally have much lower
TC than polymer chains due to their internal disordered chain
entanglement, and thus polymers with ATC greater than

Fig. 6 GPSR for TC prediction of promising polymers. a Frequency of occurrence of optimized descriptors in 158 mathematical formulas (PC
values � 0.85 and complexity � 10). b Pearson correlation matrices showing correlations among 22 descriptors and TC, where the descriptors
d1–d8 correspond to descriptors 1 to 8 in (a). c Pareto front of accuracy R2 vs. complexity of 9073 mathematical formulas shown via density
plot. d MD calculated log2TC vs. fitting results of the formula (point c) with a complexity of 20 and training accuracy R2 of 0.71.
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0.40Wm−1 K−1 can be considered to have outstanding thermal
conductivity37,80. Among the amorphous polymers simulated in
this work, half of which have an ATC greater than 0.40 Wm−1 K−1,
while the equivalent percentage is only 2.3% in the reference
(ref. 63). In Fig. 8b, the radius of gyration (Rg) of amorphous
polymers has a close positive correlation with ATC, and this work
broadens the upper limit of Rg that in ref. 63. Since polymer chains

with high TC are associated with strong atomic interactions and
large chain stiffness, their corresponding amorphous structure is
also conducive to maintaining large rigid chain segments.
According to different values of Rg, we selected six structures in

Fig. 8c, Poly(p-phenylene), Poly(p-phenylenevinylene), Polyacety-
lene (PA), Poly[(E)-1-fluoroethene-1,2-diyl] (PEFD), PE and PTFE, to
understand the thermal transport mechanism via energy flux
decomposition analysis63. The ATC of each amorphous polymer
was quantified into six components of bond, angle, dihedral,
convection, nonbonded and improper, where the nonbonded
contribution contains pairwise and K-space contributions. From
Fig. 8d, the intra-chain interactions of bonds, angles, and dihedrals
dominate the ATC of amorphous polymers. Especially for π-
conjugated polymers, the direct contribution of the dihedral term
to the ATC is obvious. By comparing PA/PEFD pairs or PE/PTFE
pairs, the system containing atoms with a large mass such as
fluorine may inhibit the propagation of phonons and reduce the
ATC. For a unified comprehension of the mechanism of the
dihedral term on the contribution to the TC of different
hierarchical structures, we investigated the role of chain orienta-
tion and chain rotation of polymers in Supplementary Note 10.
Our results reveal that polymers with low dihedral energy are
prone to poorly consistent chain orientation (Supplementary Fig.
16) and severe chain rotation (Supplementary Fig. 17), which are
undesirable for heat flux transport in the intended direction.
Furthermore, the TC of strained amorphous polymer or polymer
chains is more sensitive to the reduction of dihedral energy rather
than strain-free amorphous polymer, because it has a large
original orientational order parameter.

DISCUSSION
In summary, we have developed an interpretable ML framework
for exploring high thermal conductivity polymer chains via high-
throughput MD simulations. Inspired by the drug-like small
molecule representation and the molecular force field, we reduced
the initially calculated/collected 320 physical descriptors to 20
optimized descriptors by hierarchical down-selection. The con-
structed ML models are capable of effectively reflecting the
relationship between optimized descriptors and property, and
exhibit high accuracy in TC prediction. All the models of RF,
XGBoost and MLP achieved the R2 of more than 0.80, which is
superior to that of represented by conventional graph descriptors.
Moreover, the promotion or inhibition of TC by optimized
descriptors like cross-sectional area and dihedral stiffness was
captured by RF model using SHAP analysis.
Using the trained ML models, we discovered 107 promising

polymers with TC greater than 20.00 Wm−1 K−1, and 29 of which
have SA scores of no more than 3.00. These polymer structures
have been validated through high-fidelity MD simulations. Further,
we used SR with optimized descriptors to fit the TC of promising
polymers, and the derived mathematical formulas enable a
preliminary fast screening of high TC polymers without relying

Table 1. Thermal properties for eight promising polymers.

Polymer ID SMILES SA Cv (J cm−3 K−1) vg (m/s) l (nm) TC (W m−1 K−1)

PHTC001 [*]c1ccc([*])cc1 1.05 3.09 6822.21 2.65 55.94

PHTC002 [*]CC[*] 1.12 3.74 5240.91 1.99 38.98

PHTC006 [*]C=Cc1ccc([*])cc1 2.17 2.97 6295.54 1.87 35.01

PHTC014 [*]c1ccc([*])nn1 2.48 2.70 5927.05 2.08 33.24

PHTC015 [*]C(F)(F)C([*])(F)F 2.51 2.94 2952.11 6.02 52.21

PHTC017 [*]c1cnc([*])cn1 2.62 2.86 7439.50 4.62 98.45

PHTC034 [*]C=C[*] 3.12 2.91 8380.09 6.06 147.68

PHTC094 [*]N=N[*] 5.05 N/A 6378.73 N/A 1028.85

Fig. 7 Structure and phonon dispersion relations for the eight
promising polymers. a Polymer chain structures. b Phonon disper-
sion relations. The q is the wavevector, the ω is phonon frequency
and the average phonon group velocity of one branch is estimated
as the slope of the origin to the maximum frequency point as shown
in the red dashed line in the PHTC001 structure.
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on ML models, which is friendly for experimental studies. In
closing, we calculated phonon dispersion relations for eight
typical polymer structures via phonon spectral energy density
analysis to reveal the underlying TC mechanisms. Notably, most of
these structures are π-conjugated polymers, whose overlapping
p-orbitals enable easy maintenance of strong chain stiffness and
large group velocities.
Currently, the pure individual polymer chains are still not

accessible by experiments. Remarkably, there have been many
efforts to fabricate polymer nanofibers with consistently oriented
chains by techniques such as micromechanical stretching,
electrostatic spinning, and nanoscale templating, but this has
requirements on the inherent properties of the polymers.
Although mechanical tensile disentanglement of amorphous
polymers may be realized by adjusting conditions such as strain
rate and temperature, it is demanding on the mechanical
properties of the polymers80. Many π-conjugated polymers are
not suitable for the stretching process due to their incomparable
elastic modulus with PE, whereas electrostatic spinning and
nanoscale templating technologies are probably applicable81,82.
The conjugated polymer can be dissolved in matching solvents
and then prepared to form consistently oriented nanofibers by
electrostatic induction or by nanoscale template confinement
such as anodic aluminum oxide templates. Moreover, the thermal
properties of hierarchical structures of polymers are closely
related. We calculated 58 amorphous polymers whose repeating
unit was randomly extracted from the set of 107 promising
polymers, and half of them have a high ATC of 0.40 Wm−1 K−1.
Analyzed by Rg data, strong interatomic interactions are also
beneficial for obtaining large rigid chain segments in the
amorphous system, achieving significant intra-chain thermal

transport and high ATC. The proposed approach may assist in
the research of high-performance polymers that are not limited to
TC, and aid in understanding the linkage between the properties
of different hierarchical structures.

METHODS
Polymer modeling and cross-sectional area calculation
Polymer modeling is a monomer-to-chain process, implemented
in the STK tool, with input parameters of monomer SMILES and
degree of polymerization83. The length of the polymer chains was
set uniformly to 50 nm, and the degree of polymerization was
obtained by dividing the chain length by the monomer length
and rounding up to an integer. Starting from the polymer SMILES,
a molecular chain with polymerization degree 2 was generated by
RDKit and optimized using the MMFF force field84. Then, the
monomer length was determined by measuring the distance
between equivalent atoms in two repeating units in the heat
transport direction. Following the modeling, a Python pipeline of
PYSIMM realized the assignment of GAFF2 force field parameters
and the generation of MD simulation input structure data files85.
The cross-sectional area is one of the important parameters for

thermal conductivity analysis. In molecular dynamics simulations,
the calculation of the cross-sectional area is difficult for systems
that do not occupy the entire simulation box. The cross-sectional
area was estimated by the ratio of the van der Waals volume to
the length of the monomer13. The Van der Waals volume of the
monomer was calculated by the sum of atomic and bond
contributions, and has been successfully tested and applied in
previous drug compounds86.

Fig. 8 Thermal conductivity of amorphous polymers (ATC). a ATC of 58 structures randomly selected from data of 107 promising polymers
(this work), and the reference (Ref.) data calculated by Hayashi et al. 63, contains 1051 polymers, using the same simulation parameters as set in
this work. b Radius of gyration (Rg) versus ATC for polymers of this work and Ref., where the diamond markers indicate the six typical
amorphous polymers in (c), including Poly(p-phenylene) (PPP), Poly(p-phenylenevinylene) (PPPV), Polyacetylene (PA), Poly[(E)-1-fluoroethene-
1,2-diyl] (PEFD), Polyethylene (PE) and Polytetrafluoroethylene (PTFE), where the black balls indicated the carbon atoms, the golden balls
indicated the fluorine atoms, the red balls indicated the connection positions, and the hydrogen atoms were hidden. d Contributions of
convection and different types of interactions to the ATC of six polymers. The ATC of each amorphous polymer was quantified into six
components of the contribution of bond, angle, dihedral (dihed), convection (conv), nonbonded (non), and improper.
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Calculation of TC by MD simulations
The TC of polymer chains was obtained by NEMD simulations
performed in a Large-scale Atomic/Molecular Massively Parallel
Simulator85. The implementation of NEMD simulations is similar to
the steady-state measurement experiments for TC, in which a 1-D
steady-state heat transfer is generated by adding the heat source
and sink at both ends of the sample87. NEMD simulations have
been extensively applied in the calculation of TC of low-
dimensional systems, as it has been proven to have the ability
to identify non-Fourier heat conduction phenomena induced by
nanoconfinement70,88–90. As for polymers, Liu et al. 70 demon-
strated that competition between ballistic phonon transport and
diffusive phonon transport in single polymer chains leads to a
diverging length-dependent thermal conductivity through MEND
simulations. Shrestha et al. 91 experimentally examined the
temperature dependence of the TC of polymer nanofibers under
ultra-high stretch, and indicated that the TC at high-temperature
end matched well with the results from NEMD calculations90.
In terms of the NEMD method for TC calculation of polymer

chains, the heat energy exchange was achieved by an enhanced
version of the heat exchange algorithm, which rescales and shifts
the velocities of particles inside reservoirs to impose a constant
heat flux92. The polymer chains were placed in a box of
540 × 60 × 60 (x × y × z) Å box, where the dimension in the y and
z directions was set to 60 Å to avoid interaction with the
neighboring polymer chains. Before TC calculation, the polymer
chain structures were relaxed to reach a stable conformation.
Then, the polymer chain was divided into 50 slabs in the x
direction, and the fixed regions at two ends of the chain were set
as a heat-insulating walls. In the NEMD simulation, the system was
run under NVT (constant number of atoms, volume, and
temperature) and NVE (constant number of atoms, volume, and
energy) ensembles for 1 ns at 300 K sequentially to release chain
stress36,93. After that, the heat was added/extracted to the heat
source/sink regions (20 Å of each region) at the end of the
polymer chain in a regular rate to create a constant heat flux. The
applied heat varies for different polymer chain structures and
ranges from 0.01 eV/ps to 0.08 eV/ps. At last, the temperature
profile was averaged over the last 2–3 ns and used for TC
calculation, solved by k ¼ �JðdT=dxÞ, where J is heat flux, dT=dx is
the temperature gradient. In addition, the ATC of amorphous
polymers and the CV calculations were implemented by an
automated pipeline in the Radonpy toolkit (Supplementary Fig.
15)63.

Descriptors calculation and ML models construction
The ideal polymer descriptors are required to minimize and
completely represent polymer information, and are one of the key
factors in determining the prediction accuracy of ML algorithms.
The physical descriptors for this work were sourced from both
Mordred software calculations and GAFF2 force field parameters
extraction. The Mordred software was initially developed for small
molecule characteristics in cheminformatics, which can calculate
more than 1800 descriptors47. However, since we consider two
connecting sites of polymer monomers, only 286 valid descriptors
were obtained. Therefore, as a complement, we additionally
extracted parameters from each polymer force field file as the
descriptor. For graph descriptors, MACCS, Morgan, and cMorgan
fingerprints were calculated in the RDKit package45. The Mol2vec
fingerprints were embedded via Mol2vec40. We referred to the
polymer representation model trained using PoLyInfo and PI1M
databases for generating Mol2vec fingerprints60.
The ML models of RF, XGBoost, and MLP were implemented by

using Scikit-learn94. Hyperparametric optimization for RF, XGBoost,
and MLP was operated with the Bayesian Optimization package95

which is a global optimization tool to achieve good prediction
accuracy R2. The Gaussian regression process and acquisition

function with ten random pairs of parameters were selected for
initial training, and the ideal parameters for each ML model were
determined after 100 optimization iterations52.
To explain the association of optimized descriptors with TC, we

used the SHAP toolkit with RF model to evaluate the feature
importance62. The SHAP analysis is based on a game-theoretic
approach that associates the optimal credit allocation with the
local explanations of the model, which considers the model
performance by neglecting each feature and provides the
direction of each descriptor effect52.

Mathematical formulas for TC fitted by symbolic regression
(SR)
The mathematical formulae were acquired and selected using an
efficient stepwise strategy with GPSR as implemented in
gplearn74. The 107 polymer structures with TC greater than
20.00 Wm−1 K−1 were randomly divided into 3:1 as training and
test sets, respectively. At first, Pearson coefficients were used as
evaluation metrics of training fitness to filter optimized descriptors
and generate sub-descriptors, and a new dataset containing 22
descriptors was generated. Further, the grid search strategy with
the hyperparameters and metric R2 as listed in Table 2 was applied
to determine the mathematical formulas. We ultimately discussed
four formulas at the Pareto front that were identified by Latin
hypercube sampling approach77. More information about SR can
be found in the Supplementary Note 9.

Analysis of phonon dispersion relations by phonon spectral
energy density (Phonon-SED)
To understand the TC mechanism of polymers, MD simulations
coupled with Phonon-SED approach78 were employed to calculate
the dispersion relations of polymers. The polymer chain with a
length of 100 Å was constructed as an input of SMILES and placed
into a box with the cross section of 60 × 60 Å. After energy
minimization, the system was run under the NVT (constant
number of atoms, volume, and temperature) ensemble for 0.25 ns
at 2 K sequentially to release chain stress. Subsequently, the
system was run under the NVE (constant number of atoms,
volume, and energy) ensemble for 2 million steps with the
timestep of 0.25 fs. During this period, the velocity and position of
each atom in the polymer backbone were recorded with intervals
of 20 steps. The Phonon-SED converted the time domain
information of atomic velocities and positions into wave vectors
versus angular frequencies via two-dimensional Fourier transform,

Table 2. Setup of hyperparameters in gplearn toolkit for GPSR.

Parameter Value

Generations 300

Population size in every generation 5000

Probability of crossover (pc) [0.30,0.90], step= 0.05

Probability of subtree mutation (ps) [(1-pc)/3,(1-pc)/2] (step= 0.01)

Probability of hoist mutation (ph) [(1-pc)/3,(1-pc)/2] (step= 0.01)

Probability of point mutation (pp) 1-pc-ps-ph

Function set fþ;�; ´ ;�;
ffiffiffi
x

p
; lnx; xj j;�x; 1=x}

Parsimony coefficient 0.001, 0.003, 0.005

Metric R2

Stopping criteria 0.900

Random_state 0, 1, 2, 3, 4

Init_depth [2, 6], [4, 8], [6, 10], [2, 10]
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expressed as

Φ q;ωð Þ ¼ 1
4πτ0NT

Xx;y;zf g

α

XB
b

mb

Z τ0

0

XNT

n

_uα n; b; tð Þ ´ eiq�r n;0;tð Þ�iωtdt

�����
�����
2

(1)

Where q is the wavevector, ω is the frequency, τ0 is the simulation
time, mb is the mass of atom b, α is the cartesian direction, NT is
the number of the unit cell in the polymer chain, _uα n; b;tð Þ is the
velocity of atom b in the unit cell n at time t in the α direction, and
r n; 0;tð Þ is the equilibrium position of unit cell n.
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