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Divide and conquer: Machine learning accelerated design of
lead-free solder alloys with high strength and high ductility
Qinghua Wei1,4, Bin Cao 1,2,4, Hao Yuan1,4, Youyang Chen1, Kangdong You1, Shuting Yu1, Tixin Yang1, Ziqiang Dong1✉ and
Tong-Yi Zhang 1,2,3✉

The attainment of both high strength and high ductility is always the goal for structure materials, because the two properties
generally are mutually competing, called strength-ductility trade-off. Nowadays, the data-driven paradigm combined with expert
domain knowledge provides the state-of-the-art methodology to design and discovery for structure materials with high strength
and high ductility. To enhance both strength and ductility, a joint feature is proposed here to be the product of strength
multiplying ductility. The strategy of “divide and conquer” is developed to solve the contradictory problem, that material
experimental data of mechanical behaviors are, in general, small in size and big in noise, while the design space is huge, by a newly
developed data preprocessing algorithm, named the Tree-Classifier for Gaussian Process Regression (TCGPR). The TCGPR effectively
divides an original dataset in a huge design space into three appropriate sub-domains and then three Machine Learning (ML)
models conquer the three sub-domains, achieving significantly improved prediction accuracy and generality. After that the
Bayesian sampling is applied to design next experiments by balancing exploitation and exploration. Finally, the experiment results
confirm the ML predictions, exhibiting novel lead-free solder alloys with high strength high ductility. Various material
characterizations were also conducted to explore the mechanism of high strength and high ductility of the alloys.
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INTRODUCTION
Along with the fast development of artificial intelligence and
machine learning (ML), the data-driven paradigm of materials
informatics, which unifies the knowledge learned from experi-
ments, theory, computations, and simulations, is rapidly becoming
popular in materials science and engineering1–8. The data-driven
paradigm combined with expert domain knowledge provides
state-of-the-art methodologies to understand and predict com-
plex behaviors of materials and great achievements have been
obtained in materials informatics9–16. Materials data, especially
experimental data of mechanical behaviors of materials, are small
in size, whereas the influence factors, including testing conditions
(or service environments), material compositions and microstruc-
tures, specimen size, etc., are considerably large, meaning that the
dimensions of feature space, called search space also, are
extremely high. Besides, some experimental data might scatter
greatly. Wang et al.17 illustrate that domain knowledge guided
statistic learning is powerful in tackle small data, where the
knowledge of fracture mechanics and material strength theory
suggest four hypotheses to guide the development of the size-
dependent normal distribution model and the size- and pre-notch
length-dependent normal distribution model. As a result, they
successfully estimate the physical properties of fracture toughness
and fracture process zone size. Cao et al.18 proposed a domain
knowledge-guided interpretive machine learning strategy and
demonstrated it by studying the oxidation behavior of ferritic-
martensitic steels in supercritical water. A ML algorithm of Tree-
Classifier for Linear Regression (TCLR) is developed which
effectively captures the linear correlation between compositions,
testing environments and oxidation behaviors from sparse data
with high dimensions. Consequently, a generalized Arrhenius

oxidation formula is accomplished with very high prediction
accuracy and wide generality. Wei et al.19 adopted the same
strategy18 to discover high interpretive formula describing the
high temperature oxidation behavior of FeCrAlCoNi-based high
entropy alloys (HEAs). The TCLR algorithm was used to extract the
spectrums of activation energy Q and time exponent m from the
complex and high dimensional feature space, which automatically
gives the spectrum of pre-factor. The three spectrums are
assembled by using the element features, which leads to a
general and interpretive formula with high prediction accuracy of
the determination coefficient R2 = 0.971. The role of each
chemical element in the high temperature oxidation behavior is
analytically illustrated in the three spectrums, thereby the
discovered interpretative formula provides a guidance to the
inverse design of HEAs against high temperature oxidation. The
present work follows the similar methodology to develop a new
data preprocessing algorithm of Tree-Classifier for Gaussian
Process Regression (TCGPR) to tackle sparse nonlinear data. Both
TCGPR and TCLR take the advantage of Tree-Classifier. TCLR uses a
linear relationship between response and feature as the data
slitting criterion so that each of leaves contains only good linear
relationship data, as demonstrated in the previous works18,19. In
addition, TCGPR also takes that advantage of Gaussian Process
Regression with Gaussian radial kernel function, where the length
scale plays an essential role in the identification of outliers. The
Global Gaussian Messy Factor (GGMF) has been proposed in
TCGPR as the data partition criterion so that TCGPR can partition
data into different distributions and identify outliers.
For the application of a material, the material must possess

optimal balanced multiple properties. For structural materials,
strength and ductility are two basic mechanical properties and

1Materials Genome Institute, Shanghai University, Shanghai 200444, China. 2Advanced Materials Thrust, Hong Kong University of Science and Technology
(Guangzhou), Guangzhou 511400 Guangdong, China. 3Guangzhou Municipal Key Laboratory of Materials Informatics, Guangzhou 511400 Guangdong, China. 4These authors
contributed equally: Qinghua Wei, Bin Cao, Hao Yuan. ✉email: zqdong@shu.edu.cn; zhangty@shu.edu.cn

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01150-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01150-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01150-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01150-0&domain=pdf
http://orcid.org/0000-0001-7273-6779
http://orcid.org/0000-0001-7273-6779
http://orcid.org/0000-0001-7273-6779
http://orcid.org/0000-0001-7273-6779
http://orcid.org/0000-0001-7273-6779
http://orcid.org/0000-0002-9646-9668
http://orcid.org/0000-0002-9646-9668
http://orcid.org/0000-0002-9646-9668
http://orcid.org/0000-0002-9646-9668
http://orcid.org/0000-0002-9646-9668
https://doi.org/10.1038/s41524-023-01150-0
mailto:zqdong@shu.edu.cn
mailto:zhangty@shu.edu.cn
www.nature.com/npjcompumats


both are usually repellent each other, meaning that increasing
strength is commonly accompanied with a decrease in ductility,
and this behavior is called strength-ductility trade-off. Optimizing
two or more targeted properties simultaneously is demanded in
developing new materials and called multi-task optimization in
ML. Wei et al.20 used three multi-objective ML algorithms of
MultiTaskLasso, Random forest, and Artificial neural network to
predict simultaneously four mechanical properties of steels,
including fatigue strength, tensile strength, fracture strength,
and hardness. Xie’s group (Wang et al.21, 2019, Jiang et al.22,
Zhang et al.23) developed a machine learning design system with
two ML modules, (1) composition (prediction) design (P2C)
module with properties as inputs and (2) property prediction
(C2P) module with composition as inputs. With desired multiple
properties, candidate alloy composition is generated through the
P2C module and then the P2C generated composition is used as
inputs into the C2P module to predict the properties. Employing
the machine learning design system, Jiang et al.22 successfully
designed and fabricated high-strength and high-toughness
aluminum alloys and Zhang et al.23 investigated copper alloys
with high strength and high electrical conductivity. Using Pareto
plot in the strength and ductility coordinate system, Chen et al.6

proposed an active learning strategy to perform multi-task
optimization of strength and ductility of Mg alloys. Their design
strategy is to select the best trade-off solution by two approaches
in the Pareto plot of strength and ductility. The approach I
minimizes the angle between the target vector of strength and
ductility and an optimal predicted point on Pareto front and the
approach II minimizes the distance between target point and an
optimal predicted point on the Pareto front, which is a set of
solutions giving the potential best trade-off between the
competing properties and forms a characteristic boundary in the
Pareto plot. Multi-objective optimization technique24 was pro-
posed to design the Pareto front of organic dielectric polymers.
Following the Pareto front approach, we propose here the product
of strength multiplying ductility as a joint feature such that
optimizing the joint feature optimizes the Pareto front. We apply
the developed strategy, including joint feature, TCGPR, Bayesian
sampling, and experiment, to study lead-free solders.
Historically, Pb-Sn solders have been widely used in the

electronics industry due to low melting point, excellent solder-
ability, good electrical conductivity, and low cost25–29. However,
Lead is a toxic metal, pollutes the environment and endangers
human health30 and thus, many countries have banned Pb-Sn
solders31–33. Currently, Sn-Ag-Cu(SAC) based alloys, near eutectic
composition, are widely used as lead-free solders due to low
melting points and excellent solderabilities34–37. The microelec-
tronic and electronic industries demand even better performance
than currently used SAC solder alloys. How to further enhance the
performance lead-free solders is a great challenge and the present
work endeavors to confront this challenge by using the domain
knowledge guided active leaning ML.
Solder alloys are generally used for joint connections. Hence,

besides the electronic conductivity, the mechanical properties of the
solder alloys should be primarily considered, which include their
strength, ductility, toughness, creep, fatigue resistance, etc. Overall,
the intrinsic mechanical properties of solder alloys should be
comparable or better than those of Pb-Sn solder alloys to meet
the application requirements in industries, within which strength and
ductility are the two essential mechanical properties. As described
above, how to enhance both strength and ductility simultaneously
has to solve the trade-off problem. Considerable efforts have been
devoted to optimizing the mechanical properties of SAC alloys.
Besides thermomechanical treatments, alloying is an effective
method to improve the mechanical properties of SAC alloys. There
are two basic strengthening mechanisms that alloying elements can
play. The first strengthening mechanism is the solid solution
hardening, when alloying atoms are dissolved in the matrix phase.

The second strengthening mechanism is the precipitation hardening,
when alloying atoms interact with matrix solvent atoms and form
intermetallic compound (IMC). Usually, small and uniformly dis-
tributed IMC particles have the best strengthening performance. That
is why various alloying elements have been added to the basic SAC
alloy (Sn-3.8Ag-0.7Cu) to explore potential improvement of mechan-
ical properties. The Ag3Sn and Cu3Sn IMCs can be formed in SAC
alloys to strengthen the alloys. In addition, the pre-existence of Cu in
SAC alloy could also inhibit the dissolution of Cu from a Cu-based
substrate into the solder joint during welding. There are many
reports in the literature on the effects of alloying elements on the
solder performance. El-Daly et al.38 found that adding Bi can
significantly improve the tensile strength and enhance the creep
resistance of brazing materials owing to solid solution strengthening
and/or precipitation strengthening. Alloying suitable amount of
element In could lead to a more uniform distribution of IMC
precipitations in the matrix of brazing material and hence improve
the tensile strength39. The addition of Zn might refine the Ag3Sn and
Cu6Sn5 IMCs and form the (Cu, Ag)5Zn8 IMC, which strengthen the
brazing material40. Alloying Ti element can effectively refine the grain
size of Sn-3.5Ag-0.5Cu brazing alloy and generate Ti2Sn3 IMC and
hence strengthening the alloy by the grain refinement and
precipitation41. Alloying Sb into Sn-3Ag-0.5Cu solder alloy strength-
ens the alloy by solid solution hardening and the precipitation
hardening of the formation of Ag3(Sn, Sb) and Cu6(Sn, Sb)5 IMCs42.
Alloying Al element refines the β-Sn phase particles in SAC105 solder,
inhibits the formation of Ag3Sn and Cu6Sn5 IMCs, and forms new
Ag3Al and Al2Cu IMCs, thereby significantly increasing the strength
and decreasing the ductility43. Alloying Ni atoms generate a more
dense and stable (Cu, Ni)6Sn5 IMC interface layer between solder and
Cu-based substrate, which becomes a barrier layer against the
growth of brittle Cu3Sn IMC and hence improves the drop
resistance44. However, big size IMCs are usually very brittle, meaning
strengthening by the precipitation mechanism might impair the
ductility when IMCs are big in size. How to control the amounts of
alloying elements and the size and distribution of IMCs is the bottle-
neck problem in the optimal design and fabrication of lead-free
solders with high strength and high ductility.
The present work studies the alloying effects on the strength

and ductility of lead-free solders by investigating
Snbal:Ag3:8Cu0:7Bix1Znx2Sbx3 Inx4Tix5Nix6Alx7 . The ranges and varia-
tion steps of each element are described in the method, which
form a huge search space of 17931 samples. Initial 47 samples are
designed, fabricated and tested by tensile tests, providing the
initial sparse data. To tackle the sparse data, the present work
proposes the divide-and-conquer strategy to accelerate the alloy
design process. Figure 1 shows the framework of the present work
for the alloy design. The initial data consist of alloy composition,
ultimate tensile strength and fracture elongation. The product of
ultimate tensile strength and fracture elongation is taken as the
joint feature. The TCGPR algorithm is developed to divide the
training data into three clusters, which accordingly selects only
three subspaces from the original search space and enhances the
ML prediction accuracy. The Bayesian sampling method is used to
recommend the potential candidates for experiment and the
experimental results show the improved mechanical properties,
better than these in the training dataset and conventional Sn
solders.

RESULTS
Experimental data
47 data of SAC387 based alloys, Snbal:Ag3:8Cu0:7Bix1Znx2Sbx
3Inx4Tix5Nix6Alx7 , were generated from in-house experiments,
which compositions in wt.% include fixed Ag content of 3.8
wt.% and Cu concentration of 0.7wt.%, 7 adjustable alloying
elements, and balanced by Sn. The experimental 47 data of
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SAC387 based alloys is given in Supplementary Information.
Table 1 lists the variation range and step size in concentration
of the 7 adjustable alloying elements in the initially tested
samples and in the search space, the concentration of each
alloying element in the initial dataset is extended outward by
one step to form a search space of virtual 19232 samples. The
ultimate tensile strength (UTS) is in units of MPa and fracture
elongation is in percentage.

Data preprocessing and machine learning
To enhance the strength-ductility synergy, a joint objective is
proposed here

Y ¼ σu ´ εf
subject to σu � σu;0 and εf � εf ;0

(1)

where σu and εf denotes the ultimate tensile strength (UTS) and
the engineering strain at fracture, respectively, and σu;0 and εf ;0
are the minimal values preset by the designer. The present work
uses σu;0 ¼ 40 MPa and εf ;0 ¼ 10%. The product (joint objective)
of strength and ductility provides an approximate estimate of, at
least proportional to, the energy absorbed by a tested sample
during the tensile test, which has a clear physical meaning. To
maintain explicitly this physical meaning, the original physical

dimensions of σu and εf are used in the joint objective, and the
joint objective is in unit of MPa.
The ML algorithms of Random Forest (RF), eXtreme Gradient

Boosting (XGB), and GPR are used in the present work with the
leave-one-out cross validation (LOOCV) and Pearson correlation
coefficient R to evaluate the performance of ML models, and
hereafter, LOOCV R represents the fitting goodness of a ML model.
Figure 2 (a–d) show the predictive value versus the experimental
value of the joint objective, where (a–c) indicate the predictions
without using the TCGPR by the RF, XGB, and GPR, respectively,
and (d) illustrates the predictions with using the TCGPR by three
GPR models. Obviously, the divide and conquer TCGPR model
significantly improves the LOOCV R. Specifically, the LOOCV R of
RF, XGB and GPR on the original dataset are 0.25, 0.37 and 0.33
respectively, whereas the LOOCV R of three GPR models on
Clusters 1, 2, and 3 are 0.91, 0.81 and 0.78, respectively, as shown
in Fig. 2. Figure 3 (a–d) show the LOOCV prediction error
distributions of the joint objective (Y) for the models with and
without the use of TCGPR. The mean value (μ) of predicted errors
of models with or without the use of TCGPR are all small and close
to zero, ranging from 5.75 (MPa) to 18.93 (MPa). The utilization of
TCGPR decreases considerably the standard deviation (σ) of
predicted errors, from 286.59 (MPa) for RF, 286.52 (MPa) for XGB,
and 264.53 (MPa) for GPR to 157.89 (MPa), as shown in Fig. 3. The

Table 1. The variation range and step size of alloying elements.

Composition Sn Ag Cu Bi Zn Sb In Ti Ni Al

Training data element range Bal. 3.8 0.7 0–5 0–1 0–5 0–5 0–0.7 0–0.8 0–0.8

Total virtual sample element rang Bal. 3.8 0.7 0–5.5 0–1.2 0–5.5 0–5.5 0–0.8 0–0.9 0–0.9

Step size(wt. %) -- -- -- 0.5 0.2 0.5 0.5 0.1 0.1 0.1

Fig. 1 Workflow. Designing framework for lead-free solder alloy with high strength and high ductility.
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result indicates the TCGPR enhances the correlation among the
data points within each cluster in comparison to that in the whole
original dataset. The comparison results of TCGPR, K-means and
hierarchical clustering algorithms on the dataset of 47 SAC387-
based alloys is summarized in Supplementary Table 1. Both
K-means and hierarchical clustering failed to improve the
prediction accuracy after dividing the original dataset into clusters.
During an epoch of TCGPR, one subdataset is selected from all
possible subdatasets with the minimal global Gaussian messy
factor (GGMF), corresponding to the maximal correlation among
the data. The GGMF is calculated based on the GPR model with
LOOCV and using the information of feature variables and the
target variable. The minimum of GGMF naturally leads to a high
LOOCV R of GPR prediction, which is the key reason of the TCGPR
performing better than K-means and Hierarchical clustering
algorithms.
The influence of the kernel functions on the model performance

is also investigated by using the three kernels of Gaussian radial
basis function (RBF) kernel, Exp-Sine-Squared kernel and Dot-
Product kernel. The LOOCV R selects the optimal kernel functions
are RBF, RBF, RBF, and Dot-Product, respectively, for the four
datasets of original dataset, Cluster 1, Cluster 2, and Cluster 3.
Supplementary Fig. 2a–c in the Supplementary Information show
the LOOCV predictions of the three GPR models with the RBF, Exp-
Sine-Squared and Dot-Product kernels versus the experimental
values of the joint objective (Y) in three clusters, respectively.
Figures 2 and 3 indicate that the whole original data do not

follow a same distribution and hence it is hard to use a GPR model
to make the prediction. Due to TCGPR, the initial dataset is divided

into three clusters and each cluster corresponds a search
subspace, where the tested samples are more correlated, as
shown in Fig. 2, which also implies that there are less correlations
among the three clusters. The physical meaning of more
correlated tested samples in a cluster is that the correlation
between the alloying elements and the joint objective under the
invariant experimental conditions follows the same statistical
distribution, which can be learnt by a used GPR. On the other
hand, the tested samples in the original dataset are less correlated
because the joint objective and alloying elements do not follow
the same statistical distribution, which cannot be learnt by a used
GPR. Considering the complicated correlations in the original
dataset, divide and conquer is an excellent strategy and TCGPR is
developed to implement the divide task and hence each cluster
can be conquered by a GPR model.
The cluster labels of 47 experimental data are given in

Supplementary Table 5, where there are 19, 22, and 6 data in
Clusters 1, 2, and 3, respectively. Three search subspaces are
constructed based on the composition in the three clusters. As
described above for original dataset, the search feature space is
defined by outward expanding one step of each element
concentration. The steps for the alloying elements Bi, Zn, Sb, In,
Ti, Ni and Al are 0.5 wt.%, 0.2 wt.%, 0.5 wt.%, 0.5 wt.%, 0.1 wt.%, 0.1
wt.% and 0.1 wt.%, respectively. The same expansion approach is
conducted to set the search space of each cluster, which causes
the overlap if the experimental data in different clusters are close.
Table 2 lists the variation range and step size of alloying elements
in the three search subspaces, indicating that there is no Al
element in subspace 3, because no Al element in the cluster 3 of

Fig. 2 The predictive value versus the experimental value of the joint objective (MPa). a–c without using TCGPR, (a) RF model, (b) XGB
model, (c) GPR model, (d) with using TCGPR, three GPR models.
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the tested samples. Figure 4 indicates the numbers of virtual
samples in the three subspaces, which are partially jointed among
themselves. The TCGPR reduces the total number of virtual
samples from 19232 to 17931, as shown in Fig. 4, the data
correlation is greatly enhanced in each subspace.

Bayesian sampling results
Gaussian process regression provides predictions in terms of the
mean and variance of all virtual samples in the search subspaces.
Then, with the joint objective Y ¼ σu ´ εf subject to σu � 40MPa
and εf � 10%, the acquisition function of probability of improve-
ment (POI)45–47 and expected improvement (EI)48 are used to
combine the terms of the predicted mean and variance in three
search subspaces. Finally, the Bayesian sampling recommended
six samples from search subspaces for next experiments by
balancing exploration and exploitation, the recommended sam-
ples are listed in Table 3.

Experimental results of the designed alloy samples
The experimental results of six designed alloys are listed in Table
3. Figure 5a shows the comparison of the predictive value and the
experimental value for the comprehensive properties (Y),
indicating that the experimental results confirm basically the

predictions correspondingly. For each recommended alloy, one
representative stress-strain curve was plotted and the stress-
strain curve of the highest comprehensive property (Y) in the
training data cluster was also plotted for comparison. Figure 5b–d
show these stress-strain curves, where the solid stress-strain
curves denote for the representative recommended alloys and
the dash stress-strain curves are for the highest comprehensive

Fig. 3 The LOOCV prediction error histogram of the joint objective (Y). a–c without using TCGPR, (a) RF model, (b) XGB model, (c) GPR
model, and (d) the three GPR models on the three clusters grouped by TCGPR, where the prediction error, mean and standard deviation are all
in the units of MPa.

Table 2. The variation range and step size of alloying elements.

Composition Sn Ag Cu Bi Zn Sb In Ti Ni Al

Subspace 1 Bal. 3.8 0.7 0–5.5 0–0.6 0–5.5 0–5.5 0–0.8 0–0.9 0–0.9

Subspace 2 Bal. 3.8 0.7 0–5.5 0–1.2 0–5.5 0–5.5 0–0.8 0–0.9 0–0.9

Subspace 3 Bal. 3.8 0.7 0–3 0–0.8 0–3 0–1.5 0–0.2 0–0.5 --

Step size(wt. %) -- -- -- 0.5 0.2 0.5 0.5 0.1 0.1 0.1

Fig. 4 Search space. The TCGPR divides the initial search space into
three subspaces, where red, blue and green represent subspaces 1,
2, and 3, respectively.
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properties (Y) in the training data clusters. The highest
comprehensive properties in the training cluster 1, cluster 2
and cluster 3 are 1479, 1465 and 1499, respectively. It is obvious
that the experimental results of comprehensive mechanical
properties on the six recommended samples are all higher than
the best samples in the corresponding training clusters.
Compared with the best sample in the first training data cluster,
the comprehensive mechanical properties of sample S1-POI and
sample S1-EI are improved by 20.31% and 3.17%, respectively.
Similarly, the comprehensive mechanical properties of S2-POI,
sample S2-EI, sample S3-POI and sample S3-EI are also improved
by 19.28%, 2.07%, 6.92% and 1.28% respectively, as listed in Table
3. The results indicate that the comprehensive mechanical
properties (Y) of the three alloys recommended by acquisition
function POI (sample S1-POI, S2-POI and S3-POI) are all greater
than those recommended by acquisition function EI (sample S1-

EI, S2-EI and S3-EI). In the present study, the POI acquisition
strategy performs better than the EI acquisition strategy.
Figure 6 shows all experimental data and the Pareto front,

where the sample S1-POI, sample S2-POI and sample S3-POI are
on the Pareto front. Obviously, the three samples exhibit the
better mechanical properties in terms of strength and ductility
than all samples in the training datasets, implying the
effectiveness of the approach in optimizing the strength-
ductility synergy. Especially, sample S1-POI is the alloy with a
good ductility, sample S2-POI represents the solder alloy of the
high strength with a compromised ductility and sample S3-POI
is the alloy with a balanced strength and ductility. Subse-
quently, the experimental characterization and mechanism
exploration are performed on the three samples S1-POI, S2-
POI and S3-POI.

Table 3. Six alloys recommended by Bayesian sampling and experimental results.

Alloy No. Composition UTS (MPa) Elongation (%) Y(MPa) Improvement (%)

S1-POI Sn94:8Ag3:8Cu0:7Bi0:5Zn0:2 56.57 ± 4.14 31.45 ± 0.99 1779 ± 142 20.31

S1-EI Sn94:7Ag3:8Cu0:7Bi0:5Zn0:2Ti0:1 52.00 ± 0.96 29.34 ± 2.59 1526 ± 123 3.17

S2-POI Sn90:8Ag3:8Cu0:7Bi3In1:5Ti0:2 79.68 ± 1.23 21.93 ± 0.50 1747 ± 166 19.28

S2-EI Sn90:5Ag3:8Cu0:7Bi2:5In1:5Ti0:3Zn0:2Sb0:5 76.68 ± 2.00 19.50 ± 1.83 1495 ± 112 2.07

S3-POI Sn92:6Ag3:8Cu0:7Zn0:6Sb1:5In0:5Ti0:2Ni0:1 66.04 ± 1.47 24.26 ± 3.33 1602 ± 180 6.92

S3-EI Sn92:3Ag3:8Cu0:7Zn0:6Sb2In0:5Ni0:1 63.24 ± 3.98 24.00 ± 3.00 1518 ± 158 1.28

Notes: In the Alloy No., the first part of S1, S2 and S3 indicate the search subspaces 1, 2, and 3, respectively; while the second part of POI and EI denote the
acquisition functions POI and EI, respectively.

Fig. 5 The comparison of the predictive value and the experimental value for the comprehensive properties (Y). a The experimental
measured and ML predicted values of comprehensive property (MPa) for six recommended alloys, where the error bar denotes the variance;
Stress-strain curves for (b) cluster 1, (c) cluster 2 and (d) cluster 3. The solid stress-strain curves denote for the representative recommended
alloys and the dash stress-strain curves are for the highest comprehensive property in the training data clusters.
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Experimental characterization and mechanism exploration
The microstructures and fracture morphologies of the three novel
alloys (S1-POI, S2-POI, and S3-POI) were examined and the
strengthening mechanisms were discussed below:
(1) High ductility solder alloy: Sn94:8Ag3:8Cu0:7Bi0:5Zn0:2 (S1-POI):

the microstructure of alloy S1-POI is shown in Fig. 7a, b, and its
element distribution map and the results of elemental quantitative
analysis are shown in Supplementary Fig. 3 and Supplementary
Table 2, respectively. The alloy consists of two phases of the Sn-
based solid solution phase and the eutectic phase. Sn distributes
evenly across the alloy, while Ag and Cu are mainly enriched in the
Intermetallic Compounds (IMC) (Ag3Sn, Cu6Sn5) precipitated at

the eutectic regions. The sample shows a high ductility which
could be attributed to the relative lower contents of the alloying
elements added. The solubility of Bi and Zn in Sn are about
1.0 ~ 1.8 wt. %49–53 and 0.5 ~ 0.6 wt. %54, respectively. At current
concentration level, both Bi and Zn could be completely dissolved
into Sn matrix, which could improve the strengthen of the solder
alloy due to the solid solution strengthening effect. Meanwhile,
adding Bi and Zn could refine the microstructure40,55, which is
beneficial to improving the ductility of solder alloy. The fracture
morphologies of alloy S1-POI after the tensile tests are shown in
Fig. 8a, b, indicating the typical ductile failure mode. As shown in
Fig. 8b, dimples and voids appear across the fractured surface,
demonstrating the high ductility. The fracture morphologies are
consistent with the tensile test results of the largest elongation of
31.45 ± 0.99%.
(2) High strength solder alloy: Sn90:8Ag3:8Cu0:7Bi3In1:5Ti0:2 (S2-

POI): alloy S2-POI demonstrates an excellent comprehensive
mechanical property with a tensile strength of about 80 MPa
and an elongation of 22%. The enhanced strength could be
attributed to the synergistic strengthening effects caused by
solution, precipitation, and grain refinement. The microstructure
of alloy S2-POI is shown in Fig. 7c, d. The elemental distribution
map and corresponding quantitative analysis results are shown in
Supplementary Fig. 4 and Supplementary Table 3, respectively.
Generally, adding Bi into Sn alloy could effectively enhance the
strength of solder alloy due to solid solution strengthening
effect50,51. As mentioned above, the solubility of Bi in Sn is about
1.0–1.8 wt%. When the content of Bi reaches 3 wt. %, excess Bi
atoms precipitate out from Sn matrix, as shown in Fig. 7d. The
element In can also be dissolved into Sn matrix and cause solution
strengthening effect and could replace the Sn atoms in Ag3Sn and
Cu6Sn5, forming Ag3ðSn; InÞ and Cu6ðSn; InÞ5. As shown in Fig. 7d,
Ti could react with Sn and In to form the strip-shape intermetallic
phase Ti2ðSn; InÞ3, which could further strengthen the solder
alloy41. The presence of the various IMCs and Bi precipitates could
effectively block the dislocation movements and hence improve
the tensile strength. However, the large IMCs and Bi precipitates
might impair the ductility of the solder alloy since cracks could be
initiated at the interface between the large precipitates and Sn

Fig. 6 Experimental validation results. The three pentagons and
three rhombuses are the alloys designed by machine learning, and
three curves are the Y contours, and five black icons denote the
commercially available lead-free solder alloys for comparison.

Fig. 7 Microstructures of the three novel alloys (S1-POI, S2-POI, and S3-POI). Optical microstructure images of alloys: (a) S1-POI, (c) S2-POI
and (e) S3-POI; Backscattered electron (BSE) images of alloys: (b) S1-POI, (d) S2-POI and (f) S3-POI.
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matrix. The fracture morphologies of the tested alloy S2-POI are
shown in Fig. 8c, d. Alloy S2-POI shows a flatted fracture surface
with the presence of quasi-cleavages, which indicates a lower
ductility compared to alloy S1-POI.
(3) Solder alloy with the balanced mechanical properties:

Sn92:6Ag3:8Cu0:7Zn0:6Sb1:5In0:5Ti0:2Ni0:1 (S3-POI): this alloy is Bi-
free and possesses more balanced mechanical properties regard-
ing the strength and ductility. Other alloying elements show less
strengthening effect than that of Bi. The microstructure of S3-POI
is shown in Fig. 7e, f. The elemental distribution map is shown in
Supplementary Fig. 5 and the elemental quantitative analysis
results are listed in Supplementary Table 4. As shown in Fig. 7e,
the microstructure of Sample S3-POI is much finer than those in
S1-POI and S2-POI. The refined microstructure should be one key
reason for the more balanced properties. It was reported that
adding Zn could promote the heterogeneous nucleation of β-Sn40,
which can refine the structure. Meanwhile, adding In and Sb could
cause solid solution strengthening effect which improves the
strength of the solder alloy. As shown in Fig. 7f, In and Sb can also
replace the Sn atoms in Ag3Sn, Cu6Sn5 and Ti2Sn3 to form
Ag3ðSn; In; SbÞ, Cu6ðSn; In; SbÞ5 and Ti2ðSn; In; SbÞ3. Therefore, the
strength of solder alloy is further improved due to the
precipitation hardening effect. The fracture morphologies of the
alloy S3-POI are shown in Fig. 8e, f, indicating that the mixture of
dimples and quasi-cleavages, which is the typical fracture
morphologies of ductile/brittle mixed fracture mode, correspond-
ing to the balanced mechanical properties. Overall, alloy S3-POI
shows a finer microstructure than those of S1-POI and S2-POI, due
to the alloying effects of the multiple elements, thereby leading to
the well-balanced mechanical properties.

DISCUSSION
In conclusion, this study proposes the divide and conquer strategy of
active learning for alloy design, including data collection, data
preprocessing, ML model construction, composition design, and
experimental verification, to promote the rational design of lead-free
solder alloys and improve both strength and ductility simultaneously.
The previous works18,19 illustrate that the TCLR algorithm can split
data into leaves and in each leaf there is a little linear cluster with the

linear relationship between response and feature, which imply that
the original dataset is composited by many little linear clusters. If an
original dataset is consisted of few nonlinear clusters, the developed
TCGPR algorithm is able to effectively divide the dataset into few
nonlinear clusters. In the present work, TCGPR divides the original
dataset into three clusters and three machine learning models are
accordingly constructed to predict the alloy comprehensive mechan-
ical property (Y), which is defined as the product of tensile strength
and fracture elongation, and approximately represents the energy
absorbed by the tested sample under uniaxial tensile tests. The alloy
with high comprehensive mechanical property is designed by
Bayesian sampling and the following experimental tests verify the
predictions from the ML models. As a result, three lead-free solder
alloys with high comprehensive mechanical properties are success-
fully discovered. The present study fruitfully demonstrates that the
divide and conquer strategy, although each ML model is developed
on a fairly small data cluster. This is because the active adaptive
learning is able to work on small initial dataset. Furthermore, once
new experimental results are added into the data clusters, each of
the updated data clusters might expand its search front towards the
improvement direction and the pre-set values of σu;0 and εf ;0 will be
enhanced accordingly, which will be done in future study. The divide
and conquer strategy of active learning paves the avenue for the
design and discovery of novel advanced materials.

METHODS
TCGPR algorithm
Tree-Classifier for Gaussian process regression (TCGPR, https://
github.com/Bin-Cao/TCGPR) is a data preprocessing algorithm
developed for identifying outliers and/or cohesive data, which has
been proposed for the first time in this work. TCGPR identifies
outliers via Sequential Forward Identification (SFI). The SFI starts
from few cohesive data, identifies outliers, which maximizes the
expected decrease (ED) of the global Gaussian massy factor
(GGMF) with a preset criterion of fitting-goodness, by adding a
batch of p ≥ 1 data in each sequential through the raw dataset,
called an epoch. After an epoch, raw data is divided into one
cohesive subset and a rest subset. In the following epoch, the rest

Fig. 8 Fracture morphologies. SEM images (Secondary electron image) of the tensile tested alloys: a, b S1-POI, c, d S2-POI and e, f S3-POI.
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subset processed by TCGPR is divided into cohesive and rest
subsets again. The preprocessing is going on until the raw dataset
is divided into a series of highly cohesive subsets and a final rest
subset containing outliers only. The detailed working principle of
TCGPR model is given in Supplementary Information.

Bayesian sampling
When considering uncertainty in data, especially in predictions
by a ML model, one must balance exploration and exploitation.
From the probabilistic analysis, a prediction from a ML model is
usually assumed to follow a normal distribution, where the
variance represents the uncertainty. Gaussian process regres-
sion (GPR) used here searches optimal candidates with
uncertainty. The acquisition function POI47 and EI48 are used
to recommend experiments from the GPR prediction with
uncertainty by balancing exploration and exploitation, which
are defined respectively by

POI ¼ ϕ
μi � y�

σi

� �
(2)

EI ¼ μi � y�ð Þϕ μi � y�

σi

� �
þ σiφ

μi � y�

σi

� �
(3)

where μi and σi are the mean and variance of a normal
distribution, respectively, φð�Þ and ϕ �ð Þ are the distribution density
and cumulative function, respectively, and y* is the current best
target value in the dataset.

Experiment
The raw materials are Sn, Ag, Cu, Bi, In, Ti, Sb, Zn, Al and Ni with a
purity 99.99%. The melting process was conducted using an
induction furnace and the molten alloy was cast in a cuboid steel
mold. With the cast, the tested samples were prepared with a dog
bone shape with a size of 12 mm× 5mm× 5mm. Tensile tests at
room temperature were conducted using a MTS universal material
testing system with a constant strain rate of 3 ´ 10�3s�1. Eight
repeated tests were conducted for each recommend alloy and
their mean and standard deviation were reported here.

DATA AVAILABILITY
All experimental data in the study are contained in Supplementary Information.
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