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Automated mixing of maximally localized Wannier functions
into target manifolds
Junfeng Qiao 1✉, Giovanni Pizzi 1,2 and Nicola Marzari 1,2

Maximally localized Wannier functions (MLWFs) are widely used in electronic-structure calculations. We have recently developed
automated approaches to generate MLWFs that represent natural tight-binding sets of atomic-like orbitals; these describe
accurately both the occupied states and the complementary unoccupied ones. For many applications, it is required to use MLWFs
that describe instead certain target groups of bands: the valence or the conduction bands, or correlated manifolds. Here, we start
from these tight-binding sets of MLWFs, and mix them using a combination of parallel transport and maximal localization to
construct manifold-remixed Wannier functions (MRWFs): these are orthogonal sets of MLWFs that fully and only span desired target
submanifolds. The algorithm is simple and robust, and is showcased here in reference applications (silicon, MoS2, and SrVO3) and in
a mid-throughput study of 77 insulators.
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INTRODUCTION
Maximally localized Wannier functions (MLWFs)1–4 are accurate
reduced-order models5 for the electronic structures of periodic
crystals. The generation of MLWFs from Bloch wavefunctions
typically requires a choice of initial guesses, which are often
conjectured from chemical intuition with trial and error. For
metals, or when considering both the valence and conduction
bands (VCB) of insulators and semiconductors, one typically deals
with bands that overlap with higher-energy bands, i.e., the so-
called entangled bands in the literature2. In such cases, since the
low-energy electronic structure can often be well described by a
tight-binding model of atomic-like orbitals, the initial guesses are
usually chosen from the hydrogenic s,p,d,f orbitals. However,
when it comes to the cases of valence bands (VB) alone, or
especially conduction bands (CB) which are mixed with higher-
energy bands, it might become difficult to identify good initial
guesses. Indeed, the VB/CB often consists of bonding/anti-
bonding orbitals, or combination of atomic orbitals which are
more challenging to guess or to describe, unless the crystal offers
a very simple chemical picture. Achieving separate Wannierization
of target manifolds is also advantageous for many applications.
Some physical properties (such as the electric polarization)
depend only on the Wannier functions (WFs) of the occupied
manifold (sum of Wannier centers of all the valence WFs).
Moreover, using dedicated MLWFs means that one can obtain
smaller tight-binding models that are thus more efficient when
computing, e.g., transport properties of large systems. Koopmans
spectral functionals also require separate occupied and unoccu-
pied manifolds6. Last, low-energy models, such as those used in
correlated-electrons calculations7–10, require a description of the
correlated manifold.
Several approaches have been developed in the past few years

to simplify the construction of MLWFs. The selected columns of
the density matrix (SCDM) algorithm11 uses QR decomposition
with column pivoting on the density matrix to automatically
generate initial projection orbitals, and a sensible choice of the
density matrix can be obtained from the projectability of Bloch

states onto pseudo-atomic orbitals from pseudopotentials12. The
optimal projection functions method13 starts with a larger
manifold and generates the MLWFs of the valence manifold by
a single rotation matrix, which is computed by a product of a
series of Givens rotations. The dually localized Wannier functions
method14 adds an additional term to spread functional, to localize
the WFs in both space and energy, achieving a separation of VB
and CB.
Here, we propose a different approach to automatically mix

optimal MLWFs spanning valence and conduction into several
submanifolds, provided that these submanifolds are gapped in
their energy spectrum. This naturally applies to the case of
separate Wannierizations of valence and conduction manifolds,
but more generally extends to arbitrary groups of bands separated
in energy. We start from the Wannierization of a larger manifold
(e.g., the VCB manifold), that we do not discuss here since robust
methods already exist: in addition to hydrogenic s,p,d,f initial
projections, partly occupied WF method15,16, the fully automated
SCDM method11,12, or the projectability-disentangled Wannier
function (PDWF) that we recently introduced are available (in
particular, the latter appears as a very general and remarkably
robust approach allowing, e.g., to construct ~ 1.3 million PDWFs
for ~ 22 thousands materials17). Once these MLWFs are obtained,
we then diagonalize the Wannier Hamiltonian at every k-point and
partition the states into submanifolds (e.g., valence, conduction):
they are grouped together if they fall inside the desired energy
interval. Next, we fix the gauge randomness of the submanifolds
using parallel transport18. Finally, the MLWFs for each submanifold
are generated by maximally localizing their spread functionals,
independently. Since the submanifolds are already isolated in
energy (i.e., disentanglement2 is not needed), and parallel
transport provides a continuous gauge, the final maximal
localization converges effortlessly. In the case of separating VB
and CB, the final two groups of MLWFs span the fully occupied
valence and the fully unoccupied conduction manifolds, and their
shapes closely resemble bonding and anti-bonding orbitals,
respectively. Compared with SCDM, the present method works
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fully in reciprocal space, reducing the computer memory
requirements and also being computationally faster. Compared
with the optimal projection functions method13 or the dually
localized Wannier functions method14, we do not change the
spread functional but use the original one in Ref. 1, thus the
resulting WFs are maximally-localized in their original definition;
moreover, the parallel transport step is non-iterative and always
quickly provides a good starting point for the final maximally-
localization step, avoiding potential convergence issues that
might occur in an iterative method.
In the following, we first discuss and validate the present

method, which we name manifold-remixed Wannier function
(MRWF), on the VCB of a 3D material (silicon), the VCB of a 2D
material (MoS2), the top VB of MoS2, and the 3d manifold of SrVO3.
We also discuss the bonding/anti-bonding character of the
resulting MLWFs, as well as band interpolation accuracy. To
analyze statistics of band interpolation quality and demonstrate
the robustness of the present approach, we Wannierize the VB
and CB of a diverse set of 77 insulators, with the number of atoms
between 1 and 45.

RESULTS
The manifold separation algorithm
While obtaining the starting WFs is not the focus of this paper, we
remind here that the standard Wannierization algorithm1,2

requires initial projection orbitals gnj i to guide the spread
minimization and find the most meaningful minimum and the
related unitary transformation matrices Uk at each k-point k. The
initial guesses (also called initial projection orbitals) gnj i are used
to rotate the original Bloch wavefunctions ψmkj i into

~ψnk

�� � ¼ XM
m¼1

ψmkj ihψmkjgni; (1)

where n and m are the indices for WFs and Bloch bands,
respectively; M is the total number of Bloch bands; and k is the
Bloch quasi-momentum. Note that ~ψ

�� �
are independent of any

arbitrary rotation gauge for the ψnkj i. For metals or for VCB of
insulators, one typically starts with hydrogenic s,p,d,f orbitals1 as the
initial guesses for all the corresponding valence electrons. Then, the
MLWFs can be generated using either the standard disentangle-
ment2 and maximal localization algorithms1 or minimizing directly
the total spread, such as the partly occupied WF method15 or a
variational formulation19. Instead of hydrogenic orbitals, one can use
SCDM11 or the recently introduced projectability disentanglement17

for a fully automated Wannierization. Irrespective of the approach
taken to obtain MLWFs describing the VCB, these MLWFs will be the
starting point of the present algorithm, with the next step to
separate e.g., the VB and CB manifolds from the disentangled
MLWFs that span both simultaneously. Note that while in the
following we use the separation of VB and CB as an example to
illustrate the method for clarity and simplicity, the present approach
is not limited to the case of two submanifolds, but can be applied to
any groups of bands separated in energy.
Since the disentanglement procedure aims at obtaining the

lowest-possible spreads, it typically achieves this goal by mixing
states originating from all the submanifolds (e.g., VB and CB) of
interest. To decompose the manifold into two orthogonal
submanifolds, we diagonalize the Wannier-gauge Hamiltonian
HW
k (the superscript W indicates the Wannier gauge),

HW
k ¼ VkEkV

�
k; (2)

where Ek and Vk are the eigenvalues and the eigenvectors,
respectively; * denotes conjugate transpose (note in physics, † is
often used for conjugate transpose, however, when deriving
complex differentials in mathematics, * is more widely used. To be
consistent with the notations in Supplementary Sections 1.1 and

1.3, we choose to use * in the main text as well). Usually the
eigenvalues and eigenvectors returned from linear algebra
computer programs are already sorted in ascending order of
eigenvalues; if not, we sort them in ascending order, so that the
matrices are partitioned into two blocks,

Ek¼ E1
k 0

0 E2
k

" #
;

Vk ¼ V1
k V2

k

� �
;

(3)

where V1
k 2 CN ´ P (V2

k 2 CN ´Q) corresponds to states whose
eigenvalues E1

k (E2
k) are below (above) the band gap, and 0

represents a zero matrix. Here, N is the number of WFs of the VCB
manifold, P and Q are the number of WFs in the valence (below
band gap) and the conduction (above band gap) submanifolds,
respectively, such that N= P+ Q. Next, all the Wannier-gauge
operators are rotated according to V1

k for the valence submanifold:
for instance, the overlap matrices MW

k;b (for computing the spread
functional) is rotated by

MW;1
k;b ¼ V1�

k MW
k;bV

1
kþb; (4)

where

MW
k;b¼ U�

kMk;bUkþb;

Mk;b ¼ hum;kjun;kþbi;
(5)

Uk are the unitary transformations from the VCB manifold
Wannierization, and um;k

�� �
is the periodic part of Bloch wavefunc-

tion ψm;k

�� � ¼ expðikrÞ um;k

�� �
. For more details on the notations of

Mk,b and b-vectors, see Ref. 1. Consistently, the E1
k is used as the

new eigenvalues. Now the problem is reformulated into a
Wannierization of an isolated submanifold with P WFs for VB.
Similarly, the conduction manifold operators are rotated by V2

k , and
an analogous Wannierization of an isolated submanifold with Q
WFs. Indeed, the first-step Wannierization of VCB has already
disentangled the MLWFs from all the remaining higher-energy
bands, so that these MLWFs span all the target submanifolds we
are interested in. To achieve our goal, we are left with
Wannierizations of two isolated submanifolds and thus the
subsequent steps do not need any disentanglement. Such a two-
step procedure makes the whole algorithm quite robust, especially
when Wannierizing the CB, for which it is difficult to provide good
initial projections of the corresponding anti-bonding orbitals.
The remaining difficulty of the Wannierization of the two

isolated submanifolds is caused by the diagonalization in Eq. (2).
Indeed, since the Hamiltonians HW

k are independently diagonalized
at each k, the resulting eigenvectors will have different gauges at
different k-points, requiring additional Wannierizations in each
submanifold. Since these Wannierizations are carried out on
submanifolds that have isolated bands, the minimization algorithm
is typically more robust to the choice of initial projections
compared to the case of disentanglement. One could simply
resort to random Gaussian initial projections followed by maximal
localization to reach the MLWFs for the two submanifolds,
respectively; or even brute-force maximal localization starting from
the random gauge after the Wannier Hamiltonian diagonalization.
However, a direct maximal localization starting from a random
gauge is not robust—we observe that, in many cases, the maximal
localization fails due to zeros in the diagonal of the overlap
matrices Mk,b; and, even if it converges, it displays the same issues
of random Gaussian projections: a large number of iterations, and
oscillatory evolution of spread and the sum of MLWF centers
during the minimization process (see Supplementary Fig. 1 for
discussions on the convergences of these choices). Moreover,
when the number of k-points Nk is large, the maximal localization
is much harder to converge. A better solution is finding good
starting gauges for the two submanifolds in an automated fashion.
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To tackle this challenge, we adopt the parallel transport
algorithm18 to construct smooth gauges for the two submanifolds.
For an isolated manifold, the existence of a smooth gauge is
determined by its topological obstructions, which are character-
ized by the Chern numbers (one in 2D and three in 3D). If the
Chern numbers are 0 (as it is the case for systems with time-
reversal symmetry), then it can be proven20 that it is possible to
construct a continuous gauge explicitly by the following
procedure18: (a) Suppose ki∈ [0, 1] (in fractional coordinates) for
i= x, y, z: propagate (using singular value decomposition of
overlap matrices MW

k;b to maximally align the gauge between
neighboring k-points) the Bloch wavefunctions un0j i at Γ along kx
from k-point 0= (0, 0, 0) to 1= (1, 0, 0), to construct a continuous
gauge across these k-points. The new gauge is not necessarily
quasi-periodic, i.e., satisfying the Bloch theorem imposed on unkj i
by unkþKj i ¼ τK unkj i where τK ¼ expð�iKrÞ is the translation
operator in reciprocal space, and K is a reciprocal lattice vector. In
general, instead, the two states are related by
un1j i ¼ ðτ1 un0j iÞVobs, where this expression defines the obstruc-
tion matrix Vobs quantifying the misalignment of the propagated
gauge and the gauge required by Bloch theorem at (1, 0, 0). To
fulfill the quasi-periodic boundary condition, we can therefore
multiply each unkj i by expð�kxLÞ (note kx ∈ [0, 1]), where
Vobs ¼ expðLÞ: in this way, we obtain a continuous gauge that
also satisfies Bloch theorem, i.e., the obstruction matrix in this
modified gauge becomes the identity matrix. (b) For each kx,
propagate along ky from (kx, 0, 0) to (kx, 1, 0). Now we obtain a
series of obstruction matrices Vobs(kx) along kx. If the winding
number18,21,22 of the determinants of Vobs(kx) vanishes (i.e., the
Chern number is 0), then there is a continuous function that maps
Vobs(kx) to identity18. We then multiply the gauge by this mapping,
so that the new gauge satisfies the quasi-periodic boundary
condition in the kx− ky plane. Ref. 18 explicitly constructs the
continuous mapping by their column interpolation method for the
Kane-Mele model, which is a 2D fermionic time-reversal-
symmetric model (i.e., having a vanishing Chern number) but
can present a non-zero Z2 number; as a comparison, previous
methods had difficulties in handling Z2 systems18,23,24, sometimes
requiring model-specific information25,26. (c) For each (kx, ky),
propagate along kz from (kx, ky, 0) to (kx, ky, 1). Now the obstruction
matrices Vobs(kx, ky) depend on both kx and ky. Similar to point (b),
if the two winding numbers of the determinants of Vobs(kx, 0) and
Vobs(0, ky) vanish, then there is a continuous function that maps
Vobs(kx, ky) to identity. We then multiply the gauge with this
mapping and obtain the final gauge satisfying the quasi-periodic
boundary condition in 3D. Ref. 18 demonstrates this constructive
algorithm to obtain a continuous gauge for a 3D system (silicon).
The results also show that the continuous gauge can be further
smoothened by the standard maximal localization procedure1 to
construct MLWFs. We stress that the algorithm is non-iterative and
fast, thus solving the problem of finding good initial WFs for
isolated manifolds in an efficient and robust way.
As shown in Supplementary Fig. 1, parallel transport generates a

much better starting point than random Gaussian projections or
random gauges: the convergence of maximal localization is much
faster, and the spread and the sum of MLWF centers smoothly
evolve during minimization. We note that since the propagation of
gauge requires overlap matrices between a particular set of
nearest-neighboring k-points, in the Supplementary Section 1.2
we present a procedure so that parallel transport can be applied
to any arbitrary crystal structure.
In summary, the sequential parallel transports move the

obstructions to the Brillouin zone edges, and the column
interpolation method fixes the quasi-periodicity. Our tests on a
set of 77 insulators (see discussion later in Section Results on 77
insulators) show that this algorithm is able to construct a good
initial gauge, and maximal localization is able to construct MLWFs
without issue.

We now mention that since we propagate the gauge starting
from the first k-point (0, 0, 0), there is still one gauge arbitrariness
at this Γ point. Here, we suggest to insert an additional step that
first minimizes the spread functional w.r.t. a single rotation matrix
W for the first k-point, before performing the standard maximal
localization w.r.t. all k-points to obtain MLWFs. Indeed, thanks to
the small size of W, this first preliminary step is computationally
efficient, and can help in further improving the overall robustness
of the full algorithm that we are presenting here. To achieve this,
we derive the expression of the gradient of the spread Ω w.r.t. the
rotation matrix W in Supplementary Section 1.1. We then use this
gradient with a manifold optimization algorithm27 to minimize Ω
w.r.t. W, where W is constrained on the unitary matrix manifold
W 2 CK ´ K jW�W ¼ I

� �
, where K= P for the valence manifold, or

K=Q for the conduction manifold. This minimization provides us
with a single rotation matrix W that further improves the
localization, while still preserving the parallel transport gauge:
we stress that, in addition to increasing the robustness of the
algorithm as mentioned earlier, this additional step can thus be
beneficial for cases where the parallel transport gauge is implicitly
assumed during the derivation of equations (for instance, Wannier
interpolation of Berry curvature28, or Wannier interpolation of
nonlinear optical responses29,30).
After the parallel transport and the single rotation, the resulting

WFs are close to the ideal MLWFs. However, since parallel
transport only generates a continuous quasi-periodic gauge, it
typically does not provide the smallest possible spread. It is
therefore helpful to perform a final smoothing of the gauge18 by
running a final maximal localization step (see examples in Sections
Silicon and Valence and conduction bands of MoS2). This can be
achieved using either the original Marzari-Vanderbilt localization1

or a matrix manifold optimization w.r.t. gauge matrices at all the k-
points, i.e., optimization on a product manifold of a series of
unitary matrices

Q
k Uk 2 CK ´ K jU�

kUk ¼ I
� �

, where K= P for
valence and K=Q for conduction manifolds. As already men-
tioned, the multi-step procedure that we propose here aims at
making the whole algorithm more robust, since every step
produce a better starting point for the final iterative localization
algorithm.
In summary, we start from an initial manifold that has been

already singled out from the remaining high-energy states using
standard procedure such as disentanglement and maximal
localization (e.g., very accurately using projectability disentangle-
ment17 to extract as much as possible the bonding and anti-
bonding characters from all the bands). The subsequent
diagonalizations of Wannier-gauge Hamiltonians separate the
manifold into (two) orthogonal submanifolds (for VB & CB,
respectively). The (two) parallel-transport steps (for the relevant
submanifolds) construct continuous gauges, fixing the random-
ness caused by the independent Hamiltonian diagonalization at
each k-point. The rotation w.r.t. a single unitary matrix removes
the gauge arbitrariness of parallel transport at the first k-point. The
final maximal localizations ultimately smoothen the gauge,
leading to two sets of MLWFs, each of which spans the
submanifold for VB or CB. In Supplementary Section 1.3, we prove
that the final gauge transformation has block diagonal structure,
i.e., the MRWFs are transformed according to

UðkÞ ¼ UVBðkÞ 0

0 UCBðkÞ

� 	
; (6)

where UVB(k) and UCB(k) are unitary matrices for VB and semi-
unitary matrices for CB, respectively.

Silicon
To test the validity of the present method, we first disentangle and
maximally localize the VCB of silicon into 8 WFs, using the
standard hydrogenic s and p projections with energy window

J. Qiao et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   206 



disentanglement (we use hydrogenic initial guesses and energy
window disentanglement here to demonstrate that the present
approach works well as long as the entire VCB are accurately
described; one can also use PDWF to construct MLWFs spanning
the entire VCB). The resulting WFs, two of which have s-character
and six of which have p-character, are shown in the VCB column of
Fig. 1a.
For the valence manifold, after running the Hamiltonian

diagonalization and parallel transport, we obtain four WFs with
spreads around 4Å2, but their shapes do not have clear physical
meaning, since the gauge of the first k-point is still arbitrary (see
PT column inside the VB column of Fig. 1a); after running the
single rotation (SR) of the W matrix, their spreads are further
minimized to around 3 Å2, and the shapes now resemble the
bonding orbitals between neighboring silicon atoms (PT+SR
column inside the VB column of Fig. 1a); a final maximal
localization (ML) further reduces the spreads to around 2Å2 and

the four spreads end up becoming identical (PT(+SR)+ML column
inside the VB column of Fig. 1a) thus respecting the symmetry of
the full system. For the conduction manifold (CB columns of
Fig. 1a), again the shapes of WFs after parallel transport have no
clear meaning. However, even after the single rotation, the shapes
of WFs still do not resemble the expected anti-bonding orbitals,
and only after the final maximal localization the anti-bonding
shape is recovered. Note that, in this simple case of silicon, for
both valence and conduction manifolds we reach the same set of
WFs whether we run a maximal localization directly after parallel
transport, or a maximal localization after parallel transport +
single rotation, so the two cases are merged into one column in
Fig. 1a under the header PT(+SR)+ML. The total spreads for the
VB and the CB manifolds after parallel transport+maximal
localization are 8.584 Å2 and 31.899Å2, respectively. As expected,
their sum is larger than the value for the VCB manifold (29.619 Å2)
after disentanglement and maximal localization, since in the VCB
case there is additional freedom to further minimize the spread by
remixing bonding and anti-bonding WFs into pure s and p orbitals
(we highlight that using atom-centered s,p projections does not
lead to the most localized orbitals for VCB in silicon; with a choice
of atom-centered sp3 projections, the total spreads can further
decrease to 26.761Å2, where four WFs have spreads 3.522Å2 and
another four 3.168Å2). In addition, we note that since the
Hamiltonian diagonalization returns a random gauge, the spreads
for parallel transport and parallel transport + single rotation are
different in each run, but the spreads of PT(+SR)+ML should
always be the same, since the algorithm should always manage to
find the maximally-localized gauge in this simple case. To quantify
how our multi-step procedure increases the overall robustness of
the algorithm while at the same time reducing its computational
cost, we show in Supplementary Fig. 1 the evolution of WF
spreads and centers during maximal localizations. Starting from
the random gauge directly after Hamiltonian diagonalization
(Supplementary Fig. 1a), it takes 28,430 iterations to converge;
using random Gaussians as initial guesses (Supplementary Fig. 1b),
the number of iterations decreases significantly to 812; with the
parallel transport gauge (Supplementary Fig. 1c), the number of
iterations further decreases to 228, and the evolution of spreads
and centers is much smoother; the best starting gauge is the one
after single rotation (Supplementary Fig. 1d), which only takes 40
iterations to converge, without any oscillations in the evolution of
spreads and centers. Note that the spreads of valence MRWFs
from PT(+SR)+ML are the same as MLWFs obtained from a direct
Wannierization of the valence bands, i.e., the valence MRWFs after
separation span the original DFT valence manifold, thus the initial
VCB Wannierization does not cause any delocalization of the
valence MRWFs (see Supplementary Section 1.3 for a proof).
We now discuss the quality of the band interpolation. The WFs

for VB & CB are constructed from the initial VCB manifold obtained
from a preliminary disentanglement and maximal localization.
Therefore, if VB/CB are properly Wannierized, their band
interpolation quality should be similar to that of VCB MLWFs.
Thus, in the following paragraphs, we compare the band
interpolations of VB/CB MLWFs, VCB MLWFs, and DFT bands.
Once the starting VCB manifold was properly disentangled and
could well reproduce the DFT band structure, as shown in Fig. 1b,
the WFs after parallel transport + maximal localization for the VB
and the CB manifolds can reproduce the corresponding part of the
VCB Wannier-interpolated bands with high accuracy, being
visually indistinguishable. To quantitatively evaluate the band
interpolation quality, we compute the average band distance,
ηisolated, between the VCB and VB/CB bands12,17,31. The ηisolated is
defined as

ηA�B
isolated ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nk

ðεAnk � εBnkÞ2

NbNk

vuut
;

(7)

Fig. 1 WF shapes and band interpolation of silicon. a WF shape of
various Wannierization methods. In the header, the left, center, and
right columns correspond to the valence plus conduction bands
(VCB), valence bands (VB), and conduction bands (CB), respectively.
The PT column shows WFs after running parallel transport (PT); The
PT+SR column shows WFs after running PT and single rotation (SR)
of W matrix; the PT(+SR)+ML column shows WFs after running PT
(and optionally SR) and maximal localization (ML), since PT+SR+ML
and PT+ML fall to the same minimum. The numbers under each WF
are the spread and its multiplicity: e.g., 1.668 (2) means there are two
WFs having spread 1.668Å2. The last row ∑ΩWF is the total spread of
each calculation. The blue spheres are the silicon atoms. b Band
structure comparison of DFT, VCB, VB, and CB. The horizontal dashed
blue line is the upper limit of the frozen window for disentangle-
ment (DIS). The VCB are computed by Wannier interpolation from
DIS+ML; the VB and CB are computed by Wannier interpolation
from PT+ML.
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where εnk are the eigenvalues of a band structure, and its
superscript A or B refers to the eigenvalues of two different bands,
A or B, which can be DFT bands, or Wannier-interpolated bands of
VCB, VB, or CB; Nb and Nk are the number of bands and k-points,
respectively. For silicon, we obtain: ηVCB�VB

isolated ¼ 6.6 meV and
ηVCB�CB
isolated ¼ 15.5 meV. In general, the VB interpolation is more

accurate than CB since the VB MLWFs usually have smaller
spreads. To improve the CB interpolation quality, one might need
to increase k-point sampling, as we discuss in Section Single top
valence band of MoS2.

Valence and conduction bands of MoS2
Next, we test the method on a two-dimensional (2D) MoS2
monolayer. For VCB Wannierization, we use the standard
hydrogenic Mo d and S s,p projections (the semicore states are
excluded, so in total 9 VBs and the lowest 4 CBs are Wannierized).
Since the VB and the lowest four CBs of MoS2 are isolated, 13 WFs
are maximally localized from 13 bands without disentanglement.
The 13 MLWFs can be well characterized into 4 groups by their
angular momentum: as shown in the VCB column of Fig. 2b, from
top to bottom, 3 resemble dz2 , 2 resemble dxy, and the remaining
8 resembles sp3 hybridized orbitals.
For the valence manifold, both after PT and after PT+SR, the

WFs still do not have a clear resemblance to bonding orbitals; after
PT+ML or PT+SR+ML, the WFs can be well grouped into six
hybrids of Mo dz2 + S p, two s-like WFs near sulfur atoms, and one
WF floating inside the hexagonal cage and having C3h symmetry,
originating from the hybridization of three properly oriented Mo
dz2 orbitals from the three nearest Mo atom. For the conduction
manifold, WFs after PT are already close to the anti-bonding
hybrid orbitals, and the further SR or ML steps help to slightly
reduce the spreads and result in more symmetrized WF shapes.
We notice that in contrast to intuition, in this case it took more
iterations to converge starting from PT+SR gauge than directly
from the PT gauge, as shown in the Supplementary Fig. 2.
Although the PT+SR cases start from a smaller total spread, the
maximal localizations got stuck longer in plateaus in the final
stages, leading to longer iterations. However, in all cases, the
evolutions are smooth and converge in <500 iterations, since both
valence and conduction are isolated manifolds themselves, and PT
is able to construct good starting gauges.
In terms of band interpolation, again the Wannier interpolated

VB and CB overlap essentially exactly with the DFT bands as well
as the Wannier interpolated VCB, as shown in Fig. 2b, and
demonstrated quantitatively by the excellent band-distance
values: ηVCB�VB

isolated ¼ 0.19 meV and ηVCB�CB
isolated ¼ 0.51 meV.

Single top valence band of MoS2
In practical applications, the highest valence and lowest conduc-
tion bands are of high interest since they are critical for electronic
transport properties. However, the Wannierization of a single band
remains elusive since it is difficult to write down a proper initial
projection, resulting from a complete hybridization of many
different atomic orbitals. However, in the MoS2 case, since the top
valence band is isolated with respect to all other bands, we can
use our algorithm to construct a smooth gauge for that single
band, demonstrating the more general applicability of our
method, beyond the separation of VB & CB. Note that if one is
only interested in Wannierizing an isolated group of bands, the
parallel transport itself is sufficient to construct a good gauge as
the starting point, followed by maximal localization to construct
well-localized MLWFs. However, when one is interested in
separating two submanifolds, or Wannierizing a submanifold that
is entangled with other bands (e.g., the conduction bands of an
insulator), the VCB Wannierization is necessary to construct a good
starting manifold for the subsequent separation.

Figure 3 a shows the band interpolation of this single-band WF,
and the inset shows the shape of this highly symmetric WF in real
space. As usual, since the separate Wannierizations in each
submanifold have less degrees of freedom compared with the
Wannierization of the initial manifold, the WF spreads for separate
Wannierization are usually larger. Indeed, the single WF has a
relatively large spread (9.288 Å2). For such a large spread, artificial
interactions between periodic copies of the same WF in different
supercells (where the supercell size is determined by the k-point
sampling) may start to become non-negligible. Indeed, we
observe some small oscillations at the minimum of the band
along Γ to M and along M to K, whose zoom-ins are shown in
Fig. 3b and c. By increasing the k-point sampling from the
12 × 12 × 1 (0.2 Å−1 density, same as the VCB Wannierization) to
18 × 18 × 1, the interpolation quality improves significantly (see
Fig. 3b and c). This means that the band interpolation error is not
caused by our separation method, but by the insufficient k-point
sampling. Therefore, if one targets a very high band interpolation
quality, the k-point sampling might need to be increased when
considering a submanifold only.

Fig. 2 WF shapes and band interpolation of MoS2. a WF shape of
various Wannierization methods. The notations are the same as
Fig. 1a, except that in some cases the additional star sign (*)
indicates that the WFs are grouped together if their spreads are
roughly similar, and only one of the shapes is shown: e.g., 4.560 (3)*
means there are three WFs having similar spreads, and their average
spread is 4.560 Å2. The yellow and the silver spheres are the S and
Mo atoms, respectively. b Band structure comparison of DFT, VCB,
VB, and CB. The VCB are computed by Wannier interpolation after
maximal localization (ML); the VB and CB are computed by Wannier
interpolation from PT+ML. The DFT bands are almost indistinguish-
able since the VCB, VB, and CB Wannier-interpolated bands overlap
essentially exactly with the DFT bands.
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SrVO3

Here we test the present method on the metallic perovskite SrVO3,
which is a correlated material on the t2g Hubbard manifold. At the
DFT level, the 3d manifold overlaps with other conduction bands
in energy, but still at each k-point the 3d manifold has a finite gap
w.r.t. others: the minimum gap (37.8 meV) occurs at R point
separating the 3d manifold from bands above, thus satisfying the
requirement of isolated manifold for the present method. Starting
from 24 MLWFs for VCB, we generate two sets of MLWFs: 5 for 3d
and 19 for the remaining manifold. For brevity, we only show the
comparison of DFT and Wannier-interpolated bands in Fig. 4a,
while the respective WF shapes and spreads are shown in
Supplementary Figs. 3 and 4. For the 3d manifold, the PT gauge is
already quite close to the maximally localized gauge: maximal
localization only slightly decreases the total spread from 9.815 Å2

of PT to 9.629 Å2, and symmetrizes the shapes of WFs (the 3d
columns of Supplementary Fig. 3). For the remaining manifold, it is
quite hard to converge: only after 13,027 iterations (Supplemen-
tary Fig. 4) the maximal localization can converge to real-valued,
spatially-symmetrized MLWFs (Supplementary Fig. 3). In this case,
the single rotation greatly helps in improving the convergence:
only 1544 iterations are needed to converge to the same MLWFs
starting from PT+SR gauge, also removing the oscillations in
spreads and centers during maximal localization (Supplementary

Fig. 4). For the band interpolation, again the respective manifolds
are accurately reproduced, as demonstrated by the bands in Fig. 4
and the band distances: ηVCB�3d

isolated ¼ 6.74 meV and ηVCB�others
isolated ¼ 3.00

meV. Furthermore, since the t2g and eg manifolds are gapped in
energy, we can also separate them into two submanifolds. As
shown in Fig. 4b, the t2g and eg bands are again reproduced very
well.

Results on 77 insulators
Finally, we test our method on a set of 77 insulators with number
of atoms in the unit cell ranging from 1 to 45. This is the same as
the insulator set of Ref. 12, except that 4 (He, Ne, Ar2, Kr2) of the 81
materials are excluded since they consist of closed-shell noble-gas
atoms, where the valence electrons are fully occupied (and there
is thus no need for separate Wannierizations). This comprehensive
test set not only validates the correctness of the present method,
but also helps improve its generality to cover edge cases (e.g., the
additional treatment of b-vectors in the Supplementary Section
1.2) that would be difficult to discover with only a few test cases.
The separate Wannierization is implemented as a fully automated
AiiDA32–34 workflow, which first runs the Wannierization of VCB
using PDWF17, then splits the VCB manifold with the method
discussed here (see Section CODE AVAILABILITY for the Wan-
nier.jl code implementation), and then runs two separate

Fig. 3 Band structure comparison of the single MoS2 top
valence band. a Comparison of DFT and Wannier-interpolated top
VB. The bottom-left inset shows the shape of the resulting single
MLWF. b and c Zoom-in comparisons of the Wannier-interpolated
bands using different k-point samplings: red dashed line for
12 × 12 × 1, blue dotted dashed line for 14 × 14 × 1, and green
dotted line for 18 × 18 × 1. The 16 × 16 × 1 is not shown since it has
similar quality to the 14 × 14 × 1.

Fig. 4 Comparison of DFT and Wannier-interpolated bands for
SrVO3. a The VCB are computed by Wannier interpolation using
PDWF; the 3d bands (3d) and the remaining bands (others) are
computed by Wannier interpolations from PT+ML. At DFT level, the
3d bands have a small gap (37.8 meV at R point) separated from the
bands above; the present algorithm successfully separates the 3d
submanifold from the remaining manifold. b The t2g and eg bands
are further separated starting from the 3d bands of (a).
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maximal localizations using Wannier90 for the VB and the CB
manifolds, respectively.
All the Wannierizations finish successfully and have excellent

band interpolation quality, which we measure by the band
distance12,17,31 ηisolated for comparisons between isolated bands
(VB of separate Wannierization w.r.t. VB of DFT, VB of separate
Wannierization w.r.t. VB of VCB Wannierization, CB of separate
Wannierization w.r.t. CB of VCB Wannierization), and η2 for
comparisons involving CB of DFT (VCB Wannierization w.r.t. VCB
of DFT, CB of separate Wannierization w.r.t. CB of DFT),

ηA�B
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nk

~f nkðεAnk � εBnkÞ2P
nk

~f nk

vuuuut ; (8)

where ~f nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fAnkðEF þ 2; σÞf BnkðEF þ 2; σÞ

q
and f(EF+ 2, σ) is the

Fermi-Dirac distribution with the Fermi energy set to 2 eV above
the real Fermi energy EF to compare also part of the conduction
bands; the smearing width is set to σ= 0.1 eV. The statistics of η
are shown in Fig. 5. It is worth noting that the VB interpolation
(ηVB�DFT

isolated = 0.859 meV) is even more accurate than the VCB
interpolation (ηVCB�DFT

2 = 2.609 meV): this is partly because
ηVCB�DFT
2 is averaged over all bands, including the larger error of CB

interpolation; to exclude the effect of averaging, we also compute
the band distance of the VB of VCB Wannierization w.r.t. the VB of
DFT, ηVBðVCBÞ�DFT

isolated = 1.721 meV, which is larger than ηVB�DFT
isolated =

0.859 meV, showing that the VB interpolation is indeed more
accurate than the VCB interpolation—this can be explained by
two facts: (1) the valence MRWFs are constructed by unitary
transformations of Bloch states, thus the valence manifold is
exactly preserved (see Supplementary Section 1.3 for a proof); (2)
the valence MRWFs are more localized than the VCB MLWFs (will
be discussed in the next paragraph), leading to a better Fourier
interpolation quality. The CB interpolation (ηCB�DFT

2 = 7.619 meV)

is slightly worse than the CB of VCB Wannierization (ηCBðVCBÞ�DFT
2 =

6.616 meV), since the CB MLWFs are more delocalized than the
VCB MLWFs (will be discussed in the next paragraph); moreover, it
appears much larger than the ηVCB�DFT

2 = 2.609 meV since η is
defined as an average over all bands—the (accurate) VB
interpolations are not taken into account in the computation of
ηCB�DFT
2 . In addition, and most importantly, the VB/CB to VCB

distances are ηVB�VCB
isolated = 2.219 meV and ηCB�VCB

isolated = 3.835 meV,
showing that the submanifolds are well separated with little loss
of interpolation accuracy compared with the starting-point VCB
Wannierization. For completeness, we also show the statistics of
max band distance, which is a stricter measure of band
interpolation quality, in the Supplementary Fig. 5.
Now we discuss the localization of MLWFs by comparing the

average spread from the 77 materials. For VCB Wannierization, the
average spread ΩVCB= 1.178Å2; after separation (followed by
maximal localization of VB and CB, respectively), the average
spread of VB MLWFs is slightly more localized (ΩVB= 1.079Å2);
while that of CB MLWFs are more delocalized (ΩCB= 2.919Å2).
This is consistent with the intuition that the VB MLWFs are the
more localized bonding orbitals whereas the CB MLWFs are
the more delocalized anti-bonding orbitals. Finally, as discussed in
the previous section, the separated MLWFs have less degrees of
freedom compared with the VCB MLWFs, thus the sum of the
spreads of VB and CB (ΩVB+ΩCB) is in general larger than that of
VCB (ΩVCB). Figure 6b shows the percentage increase of ΩVB+ΩCB

over ΩVCB. On average, there is a 52.9% increase of the spread.
Note, however, that in three cases (Na2Se, Ca4O14V4, and HK) there
are a 39.2%, 56.0%, and 5.1% decreases of spreads, respectively.
For the first two cases, there are few large-spread VCB MLWFs,
probably because the VCB Wannierizations are trapped in local

minima; during the separation Wannierizations, the parallel
transport algorithm is able to find a smoother gauge, thus
reaching more localized MLWFs for both VB and CB, leading to
smaller ΩVB+ΩCB than ΩVCB.
For completeness, we show the band-structure comparisons,

the band distances, the evolution of spreads and the evolution of
the sum of WF centers during maximal localization in Supple-
mentary Section 3.1, for each of the 77 materials. The smooth
evolution of spreads and sum of WF centers during maximal
localization for CB and VB demonstrate that parallel transport is
able to construct continuous gauge, thus maximal localization has
no difficulty in further smoothening the gauge.

DISCUSSION
We introduce an automated method (manifold-remixed Wannier
functions (MRWF)) to separate band manifolds by constructing
MLWFs for the respective submanifolds that have finite energy
gaps (at each k-point) between them. The method naturally
extends to the case of valence and conduction manifolds, but also
to any other case of isolated groups of bands. First, we start with a

Fig. 5 Band distances of 77 insulators. From top to bottom:
histograms of band distances for valence plus conduction bands
(VCB) w.r.t. DFT, valence bands (VB) of VCB Wannierization w.r.t. DFT,
VB Wannierization w.r.t. DFT, VB Wannierization w.r.t. VCB Wannier-
ization, conduction bands (CB) of VCB Wannierization w.r.t. DFT, CB
Wannierization w.r.t. DFT, and CB Wannierization w.r.t. VCB
Wannierization. The red and blue bars are the histograms and
cumulative histograms, respectively. The vertical lines indicate the
mean and median values.
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properly Wannierized valence plus conduction manifold, obtained
using any manual or automated method (the recently introduced
projectability disentangled WF17 is particularly suitable for this
application since it is able to robustly and reliably construct
MLWFs that preserve as much as possible the anti-bonding
characters). Then, we split the manifolds by diagonalizing the
Wannier-gauge Hamiltonian into submanifolds for target energy
ranges, respectively. Next, using parallel transport, we construct
smooth gauges for each submanifold to fix the randomness
caused by the independent Hamiltonian diagonalization at every
k-point. Finally, we maximally localize the parallel-transport gauge
to obtain smooth MLWFs for the desired manifolds. Before the
final maximal localization, we can optionally run a preliminary
rotation w.r.t. a single unitary matrix to fix the remaining gauge
randomness intrinsic to parallel transport. Often the final maximal
localization is able to find the maximally-localized gauge directly;
however, the single rotation step helps to improve the robustness
of the final maximal localization, and has the additional benefit of
improving localization while still preserving the parallel transport
gauge, which might be relevant in some applications.
Results on silicon and MoS2 show that the final valence

(conduction) MLWFs restore faithfully chemical intuition for
bonding/anti-bonding orbitals, and accurately reproduce the
valence/conduction part of the band structure of the valence plus
conduction manifold. Moreover, we demonstrate that the method
is not limited to the separation of valence and conduction
manifolds, but also applicable to any system with band groups
separated by a finite gap: for instance, the single top valence band
of MoS2; or the 3d, t2g, and eg manifolds of SrVO3. Furthermore, we
implement fully automated AiiDA32–34 workflows to carry out the

whole separate Wannierization process, and test the present
method on a set of 77 insulators. Statistics show that the band
interpolation achieves excellent accuracy at the meV scale, and on
average the sum of VB and CB MLWF spreads increase around 50%
w.r.t. the VCB MLWF spreads. Thus, we highlight that to ensure
accurate band interpolation quality, the k-point sampling density
for separated Wannierization might need to be increased, as
demonstrated in the Wannierization of the MoS2 top valence band.
As an outlook, we envision several applications that one may

find useful with the preset approach: the analysis of bonding/anti-
bonding orbitals based on MLWFs; material properties that rely
solely on the occupied manifold, such as the electric polarization;
spectral theories that require separate sets of localized orbitals for
both occupied and unoccupied states (for instance, the Koopmans
functionals to predict accurately the electronic band gap6); and
the dynamical mean field theory for correlated electrons.

METHODS
Calculation parameters
The DFT calculations are carried out by Quantum ESPRESSO35,
using the SSSP efficiency (version 1.1, PBE functional) library31 for
pseudopotentials and its recommended energy cutoffs. The
high-throughput calculations for 77 insulators are managed by
the AiiDA32–34 infrastructure which submits Quantum
ESPRESSO and Wannier904 calculations to remote clusters,
parses, and stores the results into a database, while also
orchestrating all sequences of simulations and workflows. The
automated AiiDA workflows are open-source and hosted on
GitHub36. Semicore states from pseudopotentials are excluded
from Wannierizations, except for a few cases where the semicore
states overlap with valence states; in such cases, all the semicore
states are Wannierized. A regular k-point mesh is used for the
Wannier calculations, with a k-point spacing of 0.2 Å−1, as
selected by the protocol in Ref. 12. Figures are generated by
matplotlib37.

DATA AVAILABILITY
All data generated for this work can be obtained from the Materials Cloud Archive
(https://doi.org/10.24435/materialscloud:2f-hs).

CODE AVAILABILITY
All codes used for this work are open-source; the latest stable versions can be
downloaded at http://www.wannier.org/ for Wannier90, https://www.quantum-
espresso.org/ for Quantum ESPRESSO, https://www.aiida.net/ for AiiDA, and
https://github.com/aiidateam/aiida-wannier90-workflows for aiida-wannier90-
workflows. The MRWF method is implemented in an open-source Julia38 package
named Wannier.jl, which is available at https://github.com/qiaojunfeng/Wannier.jl,
and https://www.wannierjl.org/ for the accompanying documentation/tutorials.
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