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Projectability disentanglement for accurate and automated
electronic-structure Hamiltonians
Junfeng Qiao 1✉, Giovanni Pizzi 1,2 and Nicola Marzari 1,2

Maximally-localized Wannier functions (MLWFs) are broadly used to characterize the electronic structure of materials. Generally, one
can construct MLWFs describing isolated bands (e.g. valence bands of insulators) or entangled bands (e.g. valence and conduction
bands of insulators, or metals). Obtaining accurate and compact MLWFs often requires chemical intuition and trial and error, a
challenging step even for experienced researchers and a roadblock for high-throughput calculations. Here, we present an
automated approach, projectability-disentangled Wannier functions (PDWFs), that constructs MLWFs spanning the occupied bands
and their complement for the empty states, providing a tight-binding picture of optimized atomic orbitals in crystals. Key to the
algorithm is a projectability measure for each Bloch state onto atomic orbitals, determining if that state should be kept identically,
discarded, or mixed into the disentanglement. We showcase the accuracy on a test set of 200 materials, and the reliability by
constructing 21,737 Wannier Hamiltonians.
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INTRODUCTION
In periodic crystals, the electronic structure is usually described using
one-particle Bloch wavefunctions. While choosing a basis set that is
also periodic to describe these wavefunctions can often be
beneficial, an alternative approach is to adopt localized orbitals in
real space. One such choice of orbitals are Wannier functions (WFs),
that can be obtained by Fourier transforming the periodic
wavefunctions from reciprocal to real space. WFs are not unique,
as they depend on the choice of the gauge (i.e., the choice of the
phases of the wavefunctions) at each point in the Brillouin zone (BZ).
Maximally-localized Wannier functions (MLWFs)1–4 are obtained by a
gauge choice that is optimized to provide the most localized set of
WFs, i.e., those that minimize the sum of their quadratic spread in
real space1. Having a very localized representation of the electronic
structure not only provides an insightful analysis of chemical
bonding in solids, but also brings a formal connection between the
MLWF centers and the modern theory of electric polarization5.
Moreover, the real-space locality of MLWF allows for accurate and
fast interpolation of physical operators6, enabling calculations of
material properties that require dense samplings of the BZ, such as
Fermi surface, orbital magnetization7, anomalous Hall conductiv-
ity8,9, and spin Hall conductivity10, to name a few. Practically, one
obtains MLWFs starting from a set of Bloch wavefunctions,
calculated e.g., from density-functional theory (DFT). Often, these
Bloch states are projected onto some localized orbitals (usually
chosen by the user) to generate initial guesses for MLWFs. In an
insulator, by minimizing the spread functional1 which measures
localization, one can obtain a set of MLWFs, i.e., “Wannierize” a
material. The Wannierization contains an additional disentangle-
ment step2 if the target Bloch states are not isolated from other
band manifolds. For such entangled bands—metals or the
conduction bands of insulators—one needs to first identify the
relevant Bloch states that will be used to construct MLWFs, and then
mix or “disentangle” these from all the Bloch states2. Practically, the
choices for the initial projections and states to be disentangled
substantially influence the shape and the quality of the final MLWFs.

In recent years, a lot of effort has been devoted to obtaining
high-quality MLWFs and automate the Wannierization proce-
dure. Focus of the research can be categorized into the
following classes: (a) minimization algorithms, such as: the
symmetry-adapted WF method that adds constraints to impose
the symmetries of the resulting WFs11; the simultaneous
diagonalization algorithm that directly minimizes the spread
functional for an isolated (or “Γ-only”) system12; the partly-
occupied WF method, where the total spread is directly
minimized in one step13,14, rather than performing a two-step
minimization for its gauge-invariant and gauge-dependent
parts as in the standard procedure2; or the variational
formulation, that combines single-step optimization with
manifold optimization to make the minimization algorithm
more robust15; (b) different forms of the spread functional, such
as the selectively localized WFs (SLWFs) for which only a subset
of WFs of interest are localized and a penalty term is added to
constrain the position of the WF centers16, or the spread-
balanced WF method, that adds a penalty term to distribute the
spread as uniformly as possible among all WFs17; (c) targeting a
subset of orbitals, e.g. SLWF for a subset of MLWFs16 or the
optimized projection functions method where starting projec-
tions for the Wannierization are generated from a larger group
of initial ones18; (d) matrix manifold algorithms instead of
projection methods to construct a smooth gauge in a non-
iterative way19,20; (e) basis-vector decomposition of the density
matrix, e.g. the selected columns of the density matrix (SCDM)
algorithm21,22, that starts from the density matrix of the system
and uses QR decomposition with column pivoting (QRCP) to
automatically generate an optimal set of basis vectors from the
columns of the density matrix.
At the same time, high-throughput (HT) calculations have

become increasingly popular for materials discovery and design.
Calculations and results managed by workflow engines are
collected into databases of original calculations, such as the
Materials Project23, AFLOW24, OQMD25, CMR26, and the Materials
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Cloud27, or aggregated, as in NOMAD28. Thanks to recent research
advances on Wannierization algorithms, it starts now to be
possible to run HT Wannierizations for many materials and
generate tight-binding (TB) models that reliably describe their
physics. So far, several attempts have been made in this direction.
Reference29 gathered 195 Wannier TB Hamiltonians and applied
post-processing symmetrization to study strained III-V semicon-
ductor materials. Reference30 implemented the SCDM algorithm
and designed a protocol to determine automatically the remain-
ing free parameters of the algorithm; this protocol, implemented
into automated workflows, was verified to work well for band
interpolations on a set of 200 structures (metals, or valence and
conduction bands of insulators) and 81 insulators (valence bands
only). Reference31 accumulated a Wannier TB Hamiltonian
database of 1771 materials using the standard hydrogenic orbital
projections. However, there are still several challenges for an
accurate and automated HT Wannierization, some of which might
be more relevant depending on the research goal and the specific
property to compute: MLWFs should be able to faithfully represent
the original band structure, often (e.g., for transport properties) at
least for those bands close to the Fermi energy; MLWFs should
resemble the physically intuitive atomic orbitals for solids that
would enter into Bloch sums; the algorithm should be fully and
reliably automated and the implementation should be efficient for
HT calculations.
To overcome the challenges mentioned above, in this paper we

present an approach for automated Wannierization. First, we
choose physically-inspired orbitals as initial projectors for MLWFs,
that is, the pseudo-atomic orbitals (PAOs) from pseudopoten-
tials32. Then, for each state nkj i (n is the band index, k is the Bloch
quasi-momentum) we decide if it should be dropped, kept
identically, or thrown into the disentanglement algorithm
depending on the value of its projectability onto the chosen set
of PAOs, replacing the standard disentanglement and frozen
manifolds based only on energy windows. This approach naturally
and powerfully targets the TB picture of atomic orbitals in crystals,
as it will also become apparent from our results. Moreover, we
fully automate this approach and implement it in the form of
open-source AiiDA33–35 workflows. To assess its effectiveness
and precision, we compare the quality of the band interpolation
and the locality of the Wannier Hamiltonians generated with the
present approach, which we name as projectability-disentangled
Wannier functions (PDWFs), with the results from the SCDM
algorithm30. Statistics from 200 materials demonstrate that PDWFs
are more localized and more atomic-like, and the band interpola-
tion is accurate at the meV scale. Furthermore, to demonstrate the
reliability and automation of our method and workflows, we carry
out a large-scale high-throughput Wannierization of 21,737
materials from the Materials Cloud27,36.
To set the context for the following paragraphs, here we briefly

summarize the notations for WFs; a detailed description can be
found in refs. 1–3. WFs wnRj i are unitary transformations of Bloch
wavefunctions ψmkj i, given by

wnRj i ¼ V

ð2πÞ3
Z

BZ
dke�ik�R XJ or Jk

m¼1

ψmkj iUmnk; (1)

where k and R are the Bloch quasi-momentum in the BZ and a real-
space lattice vector, respectively; m is the band index, and n is the
Wannier-function index (running from 1 to the number of WFs J). For
an isolated group of bands, J is equal to the number of bands, and
the Umnk are unitary matrices; for entangled bands, the number of
bands considered at each k-point is Jk ≥ J, and the Umnk are semi-
unitary rectangular matrices. MLWFs are the minimizers of the
quadratic spread functional1

Ω ¼
XJ

n¼1

hwn0jr2jwn0i � hwn0jrjwn0ij j2
h i

: (2)

Since Eq. (2) is a minimization problem with multiple local minima,
initial guesses for Umnk substantially influence the optimization
path and the final minimum obtained. In order to target the most
localized and chemically appealing solution, ref. 1 used hydrogenic
wavefunctions gnj i (i.e., analytic solutions of the isolated hydro-
genic Schrödinger equation) to provide a set of sensible initial
guesses ϕnkj i, after projection on the space defined by the
relevant Bloch states:

ϕnkj i ¼
XJ or Jk
m¼1

ψmkj ihψmkjgni: (3)

The projection matrices Amnk = 〈ψmk∣gn〉, after Löwdin ortho-
normalization37, form the initial guesses for Umnk. We underline
that while the gauge of Bloch wavefunctions ψmkj i is arbitrary,
Eq. (3) is invariant to such gauge freedom: suppose ψ0

ik

�� �
are

also solutions of the electronic structure problem, then ψ0
ik

�� �
are

related to ψmkj i by some unitary matrices ψ0
ik

�� � ¼ P
m ψmkj iUmik ;

thus ϕnkj i ¼ P
m ψmkj ihψmkjgni ¼

P
m

P
i ψ

0
ik

�� �
U�
imkUmikhψ0

ikjgni ¼P
i ψ

0
ik

�� �hψ0
ikjgni does not depend on the gauge of Bloch

wavefunctions, where superscript * denotes conjugate trans-
pose. For entangled bands, the “standard” disentanglement
approach2 uses energy windows to choose the disentangle-
ment and frozen manifolds: (a) an (outer) disentanglement
window that includes a large set of Bloch states, which can be
mixed together to obtain a smaller disentangled manifold; (b)
an (inner) frozen window that specifies a smaller set of Bloch
states (often states around Fermi energy) which are kept
unchanged in the final disentangled manifold.
Since in the following sections the present results are compared

with SCDM, we also summarize the SCDM procedure here. The SCDM
method21 starts from the real-space density matrix hrjPkjr0i where
Pk ¼ PJk

m¼1 ψmkj i ψmkh j, and uses QR factorization with column
pivoting (QRCP) to decompose hrjPkjr0i into a set of localized real-
space orbitals, thanks to the near-sightedness principle38,39 stating
that the matrix elements hrjPkjr0i decay exponentially with the
distance between two points r and r0 in insulating systems. While
storing the full hrjPkjr0i is memory intensive (it has size Nr ×Nr,
where Nr is the number of real-space grid points), one can
equivalently decompose the matrix formed by the real-space Bloch
wavefunctions Ψ�

k ¼ ½ψ1k; ¼ ;ψJkk��, which has a smaller size Jk ×Nr.
For periodic systems, often the choice of columns in the QRCP
algorithm can be performed using the wavefunctions at the Γ point
only (ΨΓ)40, and the same column selection is then used for all other
k-points. For entangled bands, since the density matrix is not
continuous across the k-points, one can construct a quasi-density
matrix (or equivalently a matrix of wavefunctions)PJk

m¼1 ψmkj if ðεmkÞ ψmkh j, where f(εmk) is a smooth function of the
energy eigenvalues εmk, specifying the target energy window for the
constructed MLWFs. Often the complementary error function
1
2 erfcðε�μ

σ Þ is chosen as f(ε), and the choice of μ and σ determines
the shape of MLWFs, as well as band-interpolation quality. Using
projectability, defined later in Eq. (5), μ and σ can be automatically
chosen, thus automating the Wannierization process30.

RESULTS
Pseudo-atomic-orbital projections
In addition to the hydrogenic orbitals discussed above, alternative
starting guesses for the Wannierization can be used. For instance,
in pseudopotential plane-wave methods, PAOs are localized
orbitals originating from the pseudopotential generation proce-
dure32. In this procedure, for each element, atomic wavefunctions
of an isolated atom are pseudized to remove the radial nodes and
are localized functions around the atom; spherical harmonics with
well-defined angular-momentum character (s, p, d, or f) are chosen
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for their angular dependency. Then, the PAOs are summed over
lattice points with appropriate phases to obtain Bloch sums,
Fourier transformed to a plane-wave basis, Löwdin-orthonorma-
lized, and finally taken as the projectors for initial projections.
PAOs are commonly used for analyzing the orbital contributions
to band structures, as the basis set for non-iterative construction
of TB Hamiltonians32, or as projectors in DFT+Hubbard
calculations41.
In order to understand the contribution of each orbital gnj i to a

Bloch state ψmkj i, we define a measure of projectability as the
square of the inner product between ψmkj i and gnj i:
pnmk ¼ hgnjψmkij j2; (4)

the projectability of ψmkj i onto all PAOs is then defined as

pmk ¼
X
n

pnmk: (5)

If the projectors gnj i are complete for ψmkj i, then pmk= 1. The
band projectability is a very useful criterion to identify the orbital
character of the bands; this is exemplified in Fig. 1a, where we
show the projectability of the bands of graphene onto 2s and 2p
PAOs for carbon. It is immediately apparent how one can easily
identify states in the conduction manifold that have a strong 2p
and 2s component.

Compared with the hydrogenic projections, which is the
method used by default in Wannier90 4 and its interface code
to Quantum ESPRESSO 42 (called pw2wannier90.x), PAOs are
better adapted to each element since they come exactly from the
pseudopotential used in the actual solid-state calculation. More-
over, in pseudopotentials with semicore states, the PAOs for
semicores are nodeless and those for valence wavefunctions have
at least one radial node (so as to be orthogonal to the semicore
states with same angular momentum); thus band projectability
can clearly differentiate semicore from valence, making PAOs
more convenient than the hydrogenic orbitals, for which the user
would need to manually set the correct radial functions for both
semicore and valence projectors. For these reasons, we use in this
work the PAOs as initial and more accurate projections. If needed,
higher energy orbitals not included in the pseudopotential file can
be constructed, for example, using solutions of Schrödinger
equation under confinement potential43,44 (see also discussion in
Section “Additional PAOs for high-energy/accuracy interpolation”).

Projectability disentanglement
As mentioned, the standard disentanglement approach selects
the disentanglement and frozen manifolds via two energy
windows2. We refer to this as energy disentanglement (ED).

Fig. 1 Comparisons of graphene band structures interpolated using different methods. a DFT band structure, shown as grey lines. The
colored dots represent the projectabilities onto carbon 2s (green) and 2p (red) orbitals. The size of each dot is proportional to the total
projectability pmk of the band m at k-point k; see Eq. (5). For a detailed plot of total projectability, see Supplementary Fig. 1. Comparisons of
the original and the Wannier-interpolated bands for b hydrogenic projections with energy disentanglement (ED), c SCDM, d PAO with ED,
e PAO with projectability disentanglement (PD), and f PAO with PD+ED. The Fermi energy EF (horizontal black dashed line) is at zero; the
horizontal blue dashed line denotes the top of the inner energy window, where applicable.
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However, since bands have dispersions across the BZ, a fixed
window for all k-points might not be an optimal choice. Taking the
graphene band structure (Fig. 1a) as an example, the bands with
large projectability are mixed with many free-electron bands with
zero projectability (grey bands in the conduction region). In this
case, one is faced with several options for the outer and inner
energy windows, each with different shortcomings: (a) If the inner
window includes free-electron bands, the final MLWFs are
mixtures of 2s, 2p atomic orbitals and free-electron bands,
delocalizing the resulting MLWFs; (b) if the outer window excludes
both the free-electron bands and the atomic-orbital states inside
free-electron bands, the WFs lack the anti-bonding part of the
bonding/anti-bonding closure13, again degrading the localization
of WF; (c) if the upper bound of the inner window is set to its
maximal allowed value, i.e. the blue dashed line positioned at the
minimum of free-electron bands in Fig. 1b, and all the DFT
eigenstates are included in the outer window, the disentangle-
ment algorithm2 will extract an optimally smooth manifold, at the
expense of decreasing the chemical representability of the atomic-
orbital bands in the free-electron region; in other words, the
MLWFs obtained lose the information of the TB atomic orbitals in
this chemical environment (see Fig. 1b).
The graphene case highlights the limitations of the standard ED.

Instead, we propose here to select the disentanglement and
frozen manifolds based on the projectability pmk of each state on
the chosen PAOs (i.e., states are selected irrespective of their
energy, but rather based on their chemical representativeness).
Specifically, we select states based on two thresholds pmin and
pmax: (a) If pmk < pmin, the state ψmk is discarded. (b) If pmk≥pmax,
the state ψmk is kept identically. Crucially, all states for which pmin
≤pmk < pmax are thrown in the disentanglement algorithm.
Optimal numerical values for pmin and pmax are discussed later.
In the case of graphene, pmax identifies the fully atomic-orbital
states inside the free-electron bands, while pmin removes the fully
free-electron bands from the disentanglement process, preventing
the mixing of atomic and free-electron states. The two thresholds
pmin and pmax constitute the parameters of the disentanglement
process, replacing the four defining energy windows (the lower
and upper bounds of the outer and inner energy windows). We
note that projectability disentanglement is different from partly-
occupied WF13,14 in that the latter uses an energy window to
select frozen states and minimizes the total spread functional
directly, while projectability disentanglement selects the localized
states using projectability instead of a constant energy window
across k-points. In fact, one can combine projectability disen-
tanglement with a variational formulation15 to construct MLWFs
by minimizing directly the total spread functional.
Ideally, if PAOs were always a complete set to describe valence

and near-Fermi-energy conduction bands, the PD would select the
most relevant Bloch states and accurately interpolate these DFT
bands. However, since the PAOs are fixed orbitals from isolated
single-atom calculations for each element, if the chemical
environment in the crystal structure is significantly different from
that of pseudopotential generation, then the total projectability
pmk might be smaller than 1 for bands around the conduction
band minimum (CBM) or even for valence bands. In such cases,
one solution is to increase the number of PAOs, i.e., adding more
projectors with higher angular momentum, as we will discuss in
Section “Additional PAOs for high-energy/accuracy interpolation”.
However, since one almost always wants to correctly reproduce
valence bands (plus possibly the bottom of the conduction) but at
the same time keep the Wannier Hamiltonian small for computa-
tional reasons, we suggest to additionally freeze all the states that
sit below the Fermi energy in metals (or below the CBM for
insulators) and also those a few eV above (typically, 2 eV or so).
Such a combination of PD+ED gives accurate interpolation of
bands below and around the Fermi energy (or band edges for

insulators), as well as maximally restoring the atomic-orbital
picture.
We stress here that, even if we call the resulting Wannier

functions PDWFs for clarity, our optimal suggestion is to always
also freeze the states in the energy window mentioned above, as
we discuss in the next sections.

Comparisons of four prototypical materials
We choose four prototypical materials to discuss the present
method: graphene, silicon, copper, and strontium vanadate
(SrVO3). Graphene is a difficult case where atomic-orbital states
highly mix with free-electron bands; silicon tests the Wannieriza-
tion of both valence and conduction bands of an insulator; copper
is a test on a metal; and SrVO3 represents the class of (metallic)
perovskites. We compare the shapes, centers, and spreads of the
resulting MLWFs using the five methods mentioned earlier:
hydrogenic projection with ED (i.e., the standard approach),
SCDM, PAO projection with ED, PAO projection with PD, and PAO
projection with PD+ED.
In the case of graphene, the original and interpolated band

structures for the five methods discussed are shown in Fig. 1b–f.
The blue dashed lines in Fig. 1b, d, f indicate the top of the inner
energy window, which is set optimally (and manually) to just
below the free-electron bands, to freeze as much as possible the
atomic-orbital states but exclude any free-electron state. For PD
and PD+ED, we choose pmax = 0.85 and pmin = 0.02 (we will
discuss later on the choice of these thresholds). Comparing Fig. 1d
and Fig. 1b, one sees that ED produces similar bands irrespective
of using hydrogenic or PAO projection. However, as shown in Fig.
2 (first and third row), the MLWFs for the two cases fall into slightly
different minima: MLWFs from hydrogenic projection with ED are
pz and hybridized s ± p orbitals pointing towards the center of the
hexagon, while MLWFs from PAO with ED are pz, px, and s ± py.
This is due to the fact that the PAO projections guide the
minimization towards spherical harmonics, while the hydrogenic
projections are farther away from such local minimum and the
optimization algorithm happens to escape and converge to a
better minimum. A possible future work is to introduce more
advanced optimization algorithms to improve the convergence of
maximal localization. Both the PAO with PD and PAO with PD+ED
cases reach the same set of MLWFs, pz, px, and s ± py, but with
larger spreads than the PAO with ED, since the PD and PD+ED
freeze more states, giving thus less freedom for maximal
localization. Nevertheless, the interpolated bands of the PAO with
PD and PAO with PD+ED cases can much better reproduce the
atomic-orbital states inside the free-electron bands. Finally,
compared to other cases, SCDM includes some free-electron
bands, some of which can be even reproduced by the Wannier
interpolation. However, in order to follow those free-electron
bands, abrupt changes of character and band derivative are
needed in the conduction band. As required by Nyquist–Shannon
sampling theorem45, this results in a denser k-space sampling
needed to obtain a good interpolation quality. Moreover, the
MLWFs are much more delocalized and do not resemble atomic
orbitals: as shown in Fig. 2, the last two MLWFs for SCDM are
floating away from the graphene 2D lattice, blurring the TB picture
of atomic orbitals in solids.
For silicon, the SCDM method obtains four front-bonding and

four back-bonding MLWFs, while all other cases lead to atom-
centered s and p MLWFs, as shown in Supplementary Fig. 3. While
overall the SCDM bands (Fig. 3c) seem to reproduce relatively
better the higher conduction bands, they fail to correctly
reproduce the bottom of the conduction band near the X point,
induce more wiggles around X and W, and have much larger
spreads. Due to the low projectability of Bloch states around X
(pmk around 0.83), the CBM is not correctly reproduced in the PAO
with PD, as these are not frozen in PD with the current choice of
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pmax = 0.95 and pmin = 0.01. To explicitly freeze the CBM, pmax
would need to be lowered below 0.83. However, such kind of
decrease will also result in freezing some high-energy conduction
bands, degrading the localization. PD+ED overcomes this by
explicitly freezing the near-Fermi-energy and low-projectability
states at the CBM, but still only freezing those atomic-orbital states
in the high-energy conduction bands that possess high project-
ability (see Fig. 3f), thus improving band interpolation. We note
that the lower projectability of silicon CBM is intrinsic to the
material—its CBM also includes 3d character. Therefore, by adding
d PAOs, the CBM projectability increases (from 0.83 to 0.99) and
one can restore a high-quality band-structure interpolation within
the PD method: as shown in Fig. 3e, the low-energy conduction
bands are correctly reproduced once we regenerate a silicon
pseudopotential including 3d PAOs. Therefore, PD is sufficient to
obtain an accurate band interpolation if enough PAOs are
included (we will also discuss this later in Section “Additional
PAOs for high-energy/accuracy interpolation”). For completeness,
we show the SCDM interpolation using the regenerated pseudo-
potential in Fig. 3c: the added d PAOs help select a larger manifold
thanks to the increased projectability, enabling SCDM to
reproduce higher conduction bands, as well as fixing the wrong
interpolation at the W point. Moreover, additional PAOs can also
benefit ED, since the frozen window can be enlarged to reproduce
more states. In general, adding more PAOs improves interpolation
quality in cases where the target bands have low projectability, at
the price of increased computational cost. PD+ED is a better
option for reaching a good interpolation accuracy while keeping
the size of the corresponding TB model small.
Results for copper and SrVO3 are only shown in the SI

(Supplementary Figs. 4, 6, 7 and 9), since the conclusions are
the same: PD+ED consistently provides the best interpolation
quality among all methods we consider, while not requiring to

increase the size of the Hamiltonian model, and results in WFs that
resemble atomic orbitals or their hybridization.

High-throughput verification on 200 materials
In this section we discuss the applicability of the present PDWF
method to obtain, in a fully automated way and without user
input, WFs for any material. In order to assess quantitatively its
performance, we compare it to SCDM, that can also be fully
automated (see ref. 30).
In all results that follow, we exclude semicore orbitals in both

methods, since these low-energy states correspond to almost flat
bands and do not play any role in the chemistry of the materials.
We compare quantitatively the band interpolation quality
between the two methods and the corresponding WF centers
and spreads on the 200-structure set used in ref. 30 for both
occupied and unoccupied bands, totalling 6818 MLWFs for each
method. In accordance with refs. 30,46, the band interpolation
quality is measured by the average band distance,

ην ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
nk

~f nkðεDFTnk � εWan
nk Þ2

P
nk

~f nk

vuuuut ; (6)

and the max band distance,

ηmax
ν ¼ max

nk
~f nk εDFTnk � εWan

nk

��� ���� �
; (7)

where ~f nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f DFTnk ðEF þ ν; σÞfWan

nk ðEF þ ν; σÞ
q

and f(EF+ ν, σ) is
the Fermi-Dirac distribution. Here EF+ ν and σ are fictitious Fermi
levels and smearing widths which we choose for comparing a
specific range of bands. Since the Wannier TB model describes the
low-energy valence electrons, it is expected that the band

Fig. 2 Graphene MLWFs: shapes, centers, and spreads obtained using different methods. dWFC is the distance of the WF center from the
nearest-neighbor atom, and ΩWF is the MLWF spread. The multiplicity is the number of equivalent MLWFs, i.e. having the same dWFC, ΩWF, and
shape, but different orientations.
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interpolation deviates from the original in the higher conduction
band region. Therefore, the higher ν is, the larger ην is expected to
be. In the following paragraphs, we will use η0 and η2 to compare
bands below EF and EF + 2 eV, respectively; σ is always fixed at
0.1 eV.
In the Supplementary Section 2.1, we provide comparisons

between the Wannier-interpolated bands and the DFT bands for
both PDWF and SCDM, their respective band distances, and the
Hamiltonian decay plots for each of the 200 materials. We discuss
these properties in the following.

Projectability thresholds and automation
For PDWF, we set the maximum of the inner window to the Fermi
energy + 2 eV for metals, or to the CBM + 2 eV for insulators, to
fully reproduce states around Fermi energy or the band edges. We
also specify the two additional parameters pmin and pmax. From our
tests, in most cases pmax = 0.95 and pmin = 0.01 already produce
very good results. However, since chemical environments vary
across different crystal structures, the two parameters are not
universal and influence the quality of band interpolation. Figure 4
shows the variation of band distances w.r.t. pmin and pmax for
several materials. For Al3V (Fig. 4a, b), η0 and η2 reach a minimum

at two different sets of parameters, i.e., pmax = 0.99, pmin = 0.01
and pmax = 0.97, pmin = 0.01, respectively. In some cases, the
variation of η w.r.t. pmax and pmin can be non-monotonic and
display multiple local minima: For instance, in Au2Ti (Fig. 4c) at
pmin = 0.01, η2 decreases from pmax = 0.90 to 0.95 but increases
from pmax = 0.95 to 0.98 and finally reaches a local minimum at
pmax = 0.99. In other cases, η can be quite stable and largely
independent of the parameters: e.g., for Ba6Ge10 (Fig. 4d), η2
reaches the same minimum for pmax = 0.99 to 0.88.
Therefore, we implement an iterative optimization workflow to

automatically find the optimal values for pmax and pmin, in order to
fully automate the Wannierization procedure. The workflow is
released as part of the aiida-wannier90-workflows package47.
First, we run a QE band structure workflow to get the reference DFT
bands for calculating η2; in addition, the DFT bands are also used to
calculate the band gap of the material. Second, we run an
optimization workflow with the following settings: The maximum
of the inner window is set to Fermi energy + 2 eV for metals and
CBM + 2 eV for insulators, respectively; pmax and pmin are set to the
defaults of 0.95 and 0.01, respectively. Third, if the average band
distance η2 is less than a threshold (set to 10 meV here), the
workflow stops; otherwise, the workflow iterates on a mesh of pmax

Fig. 3 Comparisons of silicon band structures interpolated using different methods. a DFT band structure, shown as grey lines. The colored
dots represent the projectabilities of silicon 3s (green) and 3p (red) orbitals. The size of the dot is proportional to the total projectability pmk of
the band m at k-point k. For a detailed plot of total projectability, see Supplementary Fig. 2. Comparisons of the original and the Wannier-
interpolated bands for b hydrogenic projections with ED, c SCDM, d PAO with ED, e PAO with PD, and f PAO with PD+ED. The CBM (horizontal
black dashed line) is at zero; the horizontal blue dashed line denotes the top of the inner energy window, i.e., CBM + 2 eV, where applicable.
Note in c, e, and f, the cyan lines with circle markers show the interpolated bands obtained including also 3d orbitals, and consequently
increasing the dimensionality of the disentangled manifold. These additional states are beneficial because of the presence of an intrinsic d
component at the bottom of the conduction manifold, and lead to more accurate band interpolations.
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and pmin, i.e. pmax decreasing from 0.99 to 0.80 with step size −0.01,
and pmin = 0.01 or 0.02, until η2≤ threshold. If η2 is still larger than the
threshold after exhausting all the parameter combinations, the
workflow will output the minimum-η2 calculation.

Band distance
To compare quantitatively the band interpolation quality of SCDM
and PDWF, we Wannierize the 200 structures mentioned earlier
and calculate their band distances with respect to the correspond-
ing DFT bands. We choose η2 and ηmax

2 to compare near-Fermi-
energy bands. The histograms of the band distances for the
200 structures are shown in Fig. 5. To directly compare SCDM and
PDWF, the mean and median value of η of the 200 calculations are
shown as vertical lines in each panel. For PDWF, the mean η2 is
4.231 meV, to be compared with 11.201 meV for SCDM. For ηmax

2
(that is a more stringent test of the quality of interpolation) the
PDWF method also performs better, with a ηmax

2 ¼ 36.743 meV vs.
84.011 meV for SCDM. We can also observe this trend in Fig. 5: For
η2 and ηmax

2 , the PDWF histogram bins are much more clustered
towards η= 0. Note that in the cumulative histograms of η2, at
η = 20 meV, the PDWF cumulative count is closer to the total
number of calculations (200). This indicates that the PDWF has a
higher success rate in reducing the interpolation error below 20
meV. Similarly, for ηmax

2 , PDWF has a higher success rate in
reducing the interpolation error under 100 meV (to get a better
overview of η and ηmax, we further show the same histograms of η
in a wider range 0 meV to 100 meV, and ηmax in range 0 meV to
500 meV, in Supplementary Figs. 11 and 12). To reduce the effect
of major outliers, we can also compare the interpolation accuracy
of successful calculations, i.e., excluding the outlier calculations
which have significantly large band distances. As shown in
Supplementary Table 1, the η�20

2 , i.e., the average of all the
calculations for which η2≤ 20 meV, indicates that PDWF (2.922
meV) is twice as good as SCDM (5.280 meV), and also has a higher

success rate: for η�20
2 , 193/200= 96.5% of the structures have η2≤

20 meV, while for SCDM it is 183/200= 91.5%. More details are
listed in Supplementary Table 1.
In summary, PDWF provides more accurate and robust

interpolations, especially for bands around the Fermi energy or
the band gap edges, which are the most relevant bands for many
applications. Last but not least, a higher energy range can be
accurately interpolated by increasing the number of PAOs (see
Section “Additional PAOs for high-energy/accuracy interpolation”).

MLWF centers
Since we are aiming at restoring a tight-binding atomic-orbital
picture with PDWF, we compare the distance of the WF centers
from the nearest-neighboring (NN) and next-nearest-neighboring
(NNN) atoms, again both for SCDM and PDWF. For each method,
we compute dNN and dNNN, i.e., the average distance of all the
6818 MLWFs from the respective NN and NNN atoms. If dNN is 0,
then the atomic-orbital picture is strictly preserved. However, this
is unlikely to happen since there is no constraint on the WF
centers during both the disentanglement and the localization, and
the final PDWFs, resembling atomic orbitals, are optimized
according to the chemical environment. Still, if a WF center is
much closer to the NN atom than to the NNN atom, then one can
still assign it to the NN atom, preserving the atomic-orbital picture.
Figure 6 shows the histograms for dNN and dNNN for the two
methods. The PDWF average dNN = 0.43 Å is smaller than the
SCDM dNN = 0.53 Å, and correspondingly the PDWF dNNN = 2.19 Å
is instead larger than the SCDM dNNN = 2.11 Å. This can also be
observed in Fig. 6: The overlap of the dNN and dNNN histograms is
smaller for PDWF than for SCDM. To further understand the
overlaps, we plot the histogram of the ratio dNN/dNNN of each
MLWF in the insets of Fig. 6. For a MLWF, if dNN/dNNN= 1, then the
MLWF is a bonding orbital centered between two atoms; while if
dNN/dNNN≪ 1, then it can be regarded as an (almost) atomic

Fig. 4 Quality of band interpolations: band distances for different choices of pmin and pmax. a η0 of Al3V, b η2 of Al3V, c η2 of Au2Ti, and d η2
of Ba6Ge10. Note the color scale is different for each plot.
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orbital. The histogram of the ratio of SCDM has a long tail
extending towards 1.0, i.e., there are a large number of SCDM
MLWFs sitting close to bond centers; on the contrary, the vast
majority of the PDWF MLWFs are closer to the NN atom.
We can further compare the effect of maximal localization on the

WF centers. The WFs from the projection matrices Amnk are strictly
atom-centered, i.e. dNN= 0. The inset of Supplementary Fig 13a
shows the histogram of the initial WFs, i.e., after disentanglement and
before maximal localization, and the final MLWFs, i.e., after maximal
localization, for PDWF. If one chooses dNN≤ 0.1 Å as the criterion for
atom-centered MLWFs, then 5594/6818 = 82.0% of the initial WFs
and 2045/6818 = 30.0% of the final MLWFs are atom-centered. The
disentanglement and maximal localization improve the band
interpolation, but since there is no constraint on the WF center in
the spread functional Eq. (2), many of the final MLWF centers are not
atom-centered. As a comparison, for SCDM, 955/6818 = 14.0% of the
initial WFs and 1823/6818 = 26.7% of the final MLWFs are atom-
centered. For completeness, the statistics and histograms of initial
and final dNN, dNNN, and dNN/dNNN are shown in Supplementary Table
2 and Supplementary Fig. 13.

In summary, for PDWF, most of the initial WFs (after
disentanglement and before maximal localization) are atom-
centered; many drift a bit away from atom centers during the
localization, but the MLWFs are still much closer to the NN than to
NNN atoms. For SCDM, most of the initial WFs are away from atom
centers, and maximal localization pushes some of the WFs back to
atoms, but there is still a large number of MLWFs for which an
atom representing the WF center cannot be clearly identified. To
exactly fix the MLWFs to atomic positions, one needs to add
constraints to the spread functional16, at the cost of potentially
having worse interpolators. However, this is beyond the scope of
the current work, and here we rely on the atom-centered PAO
projectors to guide the MLWFs towards the atomic positions, so
that the final MLWFs are optimally localized and atom-centered.

MLWF spreads
Next, we investigate the spread distributions of SCDM and PDWF.
Usually, we want localized MLWFs to restore the TB atomic
orbitals. Figure 7 shows the histograms of the spread distributions

Fig. 5 Histogram (red) and cumulative histogram (blue) of the band distances η2 and ηmax
2 for 200 reference structures. a η2 of PDWF, b η2

of SCDM, c ηmax
2 of PDWF, and d ηmax

2 of SCDM. The orange (green) vertical line is the mean (median) of the band distance for the
200 structures; their values are shown in the right of each panel; PDWF provides approximately an improvement by a factor of 3.
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for the two methods. The SCDM spreads have a long tail
extending over 10 Å2 in Fig. 7b, due to its inclusion of free-
electron states in the density matrix, thus resulting in more
delocalized MLWFs as discussed earlier (see e.g. Fig. 2). On the
contrary, the PDWF selects and freezes atomic-orbital states from
the remaining bands, leading to much more localized MLWFs, thus
much more clustered in a narrow range of 0 Å2 to 4 Å2, and
already at 5 Å2 the cumulative histogram almost reaches the total
number of MLWFs (see Fig. 7a). This can be interpreted as follows:
The PAO initial projections guide the spread minimization toward
the (local) minimum resembling spherical harmonics, whereas the
SCDM-decomposed basis vectors are designed to be mathema-
tical objects spanning as much as possible the density matrix, but
result in WFs for which it is harder to assign definite orbital
characters.
We can further compare the average initial (after disen-

tanglement but before maximal localization) and final (after
disentanglement and maximal localization) spreads between

the two methods, as shown in Supplementary Table 3 and
corresponding histograms in Supplementary Fig. 14. Maximal
localization is needed to bring SCDM spreads, from the initial Ωi

= 30.82 Å2 to the final Ωf = 3.54 Å2 ; For PDWF, the initial Ωi =
2.72 Å2 is already quite localized, and much better than the final
Ωf for SCDM; localization then brings it to an optimal Ωf =
1.41 Å2.

Hamiltonian decay
Finally, we compare the decay length of the Wannier gauge
Hamiltonian between the two methods in Fig. 8. Thanks to the
localization of MLWFs, the expectation values of quantum
mechanical operators in the MLWF basis, such as the Hamiltonian
H(R), decay rapidly with respect to the lattice vector R
(exponentially in insulators48,49 and properly disentangled metals).
To compare this decay for the Hamiltonian matrix elements, we

Fig. 6 Histogram of the distances of the WF centers from the NN atom (red, dNN) and NNN atom (green, dNNN), for 200 reference
structures. a PDWF and b SCDM. The inset of each panel shows the histogram of the ratio of dNN/dNNN. The numbers in the lower right of each
inset are the averages over all the 6818 MLWFs; PDWF provides MLWFs that are both closer to the NN atom and further away from the
NNN atom.
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approximate the Frobenius norm of the Hamiltonian as

HðRÞk k ¼ Hð0Þk k exp � Rk k
τ

� �
; (8)

where τ measures the decay length. Then τ is fitted by least
squares to the calculated HðRÞk k; as shown in Fig. 8a, the
Hamiltonian of PDWF decays faster than SCDM for Br2Ti, which is
selected here to represent the general trend between PDWF and
SCDM Hamiltonians. Figure 8b shows the histogram of τ for the
200 materials; the mean τ are 2.266 Å for PDWF and 2.659 Å for
SCDM, respectively, indicating that the PDWF Hamiltonian decays
faster than SCDM, consistent with the better band interpolation of
PDWF discussed in Fig. 5.

High-throughput Wannierization
Based on the above verification, we run a HT Wannierization using
PDWF for 21,737 materials, selected from the non-magnetic
materials of the MC3D database36. Figure 9 shows the band
distance histograms for η2 and ηmax

2 . Overall, the statistics follow
the same trend as the 200 materials set in Fig. 5: the average η2
and average ηmax

2 are 3.685 meV and 42.768 meV, respectively.
Note in Fig. 9a the η2 is not truncated at 10 meV, but rather due to
the automated optimization workflow: results that have η2 larger
than a threshold (10 meV) are further optimized with respect to
pmin and pmax, thus improving the average band distance η2. In
Supplementary Table 4 we show several other statistics for the
band distances. The accurate interpolation quality of PDWF can be
assessed, for instance, from the number of systems with η2≤ 20
meV, that are ≈ 97.8% of all the calculations (21259/21737); the
corresponding band distance calculated on these 21259 calcula-
tions is η�20

2 = 2.118 meV. This remarkable result show how
automated and reliable Wannierizations can now be deployed
automatically both for individual calculation and for HT
application.

Additional PAOs for high-energy/accuracy interpolation
Based on the HT Wannierization results, one can identify cases
where the interpolation quality can be further improved by
increasing the number of PAOs. Typically, the number of PAOs is
determined during pseudopotential generation, and they are
usually the orbitals describing low-energy valence electrons. In
some cases, the bonding/anti-bonding combinations of these
PAOs are not sufficient to span the space of target conduction
bands, leading to a loss of interpolation quality. We use silicon as
an example to illustrate the difficulties of accurately describing its
CBM50, which is not located at any high-symmetry k-point, but
along the Γ− X line. The common choice of one s and three p
hydrogenic or PAOs projectors per atom results in oscillations in
the Wannier-interpolated bands at the meV level. To remedy this,
one can use a larger set of PAOs, e.g., by regenerating a silicon
pseudopotential including d PAOs as discussed in Section
“Comparisons of four prototypical materials” for silicon. However,
generating a new pseudopotential requires extensive testing and
validation, therefore another solution could be using a set of PAOs
different from the pseudopotential ones. To compare this second
approach, we test here also PAOs obtained from the OpenMX
code44, and Wannierize silicon using one s, three p, and five d
PAOs per atom using ED. This provides a much better description
of the CBM, as shown in Supplementary Fig. 17 Moreover, the
additional d orbitals allow to raise the inner energy window and
better reproduce a larger number of conduction bands, as shown
in Supplementary Fig. 18, which might be beneficial for some
applications. For completeness, we also show the WF spreads and
shapes of d orbitals in Supplementary Fig. 19. However, there are
some caveats to this approach. When using external PAOs, ideally
one should generate them using the same pseudization scheme
as the pseudopotentials used in the DFT calculations. The PAOs
from OpenMX are instead generated using a different scheme,
resulting in lower projectabilities (smaller than one even for the
valence bands, as shown in Supplementary Fig. 21). In such case,

Fig. 7 Histogram (red) and cumulative histogram (blue) of WF spreads for 200 reference structures. a PDWF and b SCDM. The orange
(green) vertical line is the mean (median) spread of the 6818 MLWFs, their values are shown in the right of each panel. The long tail of MLWF
spreads obtained with SCDM is absent in PDWF.
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PD cannot reproduce the original bands (see Supplementary Fig.
20b), thus ED (with a higher inner energy window) is needed to
obtain accurate interpolation (see Supplementary Fig. 18d). In
comparison, the pseudopotential PAOs which we regenerated
with 3d orbitals (as discussed in Section “Comparisons of four
prototypical materials” for silicon) are better projectors for the
wavefunctions. Indeed, the first 12 bands have projectabilities
almost equal to 1, and as a consequence PD itself already provides
accurate band interpolation (all the low-energy conduction states
are frozen since their projectabilities are high, see Supplementary
Fig. 20a). Moreover, we mention that when adding additional
projectors one needs to make sure that they have the correct
number of radial nodes: e.g., the gold pseudopotential from
SSSP46 contains 5s+ 5p semicore states, and 6s+ 5d orbitals for
valence electrons. If one wants to add an additional 6p orbital, it is
important to ensure that the 6p orbital has one radial node, such
that it is orthogonal to the nodeless 5p semicore state; Otherwise,
the Bloch wavefunctions would project onto the 5p semicore
state, and PD would only disentangle the 5p semicore states
instead of the 6p orbitals contributing to bands above the Fermi
energy. In summary, including more projectors can further
improve the interpolation quality, but at the expense of increasing
the number of orbitals in the model. The combination of PD and
ED enables to improve the interpolation quality of low-

projectability states while keeping the TB model size small.
Automatic checks could be implemented in the future in the
AiiDA workflows to detect whether the projectability drops
below a certain threshold, and in that case either raise a warning
or automatically add more projectors.

DISCUSSIONS
We present an automated method for the automated, robust, and
reliable construction of tight-binding models based on MLWFs.
The approach applies equally well to metals, insulators and
semiconductors, providing in all cases atomic-like orbitals that
span both the occupied states, and the empty ones whose
character remains orbital-like and and not free-electron-like. The
method is based on the band projectability onto pseudo-atomic
orbitals to select which states are kept identically, dropped, or
passed on to the established disentanglement procedure. We
augment such projectability-based selection with an additional
energy window to guarantee that all states around the Fermi level
or the conduction band edge are well reproduced, showing that
such a combination enables accurate interpolation even when
minimal sets of initial atomic orbitals are chosen. This results in
compact Wannier tight-binding models that provide accurate
band interpolations while preserving the picture of atomic orbitals

Fig. 8 Exponential decay of the Hamiltonian H(R) in the basis of MLWFs. a Exponential-form fitting of Frobenius norm of the Hamiltonian
HðRÞk k w.r.t. to the 2-norm of lattice vector Rk k for the case of Br2Ti, for PDWF (red) and SCDM (blue). The τ reported are the fitted decay
lengths of the PDWF and SCDM Hamiltonians, respectively. b Histogram of decay lengths τ for the 200 reference materials, obtained using
PDWF (red) and SCDM (blue). The vertical lines indicate the mean τ of PDWF and SCDM, respectively.
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in crystals. We refer to the method collectively as projectability-
disentangled Wannier functions (PDWF).
The Wannierization process is implemented as fully automated

AiiDA workflows. We compare PDWFs with the other method
that is also fully automated, namely SCDM. We show with a
detailed study of 200 structures that PDWFs lead to more accurate
band interpolations (with errors with respect to the original bands
at the meV scale), and are more atom-centered and more localized
than those originating from SCDM. The high accuracy in band
interpolations, the target atomic orbitals obtained, and the low
computational cost make PDWFs an ideal choice for automated or
high-throughput Wannierization, which we demonstrate by
performing the Wannierization of 21,737 non-magnetic structures
from the Materials Cloud MC3D database.

METHODS
Code implementation
We implement the PAO projection in the pw2wannier90.x
executable inside Quantum ESPRESSO (QE)42,51; the PD and PD
+ED methods are implemented on top of the Wannier90 code4.
In terms of the practical implementation, computing PAO
projections is more efficient in both computational time and
memory than the SCDM QR decomposition with column pivoting
(QRCP) algorithm, since the Amnk matrices (i.e., the inner products
of Bloch wavefunctions with PAOs) can be evaluated in the plane-
wave G vector space, rather than requiring a Fourier transform and
decomposition of very large real-space wavefunction matrices.
Furthermore, since the HT Wannierization can be computationally
intensive, we implement a “k-pool parallelization strategy” inside
pw2wannier90.x, similarly to the main pw.x code of QE, to
efficiently utilize many-core architectures by parallelizing over
“pools” of processors for the almost trivially-parallel computations
at each k-point. Test results show that k− pool parallelization

significantly improves the efficiency of pw2wannier90.x
(benchmarks are shown in Supplementary Fig. 10).

DFT calculations
The DFT calculations are carried out using QE, with the SSSP
efficiency (version 1.1, PBE functional) library46 for pseudopoten-
tials and its recommended energy cutoffs. The HT calculations are
managed with the AiiDA infrastructure33–35 which submits QE
and Wannier90 calculations to remote clusters, parses, and
stores the results into a database, while also orchestrating all
sequences of simulations and workflows. The automated AiiDA
workflows are open-source and hosted on GitHub47. The
workflows accept a crystal structure as input and provide the
Wannier-interpolated band structure, the real-space MLWFs, and a
number of additional quantities as output. Semicore states from
pseudopotentials are automatically detected and excluded from
the Wannierizations, except for a few cases where some semicore
states overlap with valence states; in such cases, all the semicore
states are Wannierized, otherwise the band interpolation quality
would be degraded, especially for SCDM. A regular k-point mesh is
used for the Wannier calculations, with a k-point spacing of
0.2 Å−1, as selected by the protocol in ref. 30.

Visualizations
MLWFs are rendered with VESTA52. Figures are generated by
matplotlib53.

DATA AVAILABILITY
All data generated for this work can be obtained from the Materials Cloud Archive
(https://doi.org/10.24435/materialscloud:v4-e9).

Fig. 9 Histogram (red) and cumulative histogram (blue) of the PDWF band distances for 21,737 non-magnetic structures obtained from
the Materials Cloud MC3D database36. a Average band distance η2 and b max band distance ηmax

2 . The orange (green) vertical line is the
mean (median) of the band distance for the 21,737 structures; their values are shown in the right of each panel.
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CODE AVAILABILITY
All codes used for this work are open-source; the latest stable versions can be
downloaded at http://www.wannier.org/, https://www.quantum-espresso.org/,
https://www.aiida.net/, and https://github.com/aiidateam/aiida-wannier90-
workflows. The modifications to the codes mentioned above implemented for this
work will become available in the next releases of Quantum ESPRESSO
(pw2wannier90.x) and Wannier90.
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