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Alloy synthesis and processing by semi-supervised text mining
Weiren Wang1, Xue Jiang 2,3✉, Shaohan Tian 1, Pei Liu1,4,5, Turab Lookman 1,6✉, Yanjing Su 1✉ and Jianxin Xie1

Alloy synthesis and processing determine the design of alloys with desired microstructure and properties. However, using data
science to identify optimal synthesis-design routes from a specified set of starting materials has been limited by large-scale data
acquisition. Text mining has made it possible to convert scientific text into structured data collections. Still, the complexity,
diversity, and flexibility of synthesis and processing expressions, and the lack of annotated corpora with a gold standard severely
hinder accurate and efficient extraction. Here we introduce a semi-supervised text mining method to extract the parameters
corresponding to the sequence of actions of synthesis and processing. We automatically extract a total of 9853 superalloy synthesis
and processing actions with chemical compositions from a corpus of 16,604 superalloy articles published up to 2022. These have
then been used to capture an explicitly expressed synthesis factor for predicting γ′ phase coarsening. The synthesis factor derived
from text mining significantly improves the performance of the data-driven γ′ size prediction model. The method thus
complements the use of data-driven approaches in the search for relationships between synthesis and structures.

npj Computational Materials           (2023) 9:183 ; https://doi.org/10.1038/s41524-023-01138-w

INTRODUCTION
The discovery of materials with targeted properties requires a
seamless, integrated approach combining experiments, theory,
and computations. The paradigm of Composition-Synthesis/
Processing-Structure-Property-Performance1,2 often serves as a
guide to exploration towards this task. The challenge in discovery
is that the large materials space consists of innumerable
combinations of components and structures, which is strongly
determined by the potentially synthesized route1. Over the last
few years, machine learning (ML) has guided the search for new
materials using a data-driven approach3–8. For example, materials
synthesis is beginning to see dramatic improvements in
efficiencies due to the integration of ML capabilities and robotic
control of synthetic planning and automated experiments for flow
reactors, photovoltaic films, organic synthesis and perovskites by
mobile robotics9–14. However, the design of alloys with desired
properties requires not only dealing with increasing chemical and
structural complexity, but also a myriad of processing routes. The
materials space is just too vast for today’s synthesis capabilities.
Hence, our focus here is to use data science to identify optimal
synthesis-design routes to produce a desired alloy from a specified
set of starting materials15,16.
Early approaches towards materials data extraction from

scientific articles have essentially been manual in nature17. The
dramatic development of text mining and natural language
processing (NLP) techniques have made it possible to convert
scientific text into ML-oriented data collections18–20. Recently, NLP
pipelines for automatic data extraction from journal articles of
chemical composition and properties of organic and inorganic
chemical compounds, as well as super and aluminum alloys have
been introduced19,21–25. Alloy synthesis and processing informa-
tion are usually described in the form of continuous events, and
the actions are sequentially dependent. There are various types of
actions, flexible expressions, and different conditions and

parameters, and meanwhile, continuous synthesis and processing
events are often mixed with a large number of discussions on
experimental phenomena and intermediate products, which bring
great challenges to actions and parameters extraction. Never-
theless, mature, deep learning (DL) provides powerful capabilities
to analyze unstructured data and identify features automatically.
The well-documented libraries make use of DL more accessible.
Kim et al. labeled 20 articles (~5200 words) on oxide materials and
trained a neural network to recognize synthesis parameters with
an F1 score of 81%18. Kononova et al. manually annotated the
operation entities from 834 solid-state synthesis paragraphs of 750
papers and trained a bidirectional long short-term memory
(BiLSTM) network with a conditional random field (CRF) layer
(BiLSTM-CRF) model with an F1 score of 90%26. Huo et al.
designed a qualitative topic extraction method related to
experimental protocols rather than recognizing detailed proces-
sing parameters. They clustered the sentences into topics and
then trained a classification model to predict the latent topics of
unseen experimental sentences with an F1 score above 90%27.
Despite numerous advantages, a DL model uses a few thousand to
millions of parameters. To train a DL-based NLP named entity
recognition (NER) and information extraction (IE) model requires
many high-quality annotations. For alloys with structures and
properties strongly determined by synthesis and processing
routes, the limited amount of corpus and lack of high-quality
annotations severely hinder accurate and efficient extraction.
As a core material for the most advanced aero engines and

industrial gas turbines, the synthesis and processing of superalloys
impacts their design with desired microstructure and proper-
ties28–31. We previously introduced an NLP pipeline to capture
both chemical compositions and property data from 14425 articles
published before 2020 on superalloys25. A rule-based NER method
and a distance-based heuristic IE were proposed to overcome the
drawback of a limited set of labeled corpora guaranteeing high
precision and recall simultaneously. Under such conditions, the

1Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 100083
Beijing, China. 2Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, 100083 Beijing, China. 3Liaoning Academy of
Materials, Shenyang 110000 Liaoning, China. 4Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron & Steel Research Institute, 100081 Beijing, China.
5Beijing GAONA Materials & Technology Co., LTD, 100081 Beijing, China. 6AiMaterials Research LLC, Santa Fe, NM 87501, USA. ✉email: jiangxue@ustb.edu.cn;
turablookman@gmail.com; yjsu@ustb.edu.cn

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01138-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01138-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01138-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01138-w&domain=pdf
http://orcid.org/0000-0001-7441-0828
http://orcid.org/0000-0001-7441-0828
http://orcid.org/0000-0001-7441-0828
http://orcid.org/0000-0001-7441-0828
http://orcid.org/0000-0001-7441-0828
http://orcid.org/0000-0002-6190-4981
http://orcid.org/0000-0002-6190-4981
http://orcid.org/0000-0002-6190-4981
http://orcid.org/0000-0002-6190-4981
http://orcid.org/0000-0002-6190-4981
http://orcid.org/0000-0001-8122-5671
http://orcid.org/0000-0001-8122-5671
http://orcid.org/0000-0001-8122-5671
http://orcid.org/0000-0001-8122-5671
http://orcid.org/0000-0001-8122-5671
http://orcid.org/0000-0003-2773-4015
http://orcid.org/0000-0003-2773-4015
http://orcid.org/0000-0003-2773-4015
http://orcid.org/0000-0003-2773-4015
http://orcid.org/0000-0003-2773-4015
https://doi.org/10.1038/s41524-023-01138-w
mailto:jiangxue@ustb.edu.cn
mailto:turablookman@gmail.com
mailto:yjsu@ustb.edu.cn
www.nature.com/npjcompumats


rule-based method is efficient compared to a DL model due to the
relatively low diversity of entity categories which can be handled
well by human expertise. However, the entity categories and their
relationships to synthesis and processing information are more
complex and flexible in formation so that a rule-based method
can become cumbersome and expensive. Thus, supervised DL
typically requires labeling a large but expensive corpus, as well
relabeling the corpus when IE is oriented to a new field. The rule-
based strategies require undue human intervention to get started.
We therefore employ semi-supervised intuition in this work to
leverage a relatively small amount of labeled and large amount of
unlabeled data to bolster model performance.
We introduce a semi-supervised text mining method to

extract the parameters corresponding to the sequence of
actions of synthesis and processing from a corpus. This makes it
possible with less domain-specific experience and corpus
annotation to achieve relatively high IE performance for
superalloy synthesis and processing, that is, we extract details
of the synthesis process. A semi-supervised recommendation
algorithm for token-level action and a multi-level bootstrapping
algorithm for chunk-level actions are developed for a small
corpus with few annotations so that a small number of seeds
are required to initiate the learning process. The F1 score of
action entity recognition reaches 89.28%, much higher than the
74.95% achieved via the BiLSTM-CRF model. In total,
9,853 superalloy synthesis and processing actions with chemi-
cal compositions are automatically extracted from a corpus of
16,604 superalloy articles from Elsevier and other publishers.
To evaluate the accuracy and diversity of the extracted

results, we visualized the data from multiple perspectives to
distill scientific insights. We analyzed superalloy synthesis
processes to determine which are of wide current interest,
and we show how temperatures for solution and aging
treatments are correlated. We also determined the transition
probabilities from one action to another in a given synthesis
process. A superalloy synthesis factor combining solution
temperature (Sc), aging temperature (Ac) and aging time (At),
in form of (At*Sc0.5)0.5+ Ac, is inferred by symbolic regression
(SR), illustrating a positive correlation with γ′ phase coarsening.
This synthesis factor derived from text mining significantly
improves the performance of the data-driven γ′ size prediction
model on the superalloys reported subsequently in 2023 and
which we synthesized. Thus, semi-supervised text mining
enables us to complement data-driven approaches for under-
standing relationships between synthesis and structures.

RESULTS
Extraction strategy
The core stages of our automated text mining pipeline for
superalloys synthesis and processing involves action dictionary
generation, NER, and dependency parsing, in addition to several
necessary NLP stages such as article retrieval and preprocessing,
paragraph classification, table parsing, and interdependency
resolution. The schematic overview of the synthesis extraction is
shown in Fig. 1. For scientific article retrieval and preprocessing,
the raw archived corpus was parsed and organized in paragraphs.
After paragraph classification, the paragraphs related to the
concrete synthesis procedures were automatically selected. Action
dictionary generation can generate token-level and chunk-level
synthesis actions semi-automatically. NER methods are designed
to recognize the action entities based on the generated dictionary.
Dependency parsing establishes specific tuple relationships for
actions and parameters in terms of latent semantics, and
interdependency resolution resolves the linkage between chemi-
cal composition of mentioned samples and their actions in the
specific synthesis process. Finally, the extracted superalloy
synthesis information containing the article digital object identifier
(DOI), sample composition, synthesis action sequence with
parameters is automatically compiled into a structured (Comma-
Separated Values, CSV) and semi-structured (JavaScript Object
Notation, JSON) format to form a materials database for reuse.

Semi-supervised action dictionary generation
It is usual for target entities to be recognized by DL models
trained on large corpora with hundreds of thousands of tokens.
This requires accurate labels for each category of entity and
appropriate annotation strategy for different types of cor-
pus26,32. There are thousands of synthesis and processing
superalloy actions discussed in the superalloy literature,
although the number of articles is only about 16,000. The
synthesis and processing actions in superalloy corpora are
described in token-level and chunk-level entities depending on
the phrase length, in contrast to chemical synthesis where
mainly token-level action entities are involved. Moreover,
according to the position of action in the superalloy process
routine, the description for the same action is also different, for
example, aging treatment may exist in diverse forms such as
primary aging, secondary aging, etc. This introduces further
challenges in the manual fine labeling of entities. We therefore
propose a semi-supervised method to allow for a rapid startup
by generating a complete process action dictionary based on
the literature corpus for further action entity recognition, which

Fig. 1 The schematic overview of synthesis extraction.
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only needs to provide a small number of seed actions based on
experience to go with the few rounds of manual checks. Table 1
gives some examples for token-level and chunk-level action
entities with their Part-of-Speech (POS) and syntactic templates.
Token-level action entities mainly involve nouns and verbs,
whereas chunk-level entities belong to noun and verb phrases.
The proposed semi-supervised action dictionary generation

method is shown in Fig. 2. The token-level entity recommendation
algorithm (left) involves four stages of candidate generation, seed
preparation, similar words recommendation, similarity voting and
expert screening. The multi-level bootstrapping algorithm for
chunk-level action (right) comprises the stages of candidate
generation, seed preparation, pattern extraction, pattern ranking
and action selection.

Token-level action recommendation algorithm
Candidate entities, starting seeds, and two pre-trained embedding
models are required before execution of the token-level action
recommendation algorithm. The candidate entities can provide
the largest collection of potential actions according to the POS of
the token entity, the syntactic template of its pre-context and
post-context from all positive paragraphs, illustrated in Table 1. As
for starting seeds, the more seeds provided initially, the fewer
iterations of the algorithm, but the overall generated dictionary
size remains the same. Here only 20 seeds are provided by experts
to start our algorithm. The token-level starting seeds are further
used to obtain similar words based on the word embedding
models Word2Vec and FastText. These were initially pre-trained on
approximately 16,000 unlabeled full-text superalloy articles and

Table 1. Examples for the parsing grammar of token-level and chunk-level action entities.

Category Entity POS Syntactic templates Examples

Token-level VB VB[DNP]\sTO <action> … and allowed to soak for …

VBD/VBN/JJ VB[DNP][\sRB]* <action> … were mechanically ground …

VBG VB[DN]\sIN <action> … followed by aging at …

Chunk-level NP/VP NP\sVB[GZ] <action> … sample was solution treated …

NP/VP VB[DGN]\sIN <action> … prepared by vacuum induction melting …

NP VB[DGN]\sTO <action> … subject to a solution heat treatment …

NP/VP IN\sNN\sIN <action> … by method of directional solidification …

NP <action> VBD\sVBN … solution heat treatment was performed on …

Fig. 2 Schematic workflow of the semi-supervised action dictionary generation method. The left flowchart shows the token-level action
recommendation algorithm, and the right shows the multi-level bootstrapping algorithm for chunk-level actions. Eventually the generated
token- and chunk-level entities are merged into the action dictionary. Tags shown: NN = noun, CD = cardinal number, VBG = verb (present
participle or gerund), VBD = verb (past tense), VBN = verb (past participle), IN = preposition, JJ = adjective, TO (preposition or infinitive
marker).
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used for calculating the cosine similarity between the candidate
entity and starting seed. Word2vec helps find the most similar
syntactic and semantic words, and FastText constructs word
embeddings from character-level n-gram representations to find
words with greater morphological similarity33–36. The details of
word embedding models can be found in Method. Following the
recommendation of similar entities, a voting process is performed
to obtain action entities with high confidence. In this process, a
seed is considered to have voted for the entity if the similarity by
Word2vec between the candidate entity and the seed is higher
than the threshold w, or if the similarity by FastText between the
candidate entity and seed is higher than fw. The thresholds w and
fw need to be optimized during the application of the algorithm.
This affects the recommended precision and number of new
generated actions in each iteration. Thus, these two parameters
are adjusted to trade-off a balance. The parameter optimization
for w and fw in the semi-supervised token-level action entity
recommendation algorithm can be found in Supplementary Fig. 1.
As w and fw increase, the size of the generated dictionary gets
smaller, and the recommended precision gets higher. When w is
equal to 0.46, there are 697 recommended tokens with little
manual intervention. When fw is equal to 0.7, the recommended
number and precision are both high.
Entities that receive more than 2 votes and belong to a

candidate is selected and passed to the expert for manual
screening. The entities screened out by the expert are added back
to the seeds and participate in the next iteration. If there is no new
action entity generated and passed to the expert, the iteration will
end. The pseudocode of the token-level actions generated
algorithm is shown in Supplementary Fig. 2. The final generated
dictionary for token-level actions contains 717 action entities
(including 20 starting seeds and recommended actions) and is
used for the subsequent action entity recognition.

The multi-level bootstrapping algorithm for chunk-level
actions
The original multi-level bootstrapping algorithm was published by
Ellen to generate a dictionary for noun phrases, such as the names
of people, companies, or locations37,38. We first extend this multi-
level bootstrapping algorithm to generate suitable noun and verb
phrases for synthesis and processing action entities. Moreover, the
original algorithm assigns scores to entities according to the type
of pattern, not taking the extraction frequency of each entity into
consideration, so that it is hard to distinguish different entities
obtained from the same pattern. We improve this multi-level
bootstrapping algorithm to generate both the collection of chunk-
level action entities and patterns simultaneously and optimize the
entity confidence score method. The modified multi-level boot-
strapping algorithm for chunk-level actions (Fig. 2 right workflow)
also starts with candidate generation and seed preparation. The
candidate chunk-level entities, which are generated by the POS of
chunk-level actions and the syntactic template of its pre-context
and post-context in Table 1, can provide the largest collection of
potential actions in the action selection stage. The starting seeds
are provided by experts and contain both noun and verb phrases,
here 20 seeds picked from 5 articles were manually provided.
A pattern is the word sequence in front of or behind the seed

entity, and it is the most important contextual feature for chunk-
level action generation. Pattern extraction is designed to find all
patterns that have a co-occurrence constraint with seeds and, also
consistent with the syntactic template. The corresponding
sentence that contains the seed is divided into three parts:
“before”, the seed, and “after”. The “before” is a sequence of
tokens located in front of the seed entity and the “after” is a
sequence of tokens behind the seed. The parameter of window_-
size is used to control the “before” and “after” size and depends on
the length of the syntactic templates. For example, the

window_size of syntactic template IN\sNN\sIN is 3 and that of
VB[DNP]\sTO is 2. If the POS of a “before” or “after” matches any
customized syntactic template, the corresponding “before” or
“after” sequence will be added to the set of patterns. The patterns
are obtained when all the sentences that contain seeds are
traversed during an iteration.
Pattern ranking recommends the best pattern amongst all

patterns after pattern extraction. During each iteration, the
confidence associated with the pattern is calculated with Eq. (1)
and Eq. (2)37,38, where Patterni stands for the i-th pattern, Fi is the
number of unique seeds hit by Patterni, Ni is the total number of
unique chunk-level entities that Patterni can extract, Ri represents
the precision (probability) of the pattern to extract relevant
information and Score Patternið Þ balances the reliability (Ri) and
frequency (Fi).

Ri ¼ Fi=Ni (1)

ScoreðPatterniÞ ¼ Ri � log2Fi (2)

The best pattern with the highest confidence score will then be
added to the semantic lexicon. The Supplementary Table 1 shows
the best patterns in the first 6 iterations of mutual bootstrapping.
After pattern ranking, the patterns in the semantic lexicon are

then used to select optimal chunk-level actions. From a probability
perspective, an entity that is hit by more patterns will be more
likely to be an action entity. Therefore, anther confidence score,
Score Entityið Þ, is defined to reflect the frequentist likelihood that a
candidate chunk-level entity is extracted by patterns in the
semantic lexicon, shown in below equation.

Score Entityið Þ ¼
XNi

k¼1

ð1þ Score Patternkð Þ þ k � CountseedÞ (3)

where Ni is the number of patterns in the semantic lexicon that
can successfully extract the entity. For each pattern, Countseed is
the number of seeds that can match the pattern. The k is the
weight of Countseed and affects the number and precision of
recommended entities in each iteration. This also requires to be
optimized to get a better token dictionary with higher accuracy
and a larger size. The Score Patternkð Þ can be calculated using Eq.
(2). The entity with the highest score is then likely to be selected.
Whether the entity with the highest score can eventually be

added back to the seeds depends on the following constraints: a
minimum confidence threshold, Tc, for action selection, with the
entity satisfying the criteria score ≥ Tc, and the new entity is
lemmatized and added back to the seeds for next iteration. If the
highest Score Entityið Þ in an iteration falls below Tc, the iteration
ends. The parameter optimization for Tc and k in the multi-level
bootstrapping algorithm can be found in Supplementary Fig. 3.
When Tc= 2 and k= 1, the recommended number and precision
of chunk-level actions are both high. The pseudocode of the multi-
level bootstrapping algorithm is shown in Supplementary Fig. 4.
The above semi-supervised recommendation algorithm and

multi-level bootstrapping algorithm for token-level and chunk-
level actions generation were applied to a total of 14487 target
paragraphs classified from approximately 16,000 articles, and 697
new token-level action entities (except for the 20 initial seeds) and
the 1199 chunk-level action captured entities were compiled into
the action dictionary.

Named entity recognition
The above generated action dictionary can be further used for
NER of the synthesis and processing actions in the superalloy
corpus. Fig. 3 shows the action NER workflow by POS tagging, POS
screening, and relaxed matching. The input sentence is parsed by
POS tagging to identify all verbs, NPs, VPs, and their contexts, and
the tagging results are the input into the POS screening to
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recognize the entities that meet the contextual POS rules and
have a similar context with actions in dictionary, as demonstrated
during semi-supervised action dictionary generation. As the same
action is usually expressed in various formats, such as “aged”,
“aging treatment”, and “two-step aging”, a relaxed match strategy
is particularly useful in recognizing more latent entities during
NER. If the entity after POS screening matches part of the chunk-
level actions or comprises the token-level actions in the generated
dictionary, it will be recognized as an action entity.
In addition to action entities, the synthesis parameters with

units are also important for synthesis and processing. We use
regular expressions to recognize these entities as reported
previously25. We also compared our action entity extraction
method with the BiLSTM-CRF model. The action NER was validated
on 348 sentences (approximately 8800 words) randomly selected
from 1308 sentences used in the BiLSTM-CRF model. The obtained
precision, recall, and F1 score are listed in Table 2. Compared the
BiLSTM-CRF model, our proposed semi-supervised method per-
forms better, including the token-level and chunk-level entities.
The details of BiLSTM-CRF and its results can be found in Method
and Supplementary Table 2.

Dependency parsing
Dependency parsing aims to solve linkage between the action
entity and its parameters. Here we infer the structural and
semantic relation for each action entity and construct the parsing
tree based on the dependence grammar39. The edge with a tag in
the parsing tree represents the dependent relation between the
starting point entity and its subordinate entity. The tag in the
directed edge represents the syntactic role in the dependent
relations. As shown in Fig. 4, after NER, the sentence can be parsed
into subject, action, and parameter entities. According to the

entity category and its POS, the original action and parameter
entity need to be replaced in a more normalized format to help
capture the structural and semantic relations accurately. The
replacement follows the rules: for entities with POS of VBN or VBD,
the entity is replaced by the form “id”+“Ved” such as “1Ved”. The
“id” refers to the order in which it appears in the sentence. The
VBG entity is replaced by “id”+“Ving”, such as “2Ving”. For the NP
entity, the format is “id”+“NP”, i.e. “1NP”.
After preprocessing, the sentence is parsed to obtain a

dependency parse tree and three-tuple relations among entities
using the Stanford CoreNLP package40. Amongst all types of
relations, Nsubj is defined as the relation from a subject to a verb,
which represents the relation from sample to action when the
verb belongs to the action entity. Obl is defined as the relation
from an object to a verb, which represents the relation from
parameter to action when the verb belongs to the action entity
and the object belongs to the parameter entity. This matching rule
is used to interpret the dependency parsing results of the
sentence and yield three-tuples with the target entity.
In total, we have captured 55206 actions from 16,604 superalloy

articles. There are 13,211 actions that can be related to concrete
synthesis parameters. The precision, recall, and F1 score for
actions are shown in Table 3, which were manually validated on
30 randomly sampled articles. For each paragraph, the captured
action tuples with parameters can be linked as action sequence,
such as <arc melted→homogenized→rolled→solutioned (1250 °C,
5 h)→air cool→aged (1000 °C, 3 h)→air cool > .
The concrete chemical composition information for each

sample was obtained from tables by our SuperalloyDigger
pipeline25. From the ~16,000 articles, we automatically extracted
a total of 20,368 chemical composition instances. We performed
interdependency resolution to map the composition of samples
with the synthesis and processing routine (see Interdependency
resolution in “Method”). In total, we merged 9853 complete
records with composition and synthesis actions with parameters
from 20,368 composition instances and 13,211 instances with
actions and parameters.

DISCUSSION
The proposed semi-supervised extraction and tree-based depen-
dency parsing capture synthesis and processing information of
superalloys by overcoming the drawbacks of limited corpus labels.
We now evaluate the extracted results, including visualize the data
to glean scientific insights.
We first visualize the coverage and diversity of the extraction

results from the perspective of time and action category. The
heatmap (Fig. 5) represents the frequency of various actions such
as quenching, aging, cutting, solution treatment and cooling as a
function of year from 2004 to 2021. For each category (the row in
Fig. 5), there are multiple subdivisions of synthesis actions such as
“investment casting”, “ingot casting” and “single crystal casting” in
casting category. Our semi-supervised text mining method can
capture expressions corresponding to such diverse action
information. We can also see there has been increasing activity
in superalloy technologies since 2013 and greater emphasis in
time on actions employing quenching, aging, cutting, solution

Table 2. Precision, recall, and F1 score of the action NER by our work and BiLSTM-CRF.

Category Precision Recall F1 score Validated on

Action Our work 90.58% 88.03% 89.28% 348 sentences

BiLSTM-CRF 77.02% 72.98% 74.95% 1308 sentences (fivefold cross validation)

Parameter (with unit) Our work 98.49% 94.91% 96.67% 348 sentences

BiLSTM-CRF 94.11% 80.85% 86.98% 1308 sentences (fivefold cross validation)

Fig. 3 NER for action entities by POS tagging, POS screening, and
relaxed match.
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treatment, cooling and polishing. Heat treatments impact phase
morphology and mechanical properties of superalloys, and the
choice of appropriate treatment is still widely studied as it governs
the size and shape of microstructures and properties such as
strength, hardness, and ductility.
Temperature is critical to ensure the fine melt of precipitated

phases and precipitation of strengthening phases in synthesis. Fig. 6
depicts temperatures during solution and aging treatments for

various superalloys. In Fig. 6a, the extracted dataset that contains
both the solution temperature and compositions is split into two
classes based on the relative content of Ta, Ti, and Cr. High Cr, low Ti
and Ta represents Cr higher than 6%, with the total of Ta and Ti not
lower than 3%. Low Cr, high Ti and Ta represents Cr lower than 6%
with the total of Ta and Ti higher than 3%. The superalloys with low
Cr, high Ti and Ta have solution temperatures generally higher than
those with high Cr, low Ti and Ta. This is because the γ′ solvus

Table 3. Precision, recall, and F1 scores of token-/chunk- level actions and parameters.

Category Extracted instance number from all superalloy articles Precision Recall F1 score Validated on

Token-level action 25,243 92.85% 90.28% 91.55% 30 articles (348 sentences)

Chunk-level action 29,963 88.23% 85.71% 86.95% 30 articles (348 sentences)

Action + parameter 13,211 81.31% 84.09% 82.68% 30 articles (348 sentences)

Action in total 55,206 90.58% 88.03% 89.28% 30 articles (348 sentences)
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Fig. 5 A heatmap of the frequency of actions reported from 2004 to 2021.

Fig. 4 Schematic overview of dependency parsing process.
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temperature is significantly increased with the addition of Ta and Ti
but decreases with Cr, so the alloys with high Ti and Ta need higher
solution temperatures (above 1250 °C), consistent with results
reported by Chen41,42. Coupled with our previous extracted γ′ solvus
temperature dataset25, Fig. 6b shows the relationship between γ′
solvus, aging treatment and solution treatment temperatures. The γ′
solvus temperature for each alloy lies between its solution and aging
temperatures, in agreement with known rules43.
In materials synthesis, experimental steps usually follow a

certain order specific to the synthesis methodologies. We linked
the extracted actions in order to obtain an action sequence for
each article. By calculating the transition probability from one
action to another in one action sequence, a Markov chain
representation to show how various experimental steps proceed
was constructed (Fig. 7). In the flowchart, the directed graph
consists of nodes and directed edges, and a node represents an
experimental action, and an edge represents a transition from one
action to another. The solid black line indicates that the transfer
from one action to another occurs at a frequency≥150, and two
dashed lines represent 50≤frequency <150 and 20≤frequency
<50. The high transfer frequency means that the possibility of
inferring the latter action from the previous action is greater in
synthesis.
There are in total three types of synthesis processes shown in

Fig. 7, including casting, wrought and powder metallurgy. The

extracted data also contains insights with adjacent relations as the
sequence in casting: “solidification”-> “solution”-> “aging”->
“quench” -> “solution” -> “aging” etc., which matches expert
intuition. Also, for powder metallurgy, actions “cool” and “quench”
usually follow “solution” and “aging”, but “aging” never follows
“hot extrusion”. The bidirectional edges are found between “cool”,
“solution” and “aging”, indicating it is a common practice to repeat
“solution” and “aging” in synthesis / processing steps. The
constructed Markov chain in Fig. 7 captures experimental steps
for different synthesis processes, indicating confidence in the
extraction procedures.
The coarsening of γ′ precipitates of superalloys is greatly

influenced by several factors, such as composition, solution, and
aging procedure. Here we further utilized the extracted
synthesis and processing dataset to predict the coarsening of
γ′ precipitates to reveal a critical synthesis factor. The size of γ′
precipitates was used to depict the coarsening behavior
automatically captured by our SuperalloyDigger NLP pipeline25.
After data preprocessing, a high-quality dataset with 137
records was obtained containing the γ′ size, composition space
of Co, Al, W, Ni, Ti, Cr, Ta, Mo, Re, and Nb, and synthesis
conditions of solution temperature, solution time, aging
temperature, and aging time. SR was then adopted to capture
the explicitly expressed synthesis factor for γ′ size by genetic
programming SR (GPSR) implemented in the gplearn code44.

Fig. 6 Solution and aging treatment temperatures for various superalloys. a The solution temperatures dependent on the composition of
Cr, Ti and Ta. b The γ′ solvus, aging treatment, and solution treatment temperatures for each alloy.

Fig. 7 The flowchart of transition probabilities from one action to another for cast, wrought and power metallurgy superalloys.
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(The details of SR can be found in Methods). Here the
complexity and mean absolute errors (MAE) are used for the
metrics for produced formulae from SR, and the complexity
refers to the number of arithmetic operators, including
addition, subtraction, division, multiplication, and square root.
A total of 60,000 candidate formulae were generated and
sorted using MAE under the same complexities, shown in Fig.
8a. There are 9 mathematical formulae (marked A–I in Fig. 8a)
located at the Pareto front with low complexity and MAE. The
specific formulae are shown in Supplementary Table 3.
Although the accuracies of these formulas are not high enough
owing to the white box modeling, we can infer that At, Sc, Ac
and the term (At*Sc0.5)0.5 occur frequently and therefore appear
to play a significant role in determining γ′ size. To couple with

these three synthesis parameters, certain terms, such as
(At*Sc0.5)0.5+ Ac, (At*Sc0.5)0.5+ Ac0.5 and (Ac*At)0.5+ Sc0.5 were
considered in order to study their relationship with γ′ size
through a scatter plot. In particular, (At*Sc0.5)0.5+ Ac shows a
positive correlation, i.e., exponential growth, with γ′ size shown
in Fig. 8b.
The study of precipitate evolution is important for materials

design. Classical physical models predict the ripening behavior of
particles. The LSW theory assumes a very dilute environment
without interactions among particles to predict the ripening
behavior of γ′ precipitates45. Ardell incorporated the influence of
finite precipitate volume fraction into the framework of diffusion-
controlled coarsening kinetics and modified LSW (MLSW). From
classical kinetic theory, γ′ size coarsening without coalescence is

Fig. 8 The generated superalloy synthesis factor by SR which greatly improves γ′ size prediction performance. a Pareto front of MAE vs.
complexity among 60,000 mathematical formulas shown via density plot. b Scatter plot of γ′ size vs (At*Sc0.5)0.5+ Ac. c RMSE for model
selection under original and transformed feature space by fivefold cross validation. d The measured and predicted γ′ size of 13 superalloys
newly reported in 2023 and 3 superalloys which we synthesized among all models. e The microstructure for alloy Co-29.6Ni-10.8Al-2Ti-2.5W-
1.6Ta-1Mo-3.5Cr. f The microstructure for alloy Co-30Ni-10.4Al-1.5Ti-1.6W-3Ta-1Mo-4.9Cr. g The microstructure for alloy Co-29.9Ni-10.4Al-1.9Ti-
1W-3.3Ta-1.1Mo-5.2Cr-0.8Re.
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predicted to obey Eq. (4)46–48:

<rt>
3 � <r0>

3 ¼ 8D0 exp �Q
RT

� �
σCγ

i 1� Cγ
i

� �
Vm

9RT Cγ0
i � Cγ

i

� �2 t � t0ð Þ (4)

As shown in Eq. (4), T is the aging temperature and t is the
aging time, but the equation is established under ideal conditions
(all phases are dissolved under the solution temperature). In
addition, an elevated Sc decreases the residual dendritic segrega-
tion of refractory elements (i.e., Re and W) and suppresses the
precipitation of deleterious topologically close-packed (TCP)
phases in Ni-based superalloys. Unsuitable Sc promotes the
formation of TCP, which reduces the concentration of certain
solid solution strengthening elements such as Cr, Mo, W and Re in
the γ phase. The lower element concentrations will also lead to a
lower rate for the coarsening of γ′ phase. Thus, Sc impacts the
coarsening of γ′ phase.
To test this factor, we constructed an ML-based γ′ size

prediction model with (At*Sc0.5)0.5+ Ac and compositions (trans-
formed feature space). The comparison also used the solution
temperature, solution time, aging temperature, aging time, and
composition (original feature space). The ML models were trained
and evaluated by cross-validation, and the root mean square error
(RMSE) with mean and standard deviation is shown in Fig. 8c. In
general, models using the transformed feature space have smaller
root mean square errors than the original feature space. These ML
models were then used to predict γ′ size for the 13 newly reported
superalloys from published articles in the year 2023 as well as
3 superalloys that we synthesized, which were not in the dataset
extracted by our pipeline (Fig. 8e–g, and Supplementary Table 4).
The average of RMSE between the reported/experiments and
predicted γ′ size amongst all models with transformed features is
83.00, much lower than 143.63 using original features (Fig. 8d).
Such a significant increase in model performance suggests
(At*Sc0.5)0.5+ Ac to be a significant synthesis factor for γ′ size for
superalloys.
We have here ignored the occurrence of actions implicitly

expressed, such as “the aged samples were …”. Additionally, the
dependency parser of the Stanford CoreNLP package cannot
accurately construct dependent relations between sample, action,
and parameters under certain expressed conditions. In addition,
action-tuple information distributed across two or more separate
sentences are not handled. We have also not incorporated the
synthesis and processing parameters that are described in the
figures.
In recent years, large-scale language pretraining models, such

as GPT (Generative Pretraining Transformer), have revolutionized
the field of NLP49–51. These models are trained on vast amounts of
unannotated texts and can then be fine-tuned for specific NLP
tasks. Essentially, these models are creating a “well-read” black box
that interprets language at a high level and can perform a
multitude of tasks within that language. ChatGPT, a specific
implementation of the GPT models, was trained using Reinforce-
ment Learning from Human Feedback (RLHF) and exhibits
impressive abilities in conversational interaction52. It can handle
dialog format, answer follow-up questions, admit mistakes, and
even reject inappropriate requests. However, despite these
advances, ChatGPT and similar models have limitations. The sheer
scale of these models necessitates substantial computational
resources and vast, well-organized corpora for training, which
could limit their accessibility. Additionally, these models are
sensitive to input phrasing, and a slight rephrasing can yield
different outputs. In the context of materials science, it is also
difficult for GPT to solve the correlation between composition,
synthesis, and properties, summarize the extracted database and
automatically build models to mine the physical feature factors
related to the target properties. The lack of complete and

structured data is an issue. AI models like ChatGPT primarily learn
from vast amounts of text data but do not inherently possess
structured data extraction capabilities. Although they can provide
general information and summarize existing knowledge, extract-
ing specific details and organizing them into a structured
database for a quantitative prediction model is a more complex
task that ChatGPT cannot yet achieve for materials. Here we
introduce a semi-supervised text mining method, in a small-
corpus and with low costs, to extract action sequences and their
parameters related to synthesis and processing conditions. This
automatically forms a machine learnable dataset containing
synthesis actions and parameters, chemical compositions and γ′
phase size. The dataset has then been used to capture an explicitly
expressed synthesis factor for predicting γ′ phase coarsening. The
synthesis factor derived from text mining significantly improves
the performance of the data-driven γ‘ size prediction model. This
strategy is applied easily on a specific problem in order to distill
synthesis actions and parameters from scratch instead of fine-
tuning, or pre-training large amounts of corpora.
In conclusion, we have shown how knowledge of materials

synthesis and processing in the literature can be extracted by
text mining. The code for this semi-supervised text mining
pipeline is available at https://github.com/MGEdata/
Action_extractor. A web-based toolkit is also available at http://
superalloydigger.mgedata.cn/#/spre_extractor for online use.
This open-source code and toolkit can also be generalized to
other alloys. As the scientific literature grows, it is inevitable that
NLP will become a promising tool to extract and learn from
published and unpublished work and provide a format that is
machine-readable and AI-useable.

METHODS
Article retrieval and preprocessing
The scientific articles for superalloys used in this work were
published before the year 2022, and full texts were automatically
obtained in extensible markup language (XML) format using
Elsevier’s Scopus, Science Direct APIs (https://dev.elsevier.com/)
and the extended scrape package of ChemDataExtractor21. Corpus
preprocessing and table parsing was executed by SuperalloyDig-
ger as our previous work represented25. Totally we achieved
16604 article corpora with more than 0.4 million paragraphs and
6644 composition tables.

Paragraph classification
To determine which paragraph contained alloy synthesis informa-
tion, we manually applied binary labels to 1885 paragraphs from
80 different journal articles. The positive samples represent that
the paragraphs contain synthesis and processing information,
while negative samples stand for the paragraphs not related. The
labeled paragraphs were split by 9:1 with 90% of the corpus for
training and validation, and the remaining 10% for testing. Then a
binary logistic regression classifier was trained by scikit-learn
package53, as shown in Supplementary Fig. 5a.
Three different feature extraction methods were compared

during paragraph classification, namely Bag of Words, TF-IDF (term
frequency–inverse document frequency), and BERT (Bidirectional
Encoder Representation from Transformers). The BERT model has
been pre-trained on 16604 superalloy corpora and the pre-training
details are given in Supplementary Method 2. Each paragraph in
the article was represented by a feature vector of Bag of Words,
TF-IDF, and BERT, concatenated with a simple binary heuristic
vector to distinguish whether the section title comprised key-
words like “Experiments” or “Methods”.
The accuracy and F1 scores by different feature extraction

methods are shown in Supplementary Fig. 5b. The highest
overall F1 score of 96.35% was obtained using TF-IDF.
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Supplementary Fig. 5c shows the learning curves of the logistic
regression model. The F1 scores can reach ~95% when the
training data set size is 1800. The logistic regression model was
trained on 1885 labeled paragraphs using TF-IDF as feature
construction and used to predict all paragraphs in the whole
corpus. After removing paragraphs with less than 20 words and
those predicted as negative, it finally yielded approximately
14,487 positive paragraphs related to synthesis and processing.

Word embedding model
Two word embedding models were pre-trained on approximately
16,000 unlabeled full-text superalloy corpus by Word2Vec
continuous bag of words (CBOW) and FastText36,54. The Word2vec
model for superalloy has already been built and validated in our
previous work25. Word2Vec can capture the semantic similarity
between a word pair according to the context. If two words are
semantically close, then their Word2Vec similarity is high, such as
“solutioned”, “aged”, and “forged”. For FastText, each word is
represented by a sum of its character n-grams35,36. FastText
embeddings can capture sub-word structure, multiple word
senses, and uncertainty information. For example, the words with
same root such as “arc-melted”, “induction-melted”, and “pre-
melted” will have a high cosine-similarity with each other54.
Word2vec helps find the most similar syntactic and semantic
words, and FastText constructs word embeddings from character-
level n-gram representations to find words with greater morpho-
logical similarity33–36. As shown in the Supplementary Fig. 6, a bag
of n-grams as additional features was used in FastText to capture
partial information about the local word order and the word with
same prefix or suffix could be regarded as having similar meaning.
Thus, combing the Word2vec and FastText models can help to
find entities with similar syntax, semantics and morphology for
synthesis and processing actions.

BiLSTM-CRF model
The BiLSTM-CRF model was also used for NER tasks. LSTM is a
variant of recurrent neural network (RNN) and better at capturing
both forward and backward context. The traditional softmax layer
is replaced by CRF in this model to capture the interdependency
of each label. To train such a BiLSTM-CRF model, we designed five
entity labels: action (ACT), superalloy name (MAT), sample
descriptor (DSC), material property (PRO), and property value
(PV). Examples for each kind of label are given in Supplementary
Method 1, along with a detailed explanation for annotation rules.
1308 sentences from 84 articles were randomly sampled from

synthesis paragraphs for annotation by hand to ensure that a
diverse range of synthesis and processing types were covered. All
annotations were performed by a single materials scientist. During
annotation, “BIO” sequence labeling method was applied.
All annotated sentences were split into training (80%),

validation (10%), and testing sets (10%). The validation set was
used for hyperparameter optimization evaluation and the final
model achieved a total precision of 89.34%, recall of 78.30%, and
F1 score of 83.46% on testing set with approximately 131 sen-
tences (approximately 4500 words). The categorical precision,
recall and F1 score for each category are shown in supplementary
Table 2. For action entity, the precision, recall and F1 score are
only 77.02%, 72.98% and 74.95%.

Evaluation metrics
We used precision, recall, and F1 score as the metrics to evaluate
paragraph classification, NER, and dependency parsing, which are

shown in below equations55–57.

Precision ¼ TP
TPþ FP

(5)

Recall ¼ TP
TPþ FN

(6)

F1score ¼ 2 � Precision � Recall
Precisionþ Recall

(7)

Interdependency resolution
To merge the extracted composition and action data fragment, we
tailored some rules based on the writing habit of experts in
superalloy. Firstly, the composition table was extracted to find all
alloy names and compositions in the article by our previous
method25. And then, different strategies were performed accord-
ing to the condition of composition table and synthesis paragraph
as follows.
If no alloy name entity is recognized in the sentence containing

the action entity, but in the paragraph where this sentence is
located, and the sentence preceding the sentence recognizes the
alloy name entity, then the alloy name entity will be associated
with the action entity.
If no alloy name is recognized in the sentence preceding the

action, and any alloy name entity in the composition table does
not appear in the full paragraph, we will assume that every alloy in
the composition table is associated with the action entity.

Symbolic regression
To capture the explicitly expressed synthesis factor for γ′ size, we
performed SR analysis by a Python library, namely gplearn. There
were several hyper-parameters to optimize, including pc, ps, ph,
pp, and parsimony coefficient. We applied grid search to evaluate
the performance on a space containing 5 pc values, 10 ps values,
10 ph values, 2 pp values, and 3 parsimony coefficients. The
detailed hyper-parameters setup can be found in the Supplemen-
tary Table 5. There were totally 3000 hyper-parameters during SR,
and for each hyper-parameter, the populations evolved for 20
generations. So totally 60,000 candidate formulas were generated.

Prediction model for γ′ size
The whole dataset was randomly divided into a 70% fraction for
model training and validation, and the remaining 30% fraction for
model testing. Support vector regression (SVR) with linear kernel
(SVR.lin) and radial basis function kernel (SVR.rbf), gradient
boosting regression (GBR), Bayesian linear regression (BR),
k-nearest neighbor regression (KNR), adaptive boosting regression
(AdaBR), kernel ridge regression (KRR), random forest regression
(RFR), stochastic gradient descend regression (SGDR), elastic net
regression (ENR), and lasso regression (LR) were employed. For
parameter optimization, 100 times of 5-fold cross-validation on
70% training dataset was performed. All the models were re-
trained with their optimized parameters to predict the γ′ sizes for
new alloys.

Superalloy synthesis and characterization
The alloys were synthesized from raw metals with a purity higher
than 99.95%. 40 g ingot was prepared by vacuum arc melting by
melting for eight times. The ingots were then sealed in a quartz
tube with an argon atmosphere. Then, solution heat treatment at
1225 °C for 12 h was applied to all experimental alloys followed by
air cooling to eliminate the composition segregation. The
solutioned samples were further cut and aged at 1100 °C for
168 h followed by water cooling. All samples were obtained by the
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standard metallographic method and chemically etched for
seconds in a solution of HCl: H2O: HNO3= 1:1:1. A Zeiss
GeminiSEM 300 field-emission scanning electron microscope
(SEM) in backscattered electron imaging mode was used to
observe the γ/γ′ microstructure. An energy-dispersive X-ray
spectroscopy detector was used to determine the alloy composi-
tion. The γ′ size of alloys are measured by a computer vision
framework by Liu et al31.

DATA AVAILABILITY
All the generated data set can be found available at https://github.com/MGEdata/
Action_extractor. The DOIs of 16604 articles and 30 validated articles together with
the extracted dataset containing composition, heat treatment, and γ′ size are
available from https://github.com/MGEdata/Action_extractor/tree/main/Database.

CODE AVAILABILITY
All the source code used in this work is available at https://github.com/MGEdata/
Action_extractor. Furthermore, a web-based toolkit has been developed; further
examples of how to use and adapt the toolkit can be found at http://
superalloydigger.mgedata.cn/#/spre_extractor.
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