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Machine learning assisted derivation of minimal low-energy
models for metallic magnets
Vikram Sharma 1✉, Zhentao Wang 1,2,4 and Cristian D. Batista 1,3

We consider the problem of extracting a low-energy spin Hamiltonian from a triangular Kondo Lattice Model (KLM). The non-
analytic dependence of the effective spin-spin interactions on the Kondo exchange excludes the use of perturbation theory beyond
the second order. We then introduce a Machine Learning (ML) assisted protocol to extract effective two- and four-spin interactions.
The resulting spin model reproduces the phase diagram of the original KLM as a function of magnetic field and single-ion
anisotropy and reveals the effective four-spin interactions that stabilize the field-induced skyrmion crystal phase. Moreover, this
model enables the computation of static and dynamical properties with a much lower numerical cost relative to the original KLM. A
comparison of the dynamical spin structure factor in the fully polarized phase computed with both models reveals a good
agreement for the magnon dispersion even though this information was not included in the training data set.
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INTRODUCTION
Lattice models of fermions interacting with classical fields
encompass different areas of knowledge, including quantum
chemistry, condensed matter, and high-energy physics. This
broad class of models poses some notoriously difficult numerical
challenges. On one hand, Monte Carlo (MC) sampling of the
classical field requires repeated diagonalization of the single-
particle fermion matrix. On the other hand, it is difficult to
eliminate size effects when the effective interactions between the
classical degrees of freedom (CDOF) are orders of magnitude
smaller than the bare interaction between the fermions and the
CDOF1. While the first problem has been addressed by different
approaches that reduce the numerical cost of the simulations2–5,
the second problem, which arises in the weak-coupling to
intermediate-coupling regimes, is more difficult to solve. By
“weak-coupling” we mean that the value of the interaction J
between the classical and fermionic degrees of freedom is small in
comparison to the characteristic energy scale of the fermions (e.g.,
the dominant hopping amplitude t of the conduction electrons of
a KLM). Since this is the relevant regime for different incarnations
of this class of models, such as 4f-electron materials described by
KLMs, it is necessary to develop new approaches that can address
this problem.
For the weak to intermediate-coupling regimes, the traditional

approach for this class of models is perturbation theory. Effective
interactions between the CDOF are obtained by expanding them
in powers of J/t. For instance, the application of perturbation
theory to the KLM leads to the celebrated RKKY interaction
between localized moments6–8. Unfortunately, perturbation the-
ory can not be extended beyond the second order because the
corresponding diagrams diverge at T= 09–12, suggesting that the
coefficients of n-spin interactions with n ≥ 4 are non-analytic
functions of the coupling constant. In general, the problem of
integrating out fermionic degrees of freedom in presence of a
Fermi surface is highly non-trivial because the effective interac-
tions are expected to be non-analytic functions of the coupling

constant. However, phenomenological approaches based on
minimal models that only include 2 and 4-spin interactions to
explain the emergence of multi-Q magnetic orderings have
demonstrated to be effective10,12–16. Based on the success of
the RKKY model6–8 and on the extended use of these minimal
models, here we will conjecture that, for weak-enough coupling
constant, one can still neglect n-spin interactions with n > 4 and
approximate the effective two- and four-spin interactions by
analytic functions. In other words, we will assume that, despite the
non-analytic dependence of the coefficients of n-spin interactions
on the coupling constant J, there is still a hierarchy of interactions,
i.e., there is a regime where six and higher-spin interactions can be
neglected in comparison to the terms including two and four-spin
interactions. Moreover, we will also assume that non-analytic
behavior in momentum space, caused by the long-range nature of
the real space interactions, can be approximated by a sequence of
analytic functions obtained by systematically increasing the range
of the interactions. As we will discuss in this work, the verification
of these conjectures is particularly relevant for addressing
situations where the RKKY Hamiltonian is frustrated in the sense
that the exchange interaction in momentum space ~J ðqÞ is
minimized by multiple symmetry related wave vectors Qν.
The problem of frustrated magnetic metals has multiple

attractive aspects. For instance, four-spin interactions can stabilize
non-coplanar orderings that induce nonzero Berry curvature of
the reconstructed bands. This momentum space Berry curvature
can in turn lead to a large topological Hall effect below
the magnetic ordering temperature TN14,17–22. Since TN can be
comparable to or even higher than room temperature, multiple
experimental efforts are trying to achieve this goal23. An
outstanding example is the search for skyrmion crystals (SkXs) in
f-electron magnets. Field-induced SkXs with large topological Hall
effect have been recently observed in the rare earth-based
centrosymmetric materials Gd2PdSi3 and Gd3Ru4Al1224–28 that can
be modeled by a KLM.
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In a recent work29, we have demonstrated that SkXs emerging
from triangular lattice RKKY models with easy-axis anisotropy can
naturally lead to values of the Hall conductivity that are
comparable to the quantized value (e2/h). The key observation is
that the magnitude Q≡ ∣Qν∣ of magnetic ordering wave vector is
dictated by the Fermi wave vector Q≃ 2kF. In a subsequent work1,
we used a systematic variational study of the triangular KLM to
show that SkXs are ubiquitous phases of centrosymmetric metals
with localized magnetic moments. This variational study, which is
crucially important to eliminate undesirable finite-size effects,
reveals mesoscale field-induced SkXs, whose stability range
depends on the coupling strength J/t (t is the nearest-neighbor
hopping of the KLM). These results are consistent with an
increasing amount of numerical and experimental evidence in
favor of the emergence of multi-Q orderings, including SkXs, in
metallic six-fold symmetric layered materials comprising localized
magnetic moments coupled via exchange interaction to conduc-
tion electrons24–28.
The emergence of multi-Q orderings in magnetic systems with

localized moments has stimulated different groups to propose
effective four-spin interactions which can account for this
phenomenon12–16,30. In view of the lack of a controlled analytical
procedure to derive these effective interactions, the proposed
effective models are mostly phenomenological and ad-hoc
because they do not consider all the symmetry-allowed four-spin
interactions. For instance, Hayami et al.12,16 have proposed a
phenomenological bilinear biquadratic model based on a trend
that they observe in the divergent terms of the perturbative
expansion. While these phenomenological approaches can offer
useful insights due to their simplicity, they severely limit the
predictive power of the original high-energy model. Similar
considerations apply to the low-energy excitations (magnons) of
each magnetically ordered state. It is then relevant to ask if there
is an alternative, less biased, method that can output all
symmetry-allowed effective 4-spin interactions while preserving
the simplicity of phenomenological spin models and the
predictive power of the original KLM. A method with these
characteristics can be used to understand the origin of the
different magnetic orderings induced by magnetic field and/or
single-ion anisotropy, as well as to compute the low-energy
magnon spectrum of each magnetic phase. Similarly to the case of
Landau-Ginzburg expansions of the free energy near a critical
point, the signs of the different symmetry allowed quartic terms
offer valuable insights into the effective interactions among
distinct modes. As we will see in this work, another important
advantage is that simulations of the effective spin model turn out
to be a few orders of magnitude faster than simulations of the
original KLM.
The alternative approach that we propose here is inspired by a

recent proposal for constructing effective low-energy Hamilto-
nians by supervised learning on energy31. In their work, Fujita et al.
used supervised learning to derive an effective spin-1/2 Hamilto-
nian in the strong-coupling limit of a half-filled Hubbard model. In
contrast to the scenario under our current consideration, this
problem admits a well-behaved perturbative expansion, which
can be used to corroborate the success of the supervised learning
algorithm. The classical nature of the spin degrees of freedom in
the KLM that we consider here introduces another important
difference because the spectrum of a classical spin model is
always continuous, while the spectrum of a quantum spin model
is discrete on finite lattices. In other words, each product of
coherent spin states is an eigenstate in the classical (S→∞) limit of
the KLM, while this is, of course, not true for the quantum case.
While one can always fit the lowest energy M eigenstates of the
discrete spectrum of the high-energy model on a finite lattice and
determine the optimal parameters of the low-energy quantum
spin model, this is not possible for classical spins due to the
continuous character of the spectrum. As we will see in the next

sections, it is necessary to introduce an iterative protocol to
sample from the continuous set of low-energy states of the KLM.
Indeed, finding an adequate set of classical spin states to feed the
ML process and find an adequate low-energy effective model is
the most challenging part of the protocol because a big
advantage of the classical limit is that the cost function is a
convex function globally (i.e. it has no extra local minima), which
vastly reduces the cost of the optimization procedure after each
iteration.
From a pure mathematical standpoint, the challenge is then to

generate a weighted set of low and high-energy classical spin
states in order to learn what is the low-energy spin model ~H that
better reproduces the low-energy spectrum of the original high-
energy model H. Finding a good balance between the relative
weights assigned to low and high-energy states of the original
high-energy model H is critical. Another challenge is to find an
algorithm that converges relatively fast to the final version of ~H,
and to implement another optimization algorithm based on L1
regularization31 that minimizes the number of interactions to
obtain the minimal effective model that still reproduces the zero-
temperature phase diagram of the high-energy model. As we will
see in the following sections, the algorithm that we are proposing
meets both challenges. The main limiting factor for the efficiency
of the algorithm is the time associated with the generation of the
initial training data set.
The discovery of magnetic SkX in chiral magnets, such as

MnSi, Fe1−xCoxSi, FeGe, and Cu2OSeO3
32–36 spawned efforts for

identifying stabilization mechanisms of SkX in different classes
of materials. These efforts are revealing that new stabilization
mechanisms are typically accompanied by novel physical
properties. For instance, while the vector chirality is fixed in
the magnetic skyrmions of chiral magnets such as the above-
mentioned B20 compounds, it is a degree of freedom in the SkX
of centrosymmetric materials such as BaFe12−x−0.05ScxMg0.05O19,
La2−2xSr1+2xMn2O7, Gd2PdSi3, and Gd3Ru4Al1224–28,37,38. In the
former case, the underlying spiral structure emerges from the
competition between ferromagnetic exchange and the
Dzyaloshinskii-Moriya (DM) interaction39,40. In contrast, the spiral
ordering of centrosymmetric materials arises from frustration,
i.e., from the competition between different exchange or dipolar
interactions11,41–44.
Most of the known magnetic SkXs have been reported for

metallic materials, where the interplay between magnetic
moments and conduction electrons leads to response functions
that are of both fundamental and applied interests, such as the
well-known topological Hall effect (THE)18,19,21,22 and the current-
induced skyrmion motion45–48. The THE is a direct consequence of
the Berry curvature acquired by the reconstructed electronic
bands. In the adiabatic limit, the momentum space Berry
curvature is controlled by a real space Berry curvature, that is
proportional to the skyrmion density in the absence of spin-orbit
interaction49: each skyrmion produces an effective flux equal to
the flux quantum Φ0. Consequently, Hall conductivities compar-
able to the quantized value (e2/h) can in principle be achieved if
the ordering wave vector of the SkX is comparable to the Fermi
wave vector kF. This condition can be naturally fulfilled in f-
electron systems where the interaction between magnetic
moments is mediated by conduction electrons29. Indeed, field-
induced SkXs with large topological Hall effect has been recently
observed in the rare earth-based centrosymmetric materials
Gd2PdSi3 and Gd3Ru4Al1224–28, which are in principle described
by a KLM including multiple bands of conduction electrons
coupled to localized f-magnetic moments. The combination of
state-of-the-art band structure calculations with standard degen-
erate perturbation theory seems to be a promising route for
deriving these KLMs from first principle calculations50. Conse-
quently, it is important to develop efficient methodologies for
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computing the quantum (T= 0) phase diagram of this class of
models.
To understand the origin of the field-induced SkX phases, we

will consider a simple triangular KLM with classical local magnetic
moments:

H ¼ �t
P

hr;r0i;σ
cyrσcr0σ þ h:c:

� �
þ J

P
r;αβ

cyrασαβcrβ � Sr

� h
P
r
Szr þ D

P
r

Szr
� �2

;
(1)

where the first term corresponds to a tight-binding model with
the nearest-neighbor hopping amplitude t (hr; r0i denotes bonds
of nearest-neighbor sites). The operator cyrσ (crσ) creates (annihi-
lates) an itinerant electron with spin σ on site r. J is the Kondo
exchange interaction between the local magnetic moments Sr and
the conduction electrons (σ is the vector of the Pauli matrices),
and the localized moments are described by the normalized
classical vector field Sr ( Srj j ¼ S). (In this work we simply set S= 1.)
The last two terms represent a Zeeman coupling to an external
field H (h= gμBH) and an easy-axis single-ion anisotropy (D < 0).
The coupling of localized spins with itinerant electrons leads to

effective spin-spin interactions which can potentially stabilize
multiple-Q magnetic orderings. Modeling the system with the
“high-energy” KLM is numerically challenging because of a
combination of reasons. The numerical cost of computing the
energy for a lattice of N sites is of the order of OðN3Þ. While this
cost can in principle be reduced to a linear function of N by
implementing approximated numerical schemes, such as the
Kernel Polynomial Method (KPM)5,51,52, finite-size effects remain
relevant in general even for very large lattices1. This important
limitation was overcome by a variational calculation for the case of
periodic structures with relatively small periods, which are fixed by
carefully tuning the band-filling fraction. While these approaches
can be used to obtain zero-temperature phases diagrams, like the
ones that we will discuss in Sec. II C, they cannot be used to study
dynamical response functions or the finite-temperature phase
diagram. Moreover, it is difficult to extract stabilization mechan-
isms of multi-Q orderings from numerical solutions of the KLM.
Since these orderings can be determined by n-spin interactions
with n ≥ 4, the derivation of a low-energy model beyond the RKKY
level is crucial to understanding different aspects of the
competition between single and multi-Q orderings.
In the weak-coupling limit, Jη(ϵF)≪ 1, where η(ϵF) is the density

of states at Fermi energy ϵF, the KLM can be approximated by an
effective RKKY model6–8:

HRKKY ¼
X
k

~J ðkÞSk � S�k ; (2)

where

Sk ¼ 1ffiffiffiffi
N

p
X
r

e�ik�rSr (3)

is the Fourier transform of the spins, and N is the total number of
lattice sites. In momentum space, the effective RKKY interaction is
proportional to the magnetic susceptibility χk of the conduction
electrons:

~J ðkÞ ¼ �J2χk ; (4)

where

χk ¼ �
Z

dq
AB

f ϵqþk
� �� f ϵq

� �
ϵqþk � ϵq

: (5)

Here f ϵð Þ is the Fermi distribution function, AB is the area of the
first Brillouin zone, and ϵk is the bare dispersion of the electrons.
Since Sk ¼ S��k (Sr is a real vector field) implies that Sk ⋅ S−k ≥ 0
and ∑kSk ⋅ S−k= NS2, the RKKY interaction favors a helical spin
ordering with an ordering wave vector that minimizes ~J ðkÞ

(maximizing χk). If a wave vector Q that optimizes the RKKY model
(2) is not invariant under the symmetry group G of transformations
that leave the KLM invariant, there are other symmetry-related
wave vectors GQ that also minimize the energy. These wave
vectors will be denoted with the index ν: {Qν}. The spatial inversion
operation is not included in the symmetry group because, as we
mentioned above, the Qν and −Qν components of the vector field
are not independent (SQν

¼ S��Qν
). Thus, there is a degeneracy for

the helical orderings of symmetry-related wave vectors. The real
space version of the RKKY model is given by Fourier transforming
Eq. (2):

HRKKY ¼ 1
2

X
r≠r0

J ðr � r0ÞSr � Sr0 : (6)

Away from the weak-coupling limit, four-spin and higher-order
interactions are naturally generated from the KLM, which are
ignored in the RKKY model. Since the RKKY part alone is not
sufficient to stabilize a field-induced SkX phase, four-spin interac-
tions play a crucial role in the absence of single-ion anisotropy. The
most general effective Hamiltonian including two and four-spin
interactions is

Heff ¼ P
k

~J ðkÞSk � Sk
þ P

k1;k2;k3

g k1; k2; k3ð Þ
N S�K � Sk1ð Þ Sk2 � Sk3ð Þ; (7)

where K≡ k1+ k2+ k3. The four-spin interaction term helps to lift
the massive ground state degeneracy of the RKKY model. Suppose
the term SQi � S�Qið Þ SQi � S�Qið Þ in the Hamiltonian has a large
positive coefficient g �Qi;Qi;�Qið Þ, then the single-Qi ordering
will be heavily penalized. On the other hand, a large negative
coefficient g(Q1, Q2, Q3) favors three different Q components
Q1;Q2;Q3ð Þ being finite in the presence of a finite uniform
magnetization S0. In other words, this term favors a triple-Q
ordering, such as SkXs, if a finite magnetization is induced by an
external magnetic field. Thus, the function g(k1, k2, k3) plays a
critical role in the identification of the ground state. As we
demonstrate in this paper, ML turns out to be a valuable tool in
extracting this important piece of information.
Since g k1; k2; k3ð Þ is an unknown function of 3 continuous

multidimensional variables, we need an efficient scheme to
reduce the number of model parameters. To obtain a valid
effective low-energy theory, the scheme should provide a good
approximation near the most relevant wave vectors (k ≃ Qν and
k ≃ 0). To achieve this goal, we will first derive a real space
version of the low-energy effective Hamiltonian, where all
symmetry-allowed interactions are included up to a certain
distance. After these real space interactions are determined
with ML, the expressions of ~J ðkÞ and g k1; k2; k3ð Þ can be
obtained by a simple Fourier transform of the effective real
space interactions.
To avert the risk of introducing manual selection bias in the two-

and four-spin interactions, we sought to implement a generalized
parameter for their selection. Consequently, we decided to retain
all interactions within a specific distance range. For the RKKY
contribution (6), we cutoff the interactions beyond jr � r0j ¼ 2

ffiffiffi
3

p
a,

which leads to 6 inequivalent exchange parameters fJ 1; ¼ ;J 6g.
Similarly, the four-spin contribution can be expressed as:

H4�spin ¼
X

hr1;r2;r3;r4i
f ðr1; r2; r3; r4Þ Sr1 � Sr2ð Þ Sr3 � Sr4ð Þ; (8)

where the notation 〈r1, r2, r3, r4〉 indicates that each set of four
sites (r1, r2, r3, r4) is counted only once. Here we restrict
jri � rjj �

ffiffiffi
3

p
a, which leads to 7 inequivalent exchange para-

meters {f1, …, f7} (see Fig. 1). The primary source of computational
cost arises from the calculations pertaining to the four-spin
interactions. To minimize computational cost, we selected the
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distance range to incorporate only the minimum number of four-
spin interactions necessary for producing an adequate phase
diagram. For the RKKY interaction, we incorporated all interactions
within the length scale of the magnetic unit cell discussed in
section II A.
By implementing the ML algorithm described in section II B,

we compute these real space parameters and subsequently
evaluate ~J ðkÞ and g k1; k2; k3ð Þ. The aim is to gain a comprehen-
sive understanding of the low-energy physics. The significance of
the coefficients associated with ordering wave vectors and their
higher harmonics is of critical importance, as these play a
dominant role in shaping the low-energy states. Provided the
ground state weight is not excessively concentrated at the higher
harmonics, we could in principle study the system by just
considering the terms corresponding to k values in the set
Q1;Q2;Q3; 0ð Þ. The energy resulting from four-spin interactions is
confined to a specific subset of possible combinations of
g k1; k2; k3ð Þ by restricting the available wave vectors to the set
Q1;Q2;Q3; 0ð Þ and it can be written as:

where the expressions of f~gig are given in the Supplementary
Information. By utilizing this absolute minimal model in momen-
tum space, we can gain a deeper understanding of the system by

identifying which interactions between modes play a role in
stabilizing multi-Q spiral orderings. Additionally, this minimal
model can be used to differentiate between four-spin contribu-
tions involving S0, that become relevant for finite magnetic field,
from those that are present in absence of uniform magnetization
S0. By isolating these factors, we can further examine the impact
of magnetic field on the stability of multi-Q states. As we shall
observe in subsequent sections, the insights derived from this
minimal model are illuminating and provide us with a wealth of
information about the system.

RESULTS
Data from high energy model - KLM calculations
When the Kondo exchange interaction is comparable to the
nearest-neighbor hopping (J≲ t), the effective spin-spin interac-
tions are orders of magnitude smaller than the bare Hamiltonian
parameters. This leads to large finite-size effects that can not be
ignored—even for very large system sizes, the relative stability of

two competing states can switch in comparison to the thermo-
dynamic limit. To avoid these undesirable effects, it is imperative
to work in the thermodynamic limit. Thus, we implemented a

Fig. 1 Four-spin interactions with cutoff jri � rjj �
ffiffiffi
3

p
a on a triangular lattice. The red and blue lines represent Sr1 � Sr2ð Þ and Sr3 � Sr4ð Þ

terms, respectively.

NE4�spin ¼ ~g0 S0 � S0ð Þ2 þ ~g1
P
ν

S0 � S0ð Þ SQν
� S�Qν

ð Þ þ ~g2
P
ν

S0 � SQν
ð Þ S0 � S�Qν

ð Þ
þ ~g3 S0 � SQ1ð Þ SQ2 � SQ3ð Þ þ S0 � S�Q1ð Þ S�Q2 � S�Q3ð Þ½ �
þ ~g3 S0 � SQ2ð Þ SQ1 � SQ3ð Þ þ S0 � S�Q2ð Þ S�Q1 � S�Q3ð Þ½ �
þ ~g3 S0 � SQ3ð Þ SQ1 � SQ2ð Þ þ S0 � S�Q3ð Þ S�Q1 � S�Q2ð Þ½ �
þ ~g4 SQ1 � S�Q2ð Þ S�Q1 � SQ2ð Þ þ SQ2 � S�Q3ð Þ S�Q2 � SQ3ð Þ þ SQ3 � S�Q1ð Þ S�Q3 � SQ1ð Þ½ �
þ ~g5 SQ1 � SQ2ð Þ S�Q1 � S�Q2ð Þ þ SQ2 � SQ3ð Þ S�Q2 � S�Q3ð Þ þ SQ3 � SQ1ð Þ S�Q3 � S�Q1ð Þ½ �
þ ~g6

P
ν

SQν
� SQν

ð Þ S�Qν
� S�Qν

ð Þ þ ~g7
P
ν

SQν
� S�Qν

ð Þ SQν
� S�Qν

ð Þ
þ ~g8 SQ1 � S�Q1ð Þ SQ2 � S�Q2ð Þ þ SQ2 � S�Q2ð Þ SQ3 � S�Q3ð Þ þ SQ3 � S�Q3ð Þ SQ1 � S�Q1ð Þ½ �;

(9)
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variational approach on a fixed magnetic unit cell1. In the
following, we assume that the magnetic unit cell is spanned by
the basis La1; La2f g where a1 and a2 are the primitive vectors of
the lattice. We label different sites in the magnetic unit cell by R
and the different magnetic unitcells by ~r. Coordinates of each site
can be expressed as r ¼ ~r þ R. By using the translation symmetry
of commensurate states, we can write the Fourier transform as

c~r;R;σ ¼
ffiffiffiffiffi
L2

N

s X
~k

ei
~k�~rc~k;R;σ; (10)

where ~k labels are the allowed momenta in the reduced Brillouin
zone Br and N is the total number of sites. The KLM Hamiltonian is
block-diagonal in momentum space, H ¼ P

~kH~k , where

H~k ¼ P
R

�t
P
η

P
σ
cy~k;R;σc~k;Rþrη ;σ

"

þ J
P
αβ

cy~k;R;ασαβc~k;R;β � SR � hSzR þ D SzR
� �2#

:

(11)

Here, {r1, …, r6} denote the relative position of the nearest-
neighbor sites. Note that Bloch’s theorem is implied here:

c~k;Rþ~r;σ � eik�~rc~k;R;σ: (12)

A 2L2 × 2L2 block matrix is diagonalized for each ~k to obtain single-
particle eigenstates. The T= 0 energy density is then computed as:

E
N ¼ 1

N

P
~k

P2L2
n¼1

Θ μ� ϵn;~k

� �
ϵn;~k þ

1

L2
P
R

�hSzR þ D SzR
� �2h i

; (13)

where Θ is the step function which selects the energy levels below
the chemical potential μ, and ϵn;~k represent the eigenvalues of the
block matrix. In order to accurately identify the ground state, we
take the thermodynamic limit by converting the discrete sum
1
N

P
~k into an integral:

E
N ¼ 1

L2
R
Br

d~k
ABr

P2L2
n¼1

Θ μ� ϵn;~k

� �
ϵn;~k þ 1

L2
P
R

�hSzR þ D SzR
� �2h i

; (14)

where ABr represents the area of the reduced Brillouin zone.
In the minimization process, the chemical potential μ was

determined self consistently from the filling fraction:

nc ¼ 1

2L2

Z
Br

d~k
ABr

X2L2
n¼1

Θ μ� ϵn;~k

� �
: (15)

The various phases of the phase diagram were then obtained by
minimizing the ground state energy over all the possible spin
structures for the fixed magnetic unit cell. For each set of
parameters, we typically performed at least 20 independent
minimization runs with different initial spin configurations to
avoid metastable local minima1.
The immediate challenge is to find the right size of the

magnetic unit cell, which is a requirement to validate the
variational scheme. In the RKKY limit (J/t→0), ordering wave
vectors Qν ν ¼ 1; 2; 3ð Þ are located along the high-symmetry Γ-M
directions with magnitude ∣Qν∣= 2kF29. However, a finite value of
J/t leads to a shift of the wave vectors53. To find the correct values,
we simulated the KLM on a 96 × 96 lattice using stochastic
Landau-Lifshitz (SLL) dynamics. We employed the KPM to obtain
the free energy and local forces5,51,52. Even though a typical finite
lattice is not adequate to accurately compute the relative energies
of competing states, it is sufficient to determine the size of the
magnetic unit cell. KPM-SLL represents a completely unbiased
approach to find the period of the optimal ground state ordering.
However, since this method is not effective in handling zero
temperature, here we introduced a very small temperature T. For
J/t= 0.5, T= 10−5J2/t, D= 0, and h= 0, we integrated the

dimensionless SLL dynamics with a unit damping parameter
using the Heun-projected scheme for a total of 45000 steps of
duration Δτ ¼ 0:5

J2=tð Þ. We used the gradient-based probing method

with S= 256 colors and M= 1000 for the order of the Chebyshev
polynomial expansion52. We discarded the first 30,000 steps for
equilibration and used the rest 15000 steps for measurements.
Final results were averaged over 6 independent runs to estimate
the error bars. To get a magnetic unit cell of size 6 × 6, the results
yielded a filling fraction nc ≈ 0.0586 (see Fig. 2).

Machine learning algorithm
The first step to extract the spin Hamiltonian from the KLM (or any
other high-energy model) is generating an initial high-energy data set
on a grid of magnetic field strength hð Þ and easy-axis anisotropy Dð Þ.
This grid need not be very dense. In particular, our grid for the ML
algorithm had 47 points, while the grid for producing the final phase
diagram using the low-energy model used more than 3000 points.
For each value of h and D on the grid, we generate a random spin
configuration. Starting from this random configuration, we find the
local minimum using a gradient-based method of the original KLM
(calculation details are given in section II A). All the spin configurations
generated in the minimization process are stored along with their
corresponding energies and values of h and D in a data set1. The next
step is to set up a trial Hamiltonian:

H ¼
XM
j¼1

cjHj ðj ¼ 1; ¼ ;MÞ: (16)

where Hj consists of a constant term, real space RKKY exchange
interactions, and four-spin interactions (described in the Introduc-
tion). The effective low-energy model is expected to reproduce
the low-energy spectrum of the original KLM. Correspondingly, to
formulate the search for this effective model as an optimization
problem, we introduce the cost function:

Cost cj
� �� � ¼ 1

~N

X
D;h

X~N�1

i¼0

δD;hi ED;hi � ~E
D;h
i

� �2
; (17)

δD;hi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED;hi � ED;hmin þ ϵ

q ; (18)

where ~N is the total number of states in the data set, ED;hi is the
energy obtained by the high-energy model for the i-th spin
configuration for a particular point on grid D; hð Þ, ~E

D;h
i is the

Fig. 2 Ordering wave number as a function of the filling fraction
for the triangular KLM on a 96 × 96 lattice with h=D= 0, J/
t= 0.5, and T= 10−5J2/t, obtained from KPM-SLL simulation. The
error bars were estimated by 6 independent runs with different
random number seeds. The inset shows a snapshot of the static spin
structure factor SðqÞ in the first Brillouin zone with nc= 0.06. This
figure is reproduced from ref. 1.
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predicted energy from the trial Hamiltonian, ϵ is a very small
hyperparameter ensuring that the weight function δD;hi does not
diverge and ED;hmin is the lowest energy in the training data set for a
particular value of D; hð Þ.
The data set comprises of considerable number of states stretching

across the full energy spectrum. At first glance, it may seem
reasonable to only consider low-energy states in the training phase of
the ML model and disregard high-energy states. However, this
strategy is problematic for several reasons. Firstly, the low-energy
spectrum changes in response to variations in magnetic field and
anisotropy. The ground state and low-energy states are contingent
upon the strength of magnetic field and easy-axis anisotropy,
meaning that low energy states for one set of parameters (D, h)
may not coincide with those for a different set of parameters.
Furthermore, in absence of high-energy states in the training data set,
the training can lead to a model that assigns high-energy states with
lower energies even if the energies of the low-energy states are
accurately predicted. The accuracy of the energy prediction for the
low-energy states must surpass the energy differences between
competing states, and high-energy states must maintain a clear
separation in the energy spectrum. Given these factors, we opted to
utilize all states in the training process. To prioritize the lower energy
segment while accommodating the high-energy states, we imple-
mented a weight factor that is guided by the energies of these states.
The lower the energy, the greater the weight, and the higher the
energy, the lower the weight. The weight factor δD;hi not only
determines the relative weight of low and high-energy states in the
original model, but also keeps track of the magnetic field and
anisotropy for which the state was generated. To optimize the weight
factor, we implemented our algorithm with three different choices:

δD;hi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED;hi � ED;hmin þ ϵ

q ; 1;
1

jED;hi � ED;hmin þ ϵj

8><
>:

9>=
>;: (19)

For δD;hi ¼ 1, the precision in the energy prediction for low-energy
states was comparable to the energy scale of the low-energy
excitations and hence, it was not adequate to establish the
appropriate energy order of the competing low-energy states. For
the choice

δD;hi ¼ 1

jED;hi � ED;hmin þ ϵj ;

there was an excessive weight on the low-energy states and, as a
consequence, the trained model had exceedingly depleted
precision for other states. The choice

δD;hi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED;hi � ED;hmin þ ϵ

q
provided an appropriate balance between the accuracy for the
low-energy and high-energy states. After setting up the cost
function and initializing the coupling constants, we perform the
following three steps iteratively:

1. Update parameters cj
� �

iteratively using the gradient

descent method: cj ! cj � α
∂Cost cjf gð Þ

∂cj
until cost function

reaches a minimum (α is the learning rate). Keeping the
learning rate α small, the gradient can be analytically
calculated.

cj ! cj � α
X~N�1

i¼0

∂Cost cj
� �� �

∂Ei cj
� �� � ∂Ei cj

� �� �
∂cj

(20)

) cj ! cj � α
X~N�1

i¼0

∂Cost cj
� �� �

∂Ei cj
� �� � hψijHj jψii (21)

One of the advantages of the search for a low-energy classical
model is that multivariate weighted linear regression can be used
to find the optimal model parameters. In contrast, a non-linear
regression is required for quantum mechanical low-energy models
because the eigenstates change with the model parameters31. In
the classical limit, each direct product of coherent spin states is an
eigenstate, a feature not shared by quantum models. Conse-
quently, every eigenstate of a low-energy model remains an
eigenstate of the high-energy model, even when the low-energy
model parameters are altered.

2. Produce the zero-temperature phase diagram of the “ML
model” (with the parameters that minimize the cost
function) by energy minimization via a gradient descent
method. For local minimization algorithms, the converged
results are usually metastable local minima, i.e., different
initial spin configurations can lead to different final states.
Correspondingly, for each h and D, we typically performed
60 independent runs with different random initial spin
configurations to find the global minima.

3. For the global minimum energy states of the ML model
calculate the KLM energies and add them to the training
data set. Then update the weights δD;hi for the new
variational space.

The iterative process stops when the required precision is reached
for the minimized states, i.e., when the “ML model” produces the
same lowest energy states as in the previous iteration up to a certain
decimal place. When the model converges, the error for the low-
energy states, jE � ~Ej, is lower than the energy difference jE0;0A � E0;0B j
between competing states A and B near the phase boundaries. This
three-step iterative approach addresses the challenge of choosing
states from the continuous spectrum by avoiding arbitrary determi-
nations of which states are important. The models that are produced
at each intermediate step of the iterative process are used to generate
new low-energy states, which are added to the training data set. The
intermediate models continually evolve, progressively enriching the
training data set with relevant states until the model is converged.
To obtain a minimal model that includes the minimum number

of interaction terms, we apply an L1 norm regularization of the
cost function31,54. The details of this procedure are described in
Sec. IV. Once the L1 regularization eliminates the irrelevant terms
from the Hamiltonian, we optimize the model again without the
regularization term. In this way, the powerful technique of L1
regularization outputs a minimal, yet accurate, low-energy model
Hamiltonian.

Phase diagram of the ML model
Our algorithm took four iterations to converge for J/t= 0.5. Table 1
shows the real space Hamiltonian parameters for each iteration and
the final minimal model. Note that all the exchange parameters are
about three orders of magnitude smaller than the bare energy
scales (t, J) in the original model, which again explains the difficulty
of directly solving the KLM numerically. The first neighbor RKKY
interaction (J 1) is an order of magnitude larger than the next
biggest interaction, and the magnitude of four-spin interactions is
comparable to the other RKKY interactions, confirming that the KLM
parameters are in the intermediate-coupling regime.
To obtain the phase diagram of the ML model, we generated

random spin configurations for each h and D and used the gradient
descent method to minimize the energy. To find the global
minimum for each point, we performed multiple independent runs
with different initial random spin configurations. The phase
diagrams obtained from variational calculations of the original
KLM and the ML models are given in Fig. 3. These diagrams include
seven different phases: the vertical spiral (VS), vertical spiral with in-
plane modulation along one direction (VS″), vertical spiral with in-
plane modulation (VS0), 2Q-conical spiral (2Q-CS), 2Q-conical spiral
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with unequal in-plane structure factor intensities(2Q-CS0), SkX and
the fully polarized (FP) phase, where the real space spin
configurations of all the phases are given in refs. 1,29. The ML
models reproduce the phase boundaries with remarkable accuracy.
Even the simplest minimal model in momentum space (Table 2) is
able to predict the correct phase boundaries. We should note,

however, that this might not be always the case for the minimal
model in momentum space if the ground state magnetic orderings
have sizable weight in higher harmonics. For the phase transitions:
VS″ to VS0 and VS0 to VS, the phase boundaries predicted by the ML
models are qualitatively accurate but quantitatively they do not
reproduce the KLM phase boundaries. This shortcoming of the low-
energy ML model can be attributed to the extremely small energy
differences between the three competing phases that are
approximately equal to a single-Q vertical spiral. Magnitudes of
the extra Fourier components, that differentiate between VS, VS0 and
VS″ states are two orders of magnitude smaller than the magnitude
of major Q-component. Consequently, the exceedingly small energy
difference between these phases cannot be captured by the limited
number of spin interaction terms included in the ML Hamiltonian.
The next question that we can ask is: what can we learn from the

effective low-energy model derived with the ML protocol? To answer
this question, we will consider the problem of understanding the
stabilization mechanism of the SkX phase. As it has been shown in a
recent work29, a finite easy-axis anisotropy is required to stabilize the
field-induced SkX phase of the RKKY model. Since the phase diagram
of the KLM for J/t= 0.5 includes a field-induced SkX phase for D= 0,
it is clear that the effective four-spin interactions are responsible for its
stabilization in absence of single-ion anisotropy. It is then interesting
to inquire about the nature of the four-spin interactions that stabilize
the SkX phase. The low-energy effective spin model given in Eq. (9)
includes two types of four-spin interactions: those involving the
uniform spin component S0 and those that only involve the finite-Q
Fourier components SQν

with ν= 1, 2, 3. The field-induced SkX phase
has been traditionally attributed to the ~g3 interaction

55, which is only

Fig. 3 T= 0 phase diagrams of the KLM at J/t= 0.5 and nc= 0.0586. a phase diagram obtained via high-energy model (KLM) [reproduced
from Fig. 2b of ref. 1. The error bars of phase boundaries at low field indicate the limited numerical accuracy due to quasi-degenerate states.
b phase diagram of the real space spin model obtained via ML. c phase diagram corresponding to real space ML model after L1 regularization,
and d phase diagram corresponding to the minimal momentum space model obtained from L1 regularized real space ML model. The phase
boundaries at low field in b–d are denoted by the filled circles, where the corresponding lines are guides to the eye.

Table 2. Momentum space Hamiltonian parameters for Eq. (7) in units of 10−3t.

~J ðQÞ ~J ð0Þ ~g1 ~g2 ~g3 ~g4 ~g5 ~g6 ~g7 ~g8 ~g0

−6.245024 −6.497512 −0.020120 1.627376 −0.347720 1.592957 −2.084520 1.183781 −1.380299 −3.438664 0.343609

Table 1. Real space Hamiltonian parameters for Eqs. (6) and (8) at
each iteration (units: 10−3t).

Iteration 1 Iteration 2 Iteration 3 Iteration 4 After L1

J 1 −2.35165 −2.64772 −2.64827 −2.64978 −2.68884

J 2 −0.39479 −0.25397 −0.25489 −0.25327 −0.21033

J 3 −0.07018 0.01546 0.01673 0.01721 /

J 4 0.22517 0.25812 0.25730 0.25776 0.26126

J 5 0.08376 0.15388 0.15375 0.15422 0.15312

J 6 0.21353 0.07107 0.07125 0.07081 0.05770

f1 −0.07113 0.01635 0.02298 0.01984 0.02927

f2 −0.75221 −0.33654 −0.33809 −0.33496 −0.27487

f3 −0.13638 −0.12970 −0.13573 −0.13209 −0.14971

f4 −0.10768 −0.09602 −0.09395 −0.09633 −0.08659

f5 0.28331 0.04871 0.04790 0.04722 /

f6 0.12508 0.16483 0.16582 0.16523 0.18360

f7 0.84930 0.31596 0.31372 0.31393 0.22350
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present in three-fold symmetric systems, such as the one under
consideration, and that involves the uniform field-induced compo-
nent S0. The simple reason is that this contribution is finite only for
spin configurations that have finite Fourier components SQ1 , SQ2 and
SQ3 . However, the negative sign of ~g3 that we are obtaining from the
ML model (see Table 2) indicates that this term actually increases the
energy of the SkX phase relative to the competing single-Q and
double-Q orderings. The prevalent interactions that assist in the
stabilization of SkXs are ~g8 and ~g5 – They have the biggest magnitude
in the minimal model and the large negative coefficients correspond
to an attractive interaction between pairs of different modes that
lowers the energy for triple-Q and double-Q orderings relative to the
single-Q vertical spiral ordering. The magnitude of their negative
contribution to the SkX energy is higher than that of double-Q spiral
and thus they help stabilize the SkX phase. We note that the single-Q
vertical spiral ordering is stable at low enough fields because it is the
only phase that has zero magnetization, implying that the weight
jjSQ1 jj2 is higher than the sum of the three weights jjSQ1 jj2 þjjSQ2 jj2 þ jjSQ3 jj2 of the SkX and the double-Q phases. As we will
discuss in Section III, this observation has important consequences for
the stabilization of SkX phases in tetragonal materials56,57.

Dynamics
In view of the robustness demonstrated by our ML-derived models in
predicting the ground state physics of the system, it is only logical to
inquire about their ability to predict low-energy dynamics. Given that
the prediction of low-energy dynamics was not a primary objective
during the development of the model, a successful demonstration of
its proficiency in this regard would be surprising. Thus, to further
check the validity of the ML models, in this section, we compare the
underlying spin dynamics to the one obtained from the original KLM.
For concreteness, in this section, we choose a magnetic field

h= 0.01t that is higher than the saturation field, i.e., strong enough
to fully polarize the local spins, and D= 0. At very low temperatures
(linear regime), the semi-classical spin wave dispersion can be
obtained by solving the Landau-Lifshitz (LL) equations of motion:

dSi
dt

¼ �Si ´
dE
dSi

; (22)

where E is the internal energy of the system.
The dynamical spin structure factor can be obtained by Fourier

transforming the spin configurations both in space and time:

Sabðk;ωÞ � ω

T
hSakðωÞSb�kð�ωÞi; (23)

where the prefactor ω/T≫ 1 accounts for the classical-quantum
correspondence factor required to obtain the quantum mechan-
ical result (linear spin wave theory) from the classical one58, and

SkðωÞ � 1ffiffiffiffiffi
TS

p
Z TS

0
dteiωt

1ffiffiffiffi
N

p
X
i

e�ik�riSiðtÞ: (24)

The above Eqs. (22)–(24) can be applied both to the original KLM
and to the effective ML models. The main difference is that the cost of
computing the local forces− dE/dSi from the KLM is much higher in
comparison with the effective low-energy spin models. In this work,
the forces of the KLM are always computed with the KPM5,51,52,59.
To obtain Sðk;ωÞ from the KLM, we initialized the spins from

the fully polarized state on a 216 × 216 triangular lattice. We then
applied the KPM-SLL method (same as in Sec. II A) to equilibrate
the system at T= 10−5t with parameters nc= 0.0586, t= 1, J= 0.5,
D= 0, and h= 0.01. We used the Heun-projected scheme with a
unit damping parameter and a total of 14000 steps of duration
Δτ= 2.5/(J2/t). In addition, we adopted S= 324 colors for the
gradient-based probing. The order of the Chebyshev expansion
was set to M= 2000.
The spin configuration at the last step was used to seed the LL

dynamics (22), where the damping is set to zero. Once again, the

local forces were evaluated using the KPM with M= 2000 and
S= 324. For convergence, we applied the Heun-projected scheme
with a total of 40000 steps of size Δτ= 0.25/(J2/t) [TS= 104/(J2/t) in
Eq. (24)]. Finally, we used 10 independent runs to compute the
average of Sðk;ωÞ, which is presented in Fig. 4.
For the ML models, we can calculate the magnon dispersion

analytically in the fully polarized state by implementing the usual
Holstein-Primarkoff transformation (linear spin waves):

ωk ¼ ΔE þ
X
r

tr cos k � rð Þ; (25)

where

ΔE ¼ hþ Dð1� 2SÞ � 6 J 1 þ J 2 þ J 3 þ 2J 4 þ J 5 þ J 6ð ÞS
� 12 f 1 þ f 3ð ÞS3 � 24 f 2 þ f 4 þ 2f 6ð ÞS3
� 12 2f 5 þ f 7ð ÞS3;

(26)

and tr depends only on ∣r∣, with tr= t1 for nearest-neighbors,
tr= t2 second-nearest-neighbors, and so on and so forth:

t1 ¼ J 1Sþ 2f 1 þ 4f 2 þ 4f 6 þ 4f 5 þ f 7ð ÞS3; (27)

t2 ¼ J 2Sþ 2f 3 þ 4f 4 þ 4f 6 þ f 7ð ÞS3; (28)

tν ¼ J νS fν ¼ 3; 4; 5; 6g: (29)

Despite not being explicitly designed to reproduce dynamical
properties, the ML model’s ability to capture the main features of

Fig. 4 Magnon dispersion in the fully polarized phase.
a Comparison between linear spin wave results for the ML model
before L1 regularization and Sðk;ωÞ obtained with the original KLM
model. b Comparison between the ML model after L1 regularization
and Sðk;ωÞ obtained with the original KLM model.
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the magnon dispersion (as demonstrated in Fig. 4) is quite
remarkable. The weight factor δD,h indirectly encodes the
information about low-lying excitations in the model. The main
quantitative discrepancy arises because the magnon dispersion
predicted by the ML model is an analytical function of k. In
contrast, the magnon dispersion obtained from the KLM seems to
have a discontinuous gradient near the band bottom. We must
note, however, that this singular behavior originated from the
long-range nature of the effective spin-spin interactions. Since we
are cutting off the bilinear spin interactions beyond sixth
neighbors in the ML model, the resulting magnon dispersion is
necessarily an analytic function of k. We then expect that the
agreement between the magnon dispersions obtained from the
high and low-energy models will systematically improve upon
including longer-range interactions in the effective spin Hamilto-
nian. Comparisons of the excitation spectrum of both models can
then be used as a criterion to fix the cutoff length scale of the
spin-spin interactions included in the low-energy model.

DISCUSSION
Our work unravels a pathway to derive spin Hamiltonians when
conventional methods, like perturbation theory, fail. One such
example is a triangular KLM which gives rise to effective four-spin
interactions that are non-analytic functions of J/t. We demonstrate
that the effective low-energy model derived with the ML-assisted
protocol accurately predicts the main phase boundaries of the
phase diagram obtained by directly simulating the KLM.
Remarkably, over 98 percent of the points in the phase diagram
represented regions where the model was not trained, yet it
accurately predicted the ground states, highlighting the general-
izability of our model. While simulations of the KLM are
numerically expensive, simulations of the effective spin model
are roughly two orders of magnitude faster for the magnetic unit
cell of 36 spins that we used in this work. The protocol presented
in this work can then be used as an efficient tool to compute the
phase diagram of the original KLM. The most expensive part is the
generation of the training data set that is much smaller than the
set required to build the phase diagram of the original KLM.
While numerical efficiency is an important aspect to consider, the

most relevant aspect of our contribution is the use of ML to gain
new insights into the underlying physical mechanisms. While this is
always a main motivation behind the derivation of simple effective
low-energy models, we are not aware of any previous attempt of
using ML for this purpose in situations where the coefficients of the
effective model are non-analytic functions of the coupling constant.
This latter aspect represents the main innovation of our work
relative the the pioneering work by Fujita et al.31, who used
supervised learning to derive an effective spin-1/2 Hamiltonian in
the strong-coupling limit of a half-filled Hubbard model, i.e., in a
situation where the effective low-energymodel can be derived from
degenerate perturbation theory. As we explained in detail, this
qualitative difference introduces additional challenges to the
problem, making it more intricate. Our approach is also qualitatively
different from the more standard applications of ML, where the
effective spin model works as a “black box” that can infer the energy
of given spin configuration without revealing the nature of the
effective spin interactions60–62. While these approaches tend to be
numerically more accurate, their opaque nature can severely limit
our understanding of the physical problem.
The simplicity of the effective low-energy model derived with

our ML-assisted protocol provides insights into the stabilization
mechanism of the different field-induced multi-Q magnetic
orderings. Previous studies of the RKKY model showed that a
finite easy-axis anisotropy is required to stabilize a magnetic field-
induced triple-Q SkX phase29. In contrast, as shown in Fig. 3a, the
zero-temperature phase diagram of the KLM includes a field-
induced SkX phase even in absence of easy-axis anisotropy1. The

source of stabilization of SkX was speculated to be four-spin
interactions mediated by itinerant electrons, which are expected
to become significant when the ratio J/t is not much smaller than
one. The procedure that is described in this work allows us to
quantify the magnitude of all symmetry allowed four-spin
interactions without introducing any bias, other than their limited
range, in the types of interactions that can emerge at low
energies. The good agreement between the phase diagrams of
the original KLM and the effective low-energy model suggests that
the field-induced SkX phase is indeed stabilized by effective four-
spin interactions that turn out to be attractive between pairs of
modes with different wave vector Qν. While this attractive channel,
which is already present at zero magnetic field, was conjectured to
be present in previous studies of zero field multi-Q orderings in
metallic systems9,13,14, it was not clear until now if it is also
responsible for the field-induced SkX phases that were reported in
more recent studies of centrosymmetric metallic systems1. In
general, this attractive interaction between pairs of modes is
expected to be present whenever the ordering wave vectors Qν

connect different regions of the Fermi surface. On a more intuitive
level, the multi-Q ordering gaps out a bigger region of the Fermi
surface in comparison to the single-Q phase.
As we discussed in Sec. II C, the low-energy spin model derived

with the ML-assisted protocol provides insights into the stabiliza-
tion mechanism of the SkX phase in KLMs. After recognizing that
the stabilization arises from an attractive interaction between pairs
of different modes fQν;Qν0 g represented by the ~g8 and ~g5 terms
of Eq. (9), and that the ~g3 contribution, which is usually invoked as
the most natural driver of the SkX phase42,55, is actually increasing
the energy of the SkX relative to the competing orderings, we can
infer that field-induced square SkX phases should also arise in
KLMs with tetragonal symmetry. The key observation is that the ~g3
term is no longer relevant because the square SkX is a double-Q
(Q1 and Q2) ordering with Q1⋅Q2= 0. This means that the square
SkX phase will still benefit from the attractive interaction between
the pair of different modes, while the penalization from a ~g3-like
term with Q3=−Q1−Q2 will be significantly smaller because Q3

is no longer a fundamental wave vector, but a second harmonic
(jjSQ3 jj 	 jjSQ1 jj; jjSQ2 jj). The only remaining obstacle for the
stabilization of the square SkX is the RKKY energy cost of the
second harmonic component jjSQ1þQ2 jj. In the perturbative
regime, ∣J∣ ≪ ∣t∣, this energy cost of order J2jjSQ1þQ2 jj2ðχQ1

�
χQ1þQ2

Þ can be reduced by choosing tetragonal materials/models
with square-like Fermi surfaces. In other words, square SkXs
should emerge for J2jjSQ1þQ2 jj2ðχQ1

� χQ1þQ2
ÞNt~g8jjSQ1 jj2jjSQ2 jj2.

Finally, it is interesting to note that the ~g7 biquadratic interaction,
which has been adopted in previous works as the only 4-spin
interaction generated by the KLM12,16, is revealed by our ML
protocol to be a subdominant term (see Table 2). Since this
biquadratic interaction was selected based on a trend observed in
the divergent terms of the perturbative expansion in J/t, we
conclude that such procedure is not reliable to quantify the relative
strength of the different symmetry allowed four-spin interactions.
These simple examples illustrate howML-assisted protocols can be

used to extract guiding principles. While it is natural to assume that
the ~g3 term is responsible for the stabilization of SkXs in hexagonal
lattices55, this “intuitive” argument is the result of a cognitive bias
which, in absence of additional information, selects the simplest
explanation over those that involve a larger number of assumptions
and variables. While Occam’s razor is a very useful principle to guide
our understanding of complex systems, it can also lead to
oversimplifications caused by lack of validation of the implicit
assumptions. The unbiased nature of the ML-assisted protocol not
only allows us to correct these assumptions, but also gives us enough
information to infer new guiding principles. In other words, besides
providing an efficient tool to accelerate the computation of phase
diagrams, the ML approach is also an efficient learning tool that can
be used to understand mechanisms and accelerate discovery.
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METHODS
Sparse modeling
In setting up the trial Hamiltonian, it is usually not clear how to
determine the number of terms to be included in the initial
Hamiltonian. Too many terms can lead to over-fitting, reducing
the generalization capability of the acquired model. Furthermore,
a minimal effective Hamiltonian must include the minimum
number of symmetry allowed terms necessary to reproduce the
phase diagram and the values of relevant physical observables
that are predicted by the high-energy model. After beginning with
an initial Hamiltonian comprising of all the RKKY interaction up to
sixth neighbor and all the four-spin interactions up to second
neighbor, we implement the L1 norm regularization of the cost

function to eliminate the least important interactions:

Cost cj
� �� � ¼ 1

~N

X
D;h

X~N�1

i¼0

δD;hi ED;hi � ~E
D;h
i

� �2
þ λ

X
j

jcj j: (30)

The added second term in the cost function, with a positive λ,
penalizes large values of the coupling constants. We could have
also used L2 regularization which adds “squared magnitude” of
the coefficients as penalty term to the loss function instead of the
“absolute value of magnitude” of coefficients in L1 regularization.
Both L1 and L2 regularizations avoid over-fitting, but the key
difference is that while L2 pushes the coefficients to become
small, L1 regularization gives sparse estimates (in a high
dimensional space it shrinks the less important features’
coefficients to zero). Since our main purpose is to obtain the
simplest model that reproduces the low-energy physics of the
original high-energy model, L1 regularization is the preferred
option. The optimal solution is then obtained by minimizing the
new cost function with the gradient descent method or
equivalently with multivariate weighted regression with L1
penalty. Once this procedure eliminates the least important
interactions, we get an ansatz for the minimal Hamiltonian. The
new ansatz is then optimized without the regularization term to
get the actual estimation of the minimal model.
Determining the range for hyperparameter λ to deduce the

most important features can be challenging. We first calculated
the weighted mean square error of the full data (weight for each
data entry is given by δD;hi ) and then selected a range of λ so that
the contribution from the regularization term was in the range
from zero to 100% of the calculated weighted mean square error.
By using this range, we avoided the problem of too high
regularization penalty. As the value of λ is gradually increased, J3
and f5 go to zero (see Fig. 5). After eliminating these two
interactions, we select the final ansatz i.e., the remaining
interactions and apply the last step of our algorithm to get the
minimal model (Table 1). In principle, we could have eliminated
more interactions by increasing the value of λ further, but that
would have resulted in a less accurate low-energy model.
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