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Rapid design of top-performing metal-organic frameworks
with qualitative representations of building blocks
Yigitcan Comlek 1, Thang Duc Pham2, Randall Q. Snurr 2 and Wei Chen 1✉

Data-driven materials design often encounters challenges where systems possess qualitative (categorical) information. Specifically,
representing Metal-organic frameworks (MOFs) through different building blocks poses a challenge for designers to incorporate
qualitative information into design optimization, and leads to a combinatorial challenge, with large number of MOFs that could be
explored. In this work, we integrated Latent Variable Gaussian Process (LVGP) and Multi-Objective Batch-Bayesian Optimization
(MOBBO) to identify top-performing MOFs adaptively, autonomously, and efficiently. We showcased that our method (i) requires no
specific physical descriptors and only uses building blocks that construct the MOFs for global optimization through qualitative
representations, (ii) is application and property independent, and (iii) provides an interpretable model of building blocks with
physical justification. By searching only ~1% of the design space, LVGP-MOBBO identified all MOFs on the Pareto front and 97% of
the 50 top-performing designs for the CO2 working capacity and CO2/N2 selectivity properties.

npj Computational Materials           (2023) 9:170 ; https://doi.org/10.1038/s41524-023-01125-1

INTRODUCTION
With recent advances in machine learning (ML), material system
design and development has undergone rapid acceleration1,2.
However, one of the major challenges in applying ML to material
system design lies in finding the appropriate design representa-
tions3. Most material design applications take advantage of
quantitative (or numerical) design variables to represent material
systems. In most cases, these quantitative descriptors (features)
require either expert knowledge or data analysis to find the most
appropriate ones. On the other hand, although most qualitative
(or categorical) variables (e.g., chemical elements, chemical
compositions) are more accessible than quantitative variables, it
is challenging to directly include qualitative variables as a part of
the design variables in automated materials design. Metal-organic
frameworks (MOFs) are an example of such materials systems.
MOFs are a class of porous crystalline materials that have been
used extensively for gas storage4,5, gas separation6–9, and
catalysis10–12. Because of their highly tunable nature, MOFs have
been looked at as a potential solution for different applications
such as carbon dioxide (CO2) capture and separation13,14. Using a
vector notation in which each element corresponds to a
qualitative design variable such as topology, node, and edge,
MOFs can be represented with the sole usage of qualitative
variables as shown in Fig. 1. However, the versatility and different
possible combinations of the MOF building blocks lead to millions
of candidates. To demonstrate a simple example, consider a MOF
system with a topology that requires 2 nodes and 3 edges for
construction. Selecting only 20 different building blocks for each
node and edge leads to a combinatorial design space of more
than 106 MOF candidates. Due to the high experimental cost, both
in time and resources, computational approaches have been
increasingly used to replace experimental exploration3.
While high-throughput screening approaches15–20 and ML

techniques21–23 have been utilized to computationally search or
design for top-performing MOF structures in different applica-
tions, existing approaches usually rely on large data sets and high-

dimensional physical descriptors to represent the material design
space. These processes can be both time consuming and property
specific, meaning that the ML models and descriptors are often
not transferable to different design objectives. Finally, many ML
models are viewed as ‘black boxes’ that are not easily
interpretable for understanding how and why the model performs
the way it is24–26. Therefore, a new and a generic computational
approach that (i) employs a simple but descriptor-free (featureless)
design representation, (ii) requires substantially smaller amount of
data, and (iii) is easily interpretable would be highly useful for the
design of MOFs.
Bayesian optimization (BO) has been shown to be effective for

identifying the optimum candidates for materials systems with
large design spaces and local optimums in different applications
such as drug discovery, additive manufacturing, and genetics27,28.
BO has also been used to identify high-performance MOFs29,30.
However, previous works on MOFs require expert knowledge for
the choice of appropriate physical descriptors (e.g., gravimetric
surface area, largest included sphere diameter) as inputs for
surrogate model training. Gaussian Process (GP) is a popular
surrogate model choice for BO as it provides both predictions and
uncertainty quantification, which are the two main components of
the acquisition function for choosing samples when applying BO.
However, GP models fall short when there are qualitative design
variables. This bottleneck has been recently bypassed by the
Latent Variable Gaussian Process (LVGP)31 approach, which can
incorporate qualitative variables into GPs by implicitly mapping
each qualitative variable into a quantitative space through low-
dimensional latent variables. Specifically, as the influence of any
qualitative variable on any quantitative response must be always
due to some underlying, possibly high-dimensional, quantitative
physical variables, the latent variable approach provides physics-
based dimension reduction. Therefore, the latent variables and
their locations in the latent space could provide physically
meaningful information on how the qualitative variables influence
the responses. In the context of latent space learning, the term

1Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA. 2Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL,
USA. ✉email: weichen@northwestern.edu

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01125-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01125-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01125-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01125-1&domain=pdf
http://orcid.org/0000-0002-3654-1576
http://orcid.org/0000-0002-3654-1576
http://orcid.org/0000-0002-3654-1576
http://orcid.org/0000-0002-3654-1576
http://orcid.org/0000-0002-3654-1576
http://orcid.org/0000-0003-2925-9246
http://orcid.org/0000-0003-2925-9246
http://orcid.org/0000-0003-2925-9246
http://orcid.org/0000-0003-2925-9246
http://orcid.org/0000-0003-2925-9246
http://orcid.org/0000-0002-4653-7124
http://orcid.org/0000-0002-4653-7124
http://orcid.org/0000-0002-4653-7124
http://orcid.org/0000-0002-4653-7124
http://orcid.org/0000-0002-4653-7124
https://doi.org/10.1038/s41524-023-01125-1
mailto:weichen@northwestern.edu
www.nature.com/npjcompumats


“physically-meaningful” can be associated to explaining the cause-
effect relationships between the design variables (inputs) and
properties (output) through supervised learning, which is different
from many existing latent space learnings through unsupervised
learning methods. LVGP still possesses the qualities of a GP model
in terms of providing fast surrogate modeling, capturing nonlinear
responses, providing predictions, and quantifying uncertainties.
Thus, LVGP bridges the gap for incorporating qualitative informa-
tion into engineering design applications and has been already
employed in data-driven materials design research32,33. Although
LVGP and BO have been applied to materials design and
development, its application has been limited to qualitative
design variables with small number levels, i.e., the design options
per variable.
Here we present the Latent Variable Gaussian Process Multi-

Objective Batch Bayesian Optimization (LVGP-MOBBO) framework
to perform rapid design of superior MOFs directly from the
building blocks that construct the material. Specifically, we are
interested in identifying the Pareto front for a multi-objective
optimization and top-performing MOFs without any human
intervention. We are particularly interested in examining the
performance of the approach under both small and large numbers
of levels for qualitative variables. We take advantage of the readily
available qualitative building block information that is used to
construct the MOFs and build an interpretable LVGP surrogate
model that cooperates with MOBBO to adaptively lead towards
promising MOF candidates for CO2 capture and separation. With
the integration of batch BO, this work shows that descriptor-free
LVGP can also be effectively extended to applications with
substantial number of levels.

RESULTS
Design spaces
To show the effectiveness of LVGP-MOBBO, we demonstrated our
framework on a design space using the fof topology, which
consists of 4 types of building blocks (BB). We used 7 organic
nodes (Nodular BB1) and 4 inorganic nodes (Nodular BB2). There
are also two types of edges in the fof topology, and we used 41
edges for Connecting BB1 and 42 edges for Connecting BB2. All
the building block choices are displayed in Fig. 2. For the use of
MOFs in carbon capture, two of the most important metrics are
the CO2 working capacity and the CO2/N2 selectivity. Since we
focused on method development, we calculated these properties
for all MOFs in our design space in advance to aid in testing
different variations of the search methods. The first design space,

which we denoted as the Reduced Design Space (RDS) for
validation purpose, consists of 1001 MOF designs that were
specifically selected by choosing certain building blocks high-
lighted in red in Fig. 2 to demonstrate the interpretability of LVGP
and the effectiveness of finding optimal MOF designs when
combined with BO. The chosen building blocks have known
similarities and differences in chemistry and structures, which are
reflected in the distances between the building blocks in the
latent space of LVGP. Further details of RDS are provided under
the Performance section. The second design space, which we
denoted as Entire Design Space (EDS) contains 47,740 MOF design
candidates that were constructed by combining all available
building blocks (7, 4, 41, 42) for the organic node, inorganic node,
and the two edges (Fig. 2). Our framework, LVGP-MOBBO, was
demonstrated on this design space to show the effectiveness of
LVGP when a large number of building blocks (levels) are present.
The two main goals of our design optimization are to identify (i)

the Pareto front of MOF designs between the CO2 working
capacity and CO2/N2 selectivity, and (ii) the top-performing MOFs.
The Pareto front represents the set of MOF designs that possess
properties that are superior to the rest of the design space but
cannot be improved without sacrificing the other properties of
interest34. Furthermore, the top-performing MOFs represent the
MOF designs that are closest to the Utopian MOF design in the
Euclidian space. The Utopian MOF corresponds to a hypothetical
MOF design that possesses the maximum available property of all
objectives, which is often not achievable and therefore considered
to be “Utopian”. In many multi-objective optimization applica-
tions, identifying solutions near the Utopian point is used to
evaluate the performance of algorithms in terms of optimizing
both objectives at the same. As a result, the Utopian MOF is used
as a reference point to identify MOF designs, which we denote as
“top-performing” designs, that have high values of both
properties.

Framework
We would like to explore a given design space with as few
resources as possible. Thus, we implemented the LVGP-MOBBO
framework to perform descriptor-free MOF design optimization
with only qualitative representations of building blocks. Our
proposed LVGP-MOBBO design exploration framework, consists of
5 major parts: Initial Design of Experiments, Property Evaluation,
Latent Variable Gaussian Process, Multi-Objective Batch Bayesian
Optimization, and Design Solution (Fig. 3).

Fig. 1 The qualitative representation and construction of metal-organic framework materials. Each MOF can be represented with a
“vector” where each element (letter) in the vector corresponds to a choice of building block or topology. With the combination of different
building blocks and topologies explored in this work, there are more than 104 hypothetical MOFs to be explored.
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Initial Design of Experiments (DOE). For a large design space
optimization, the initial selection of design candidates plays a key
role. Ideally, they should span the design space as much as
possible, for which we employed the optimal sliced Latin
hypercube sampling (OSLHS)35. The generated MOF designs were
then passed into the next task for property evaluation. The
detailed generation of the DOE is explained in the Methods
sections.

Property Evaluation. Hypothetical MOFs were created using the
ToBaCCo 3.0 package36, and the geometry optimization was
carried out using the LAMMPS code37 with the UFF4MOF force
fields38. Grand canonical Monte Carlo (GCMC) simulations were
performed using the RASPA package39 to evaluate the CO2

working capacity and CO2/N2 selectivity properties. Further details
of the property evaluation can be found in the Methods section.

Latent Variable Gaussian Process (LVGP). Using the available MOF
designs and their associated properties from the GCMC simula-
tions, one LVGP model for each property was trained. Next, the
properties of unexplored MOFs in the design space were
predicted along with their quantified uncertainty in predictions,
which are utilized by the MOBBO. The details of the LVGP
modeling are provided in the Methods section.

Multi-Objective Batch Bayesian Optimization (MOBBO). Utilizing
both the predictions and the uncertainty estimates on the
remaining candidates in the design space from the LVGP model,
the MOBBO selects a batch of MOFs that has the highest Expected
Maximin Improvement (EMI) values. The EMI is formulated in a
way that both objectives have equal importance. A batch of B
number of MOF designs with the highest EMI values is selected

and passed on to the Property Evaluation task once again. The
framework then continues in this cycle until the stopping criterion
(e.g., number of MOFs identified) is reached. Further details and
formulation of the MOBBO are provided under the Methods
Section.

Design Solution. Once the optimization stopping criterion is
reached, the identified design candidates are analyzed further to
distinguish the Pareto front and the top-performing MOF designs.
Finally, the latent space of each building block is visualized to
make inferences about their influence on each property of
interest.

Validation using a reduced design space (RDS)
Before applying our proposed methodology to a large design
space, we validated the effectiveness of LVGP and BO on MOFs by
implementing the optimization campaign on a relatively small
design space. This space contains Connecting BBs that were
handpicked to show the novelty of the methodology by validating
the latent variables obtained at the end of the optimization
campaign and assessing the efficiency of the methodology for
designing MOFs that possess superior properties. All the Nodular
BBs (7 and 4 levels for Nodular BB1 & BB2) and 6 building blocks
from the Connecting BB1 & BB2 were selected for RDS. Specifically,
we selected Connecting BBs labeled as {5, 7, 8, 28, 29, 41} (Fig. 2).
The specifically selected Connecting BBs contain known differ-
ences and similarities in both structure and chemistry. The blocks
{5, 7, 8} have similar molecular structures with different functional
groups (-CN, -F, -NH2). Blocks {28} and {29} are extended structures
of blocks {5} and {7}, respectively. Finally, block {41} is an empty
building block, which facilitates a direct connection between the

Fig. 2 The design space of fof topology used in the study. The fof topology consists of four building block options (aNodular Building Block 1,
b Nodular Building Block 2, c Connecting Building Block 1 and Connecting Building Block 2). Building blocks highlighted in red are selected for
the Reduced Design Space (RDS). For the Entire Design Space (EDS) all of the building blocks shown in the figure are used.
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Nodular BB1 and BB2 and it is known to result in superior
properties for some gas separation applications when included in
the design of MOFs. As a result, we first aimed to validate the
influence of different choices of building blocks on the properties
through analyzing and explaining the spatial relationships
between latent variables obtained from the LVGP models. Next,
we aimed to demonstrate the effectiveness of LVGP for identifying
optimal building blocks when used with BO.
The RDS contains 1001 MOF design candidates and three Pareto

front MOFs designs. The property space with the known Pareto
front and the Utopian designs is shown in Fig. 4a. In addition to

demonstrating the effectiveness of LVGP for MOFs, the design
optimization goal of this study was to identify both the Pareto and
other top-performing designs. To account for all the possible
Nodular BB1s, 7 MOFs were chosen for the initial DOE using
OSLHS. Each of the 7 MOFs corresponds to one level of the
Nodular BB1. Furthermore, due to the small number of candidates,
we chose to add one MOF design, B ¼ 1, during each iteration of
BO. Batch BO was implemented on a larger design space, as
discussed later in the paper.
The LVGP-BO design optimization campaign ran until the

stopping criteria of identifying both the Pareto front and the 10

Fig. 3 The Latent Variable Gaussian Process-Multi Objective Batch Bayesian Optimization (LVGP-MOBBO) framework. The initial set of
materials, also known as DOE, is generated by optimal sliced Latin hypercube sampling. Property Evaluation includes MOF construction and
prediction of their adsorption properties using Grand canonical Monte Carlo simulations. The LVGP builds the surrogate model that captures
the relationship between the design and property space. MOBBO makes the next batch of MOF designs for property optimization. Design
Solution analyzes the MOF designs and the latent spaces. The details of each box are explained thoroughly in the Methods section.
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top-performing MOFs were satisfied. Starting with 7 initial MOFs
in the DOE, this stopping criterion led to 44 iterations, which in
return shows that a total of 51 (7+ 44) MOFs (5.1% of the design
space) are explored as the next design candidates. Specifically, the
LVGP-BO framework found all three Pareto front MOF designs in
42 iterations, which corresponds to 4.9% of the design space. The
optimization history of identified MOF designs can be seen in
Fig. 4b. The fast design exploration of the LVGP-BO demonstrated
its capability of finding top-performing MOFs.
To verify the interpretability of LVGP models, we examined the

latent spaces obtained from training the LVGP surrogate model for
both properties after the 44-iteration optimization campaign. In
addition, to validate the correctness of the latent variables
obtained from the optimization campaign, we also trained the
LVGP models on the entire RDS for both properties. We then
compared the latent spaces obtained from these two instances.
The comparison of the latent spaces for both objectives is shown
in Fig. 5. The four large colored boxes represent the latent space
obtained for each BB after training the LVGP, the two columns
represent different properties, and the two rows represent the
different training instances. By comparing boxes in each column,
we observed that the latent space representations obtained at the
end of the design optimization show differences with the latent
spaces obtained from the LVGP model trained on the entire
design space. This was an expected result since LVGP-BO is
optimization driven. However, independent of orientation and the
scale of z1 and z2 (the 2D latent space axis), the relative distances
between latent variables, which reflect the relationships between
design choices (building blocks) and their influence on the
properties, are preserved after LVGP-BO. For example, for
Connecting BB1, level {41} is far from the other levels for both
properties in both training instances in Fig. 5. This similarity shows
that even though the LVGP used in the design optimization
framework was trained on a very small portion of the entire design
space that is biased towards promising building block candidates,
it can capture the underlying latent variables and the relationships
between building blocks very well. This can be very advantageous
for designers to understand and extract true meanings from the
design decisions that our framework makes.
The next question then becomes, what do these latent variables

represent? As we previously mentioned, since the influence of
every qualitative variable on the quantitative response of interest
must be due to some physical quantitative variables, the low
dimensional latent variables could provide physically meaningful
information regarding the cause-effect relationships between

qualitative design variables (inputs) and properties (outputs).
Specifically, the spatial relations (distances) between different
qualitative design choices in the latent space can show similarity
and differences regarding the influence of these properties on the
response. Similarly, spatial relationships between latent variables
can also imply the dimensionality of underlying physical
descriptors. Figure 6 shows the importance of the input space,
in terms of the textural characteristics, on the property space. For
both the RDS and the EDS that will be demonstrated later, we
found that most top-performing MOFs for CO2/N2 separation
often have small pores, characterized by low values of the largest
cavity diameter (LCD) and small gravimetric surface area (GSA).
MOFs with smaller pores could result in stronger van der Waals
interaction and thus favor CO2 adsorption over N2 adsorption.
Knowing the importance of the input space on the latent space,
we further investigated how different building blocks affect the
pore size, and ultimately the latent space (Fig. 7). For the latent
plot of Nodular BB1 (as shown in Fig. 5), we found that the
distance among the blocks {1, 3, 4, 5} and {6, 7} are small, and
block {2} is always far from the rest of the variables. Building
blocks {2, 6, 7} are smaller blocks than {1, 3, 4, 5}, resulting in MOFs
with smaller LCD (Fig. 7a). This could explain why blocks {1, 3, 4, 5}
are always closer in the latent space than {2, 6, 7}. Moreover, block
{2} is bulkier, with a branching -CH3 group, than block {6, 7},
resulting in MOFs with slightly smaller pores, and thus far away
from the other building blocks. In the Connecting BB1 latent
variable plots, we observed that the 5 blocks {5, 7, 8, 28, 29}
formed a cluster and are located far away from the block {41}.
Because {41} is an “empty” building block (Fig. 5), using block {41}
resulted in MOFs with significantly smaller pores than other
building blocks (Fig. 7b), and thus different in the property space.
For Nodular BB2 and Connecting BB2, we found that the

building blocks lead to minimal differences in the pore sizes
(Supplementary Fig. 1), and thus LCD could not be used to explain
the latent space. For Nodular BB2, the building blocks have the
same shape and differ only in their metal elements {1: Co, 2: Cu, 3:
Ni and 4: Zn}. A potential explanation for the latent space is the
difference in Lennard-Jones parameters (Supplementary Table 1),
in which Zn has an ε value of about one order of magnitude larger
than the other elements, suggesting a stronger van der Waals
interaction for Zn, which could favor CO2 adsorption over N2. As a
result, block {4} (or Zn) is far apart from the other designs.
Although the chemical identities of the building blocks in
Connecting BB2 are the same as in Connecting BB1, Connecting
BB2 has small effect on the pore size, and thus the property space.

Fig. 4 The LVGP-BO results for the Reduced Design Space (RDS) exploration. a The property space of the available MOF candidates. The
known Utopian and Pareto front MOF designs are highlighted with black and red points, respectively. b Design optimization history for 10
top-performing and Pareto front MOF designs. The blue color represents the Pareto front search, and the red color represents the 10 top-
performing design search.
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As a result, the points are evenly spread out in the latent space of
Connecting BB2. Both the optimization performance and the
physically interpretable model obtained from this design study
demonstrate the effectiveness of LVGP and BO for further design
applications.

Entire design space (EDS)
After confirming the effectiveness of our methodology on the
RDS, we applied our framework to the entire design space (EDS)
that contains 47,740 MOF candidates with fof topology through

combination of 7, 4, 41 and 42 building blocks for Nodular BB1,
Nodular BB2, Connecting BB1, and Connecting BB2, respectively.
The MOF candidates and their respective properties can be seen
in Fig. 8a. The design space contains 7 Pareto front MOF designs
of interest. Incorporating our knowledge from previous LVGP
implementations32,40 and considering the large number of
available building blocks in the design space, we decided to
match each edge (Connecting BB2, 42 options) with each metal
node (Nodular BB2, 4 options), resulting in a total of 168 MOFs to
be selected for the initial DOE. To create this DOE, we used OSLHS

Fig. 5 The latent variables obtained from the Reduced Design Space (RDS) study. Each colored box shows the 4 building block design
variables and red dots show their respective latent variables. The numbers represent the design choice for the specific building block and the
legends for the numbers are found in the yellow box on the bottom of the figure. The axes z1 and z2 represent the 2D latent space obtained
from the LVGP model. The 1st row represents the latent variables obtained by training LVGP on the all RDS and the 2nd row represents the
latent variables obtained after 44 iterations of LVGP-BO on RDS. The 1st and 2nd columns represent the CO2 working capacity and CO2/N2
selectivity properties, respectively. Finally, the dashed boxes show the zoomed in images of clustered latent variables.
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once again. After starting the LVGP-MOBBO framework with 168
MOFs, we proceeded by adding batches of B ¼ 5 new MOFs with
highest Expected-Maximin Improvement (EMI) values until the
design space search campaign reached the stopping criterion. The
design optimization campaign stopped when the mean EMI
values of the 5 MOFs that are selected for property evaluation in
each iteration is less than a constant, δ, taken as δ ¼ 10�5 in our
study. We implemented this stopping criterion to account for the
fact that in practice, it is not plausible to know if we recovered the
entire Pareto front set without exploring all MOF designs in the
Pareto front. As a result, the implemented stopping criterion tells
us that our metamodels, LVGP, are confident that there can be no
further improvements made to the MOF design optimization if
more MOF designs are added into the framework.
With the aforementioned stopping criterion, the LVGP-MOBBO

design optimization campaign continued for 66 iterations,
identifying 498 MOF designs in total, including the initial 168
MOFs. Our results show that by scanning only 1.04% of the entire
design space, LVGP-MOBBO identified all MOF designs that lie on
the Pareto front. Specifically, as seen in Fig. 8c, all the Pareto front
designs are identified within 45 iterations, which corresponds to

exploration of only 0.82% of the entire design space. This shows
that our methodology is very effective and efficient. Although the
initial DOE covers the MOF input design space as evenly as
possible, the MOFs in the DOE are not distributed evenly in the
property space (Fig. 8c). Figure 8d shows the images of the seven
MOFs that lie in the Pareto front (Fig. 8c). The five-dimensional
vector representation shows the design choices selected for the
Nodular Building Block 1, Nodular Building Block 2, Connecting
Building Block 1, Nodular Connecting Block 2, Topology respec-
tively. The choices of building blocks can be found in Fig. 2. For
some machine learning and optimization methods, this can be
problematic, as we show later with the Random Forest approach.
However, our methodology was swift in guiding the design
decisions towards MOFs with high properties. Figure 8b shows the
result of exploring the different number of top-performing MOF
designs that are closest to the Utopian MOF design. The LVGP-
MOBBO found all of the 25 top-performing MOFs. Furthermore,
our methodology identified more than 97%, 87%, 80% of the 50,
100, 200 top-performing MOF designs, respectively. Finally, out of
all 330 MOFs explored, 206 MOF designs (63.3%) belong to the
330 top-performing MOFs. The high efficiency in identifying a

Fig. 7 The distribution of the largest cavity diameters of 1001 MOFs in the Reduced Design Space (RDS) for different building blocks.
Largest Cavity Diameter (LCD) distribution for (a) Nodular BB1 and (b) Connecting BB1 on RDS.

Fig. 6 Structure – property relationship of the Entire Design Space (EDS) and Reduced Design Space (RDS) datasets. The CO2/N2 selectivity
versus the CO2 working capacity for the EDS (a, b) and for the RDS (c, d), colored by the largest cavity diameter (LCD) (a, c) and the gravimetric
surface area (GSA) (b, d).
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large number of solutions is advantageous due to two potential
main reasons. First, it is possible that not every proposed MOF can
be synthesized in the laboratory. Second, there are other criteria
that must be addressed in practice beyond the CO2 working
capacity and CO2/N2 selectivity, such as cost and stability. Thus, it
is useful to have alternative promising candidates at hand, so that
a practical solution can be found.
By looking further into the histogram of selected building

blocks at the end of the optimization campaign (Supplementary
Fig. 2), we observed a bias towards particular building blocks.
Specifically, for Nodular BB2 and Connecting BB1, the blocks {2}
and {41} are favored because all the Pareto front MOFs possess
these building blocks. Therefore, LVGP-MOBBO can identify the
promising building blocks effectively and choose them as the next
MOF designs at the very early steps of the optimization campaign.
Due to very low amounts of training data used for design
optimization (starting with 0.35% and ending with only ~1% of
the design space), the overall predictive capability of LVGP models
is somewhat limited for the complete design spectrum. The parity
plots and the mean absolute error (MAE), described by the mean
of absolute difference between the predicted and the true
property values of the remaining MOFs (47,242 MOFs) in the
EDS that are unseen to the LVGP model, are shown in
Supplementary Fig. 3. The relatively high MAE scores obtained
from the LVGP models were expected because this framework is
design (objective) oriented. For Bayesian optimization to perform
well, the LVGP does not have to be accurate for all design
candidates41. This is evident in our result because even though
LVGP is not an accurate model for global predictive capability, the
model is good enough to identify where in the design space to
look for the optimal solution. The predictions and prediction
uncertainties quantified by the LVGP model are satisfactory in the
neighborhood of the optimum design candidates, which led to
the promising Pareto solutions observed. The low accuracy in
regions of the property space far from the optimum does not have
a large effect on the overall performance in identifying top-
performing materials.

The interpretability of the LVGP approach can be demonstrated
using the results for the entire design space. At the end of the 66
iterations, we observed that the latent spaces of the Nodular BB1
(Fig. 9a, c) and BB2 (Supplementary Fig. 3a, c) converged to a final
state. This means that after each iteration, the latent spaces
obtained for these design variables did not change. On the other
hand, we observed non-convergent latent spaces for Connecting
BB1 & BB2 that contain 41 and 42 different design choices,
respectively. This is because the LVGP model is trained with a very
small percentage of the design space ( ~ 1%). The optimization
campaign still works well although the latent spaces are not
stable. Specifically, block {41} is always separate from the rest in
the latent space plots, meaning that its superior effect on the
properties is identified clearly. Furthermore, the non-converging
behavior is observed for the blocks that have minimal effect on
the performance properties. Therefore, our framework can identify
the specific building blocks that are superior with a physical
justification using the physics-aware LVGP approach.
The latent variable plots of the Nodular BB1 (Fig. 9a, c) and

Connecting BB1 (Fig. 9b, d) can also be explained using the MOF
textural properties. For Nodular BB1, blocks {1, 3, 4, 5} form a
cluster in the latent space of the CO2 working capacity, while
blocks {2, 6, 7} are spread out (Fig. 9a). A similar trend was
observed in the RDS (Fig. 5), which we ascribed to the size of
building blocks that determine the LCD of the MOFs. However, the
latent space for the CO2/N2 selectivity changed slightly compared
to the RDS. Specifically, blocks {3, 4} are away from blocks {1, 5}
and become closer to block {6}, while the positions of the other
building blocks remain similar. For Connecting BB1 (Fig. 9b, d),
block {41} is distant from the other building blocks, which was also
observed in the small dataset. Although some building blocks are
also further apart from the clusters, their locations change from
one iteration to another. The latent variables for the Nodular BB2
and the Connecting BB2 can be found in Supplementary Fig. 3.
The Nodular BB2 plots can be explained by a similar reasoning as
for the RDS plots, whereas the Connecting BB2 is non-convergent
due to low training percentage of the LVGP.

Fig. 8 Performance of the LVGP-MOBBO on the Entire Design Space (EDS). a The property space of MOF design candidates along with
Pareto front and Utopian MOF designs. b Percentage of top-performing MOFs identified after 66 iterations. Numbers on top of bars indicate
the amount of identified top-performing MOF designs. c The initial DOE and the identified MOF designs after different numbers of iterations.
d The building block representations of Pareto front MOFs and their crystal structures. Each MOF is represented as a vector [A-B-C-D-E], where
each letter represents Nodular BB1, Nodular BB2, Connecting BB1, Connecting BB2, Topology respectively.
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Comparison with random forest and robustness of LVGP-
MOBBO
We compared our LVGP approach with another ML approach,
Random Forest (RF), which is also used for optimization problems
with qualitative variables. To conduct a fair study between two ML
models, the same descriptor-free (featureless) MOF representation
is used for the inputs to the RF model. Further details of MOF
representation are explained in the MOF Representation and
Database Construction subsection under the Methods section. Both
approaches employed the same MOBBO method defined
previously. To conduct the study, we ran both frameworks 15
times on the EDS for 60 MOBBO iterations with 15 different initial
DOEs. The Pareto front and top-performing MOF design explora-
tion performance of the study can be seen in Fig. 10. We observed
that the LVGP can identify all the Pareto front MOF designs
whereas the RF approach fails to do so in most cases (Fig. 10a).
The small confidence interval in the performance shows that the
LVGP approach is robust and reliable in identifying the Pareto
front candidates. On the other hand, the confidence interval of RF
is large since some of the RF-MOBBO instances fail to identify any
Pareto Front MOF designs. This is because RF-MOBBO is stuck in
local optimum designs since the algorithm cannot predict beyond
the training data, which usually contained initial DOEs with low
properties. In contrast, LVGP was able to expand beyond the low
property region towards the high property region by its
capabilities of extrapolating beyond training data. Moreover, the
Bayesian prediction of uncertainty provided by the LVGP

compared to frequentist prediction of RF, leads to better and
more effective design space exploration41. The LVGP is able to
extrapolate uncertainty well, whereas RF fails to do so, as it
provides a fixed uncertainty prediction for MOF designs outside of
training data due to unavailable tree splitting. More importantly,
the LVGP approach makes the correct design decisions at a faster
rate compared to the RF approach, which is crucial if the cost of
conducting simulations or experiments is very high. Similarly, for
all number of top-performing MOF identification categories, the
LVGP approach resulted in a better and more robust performance
(Fig. 10b). As we already knew both the Pareto front and the top-
performing designs beforehand, the two metrics we used could
be considered as greedy metrics. In practice, since these designs
are typically unknown, a well-known metric used for multi-
objective optimization comparison between different algorithms
is the hypervolume indicator42. Hypervolume indicator provides a
scalar metric of how much hypervolume the Pareto front designs
obtained by the algorithm dominate the reference point, where
the reference point is usually chosen as the nadir point (known
lowest values of objectives). Typically, larger values represent
better Pareto front designs. Figure 10c shows the mean
hypervolume indicator values obtained at each iteration of both
methods in 15 different runs. We can easily observe that (i) the
explored MOF designs by the LVGP approach span a much larger
hypervolume at a much faster rate, and (ii) the true hypervolume
can be achieved for all 15 different initializations compared to the
RF approach.

Fig. 9 Latent variable plots after the LVGP-MOBBO campaign on the Entire Design Space (EDS). a Latent spaces of the Nodular BB1 for (a)
the CO2 working capacity and (c) the CO2/N2 selectivity. Latent spaces of Connecting BB1 for (b) the CO2 working capacity and (d) the CO2/N2
selectivity.

Y. Comlek et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   170 



The advantages provided by the LVGP approach are not limited
to design optimization. The physical justification provided by the
latent variables make the LVGP an interpretable and a favorable
ML model for MOF design. The latent variables obtained at the
end of the optimization campaign enabled us to gain physical
insights behind the design decisions. Although RF is an
explainable ML model, model agnostic methodologies are
required to draw conclusions or understand its performance.
Finally, since both models aim to perform design exploration in
the most efficient way possible, the models are trained on the fly.
As a result, we do not have the luxury to perform hyperparameter
tuning, as it could require additional property evaluations, which
contradicts our goal with efficient materials design optimization.
All hyperparameters in LVGP modeling, including both the
hyperparameters for regular GP modeling and the locations of
different levels of a categorial variable in the latent variable space,
are identified through maximum likelihood maximization with the
available explored data. On the other hand, RF models could
require external hyperparameter tuning through additional
property evaluations, such as identifying the number of trees or
depth of the trees in the model. This demonstrates another
significant advantage of LVGP over RF or other models that
require hyperparameter tuning since LVGP does hyperparameter
tuning within itself. Thus, together with the better performance
and accuracy results, the interpretability and efficiency of LVGP
makes our approach more desirable and meaningful for materials
design applications.

DISCUSSION
Due to their versatile and tunable nature, MOFs have very large
design spaces, and it is impossible to simulate or perform
experiments for every MOF to find the promising candidates for
an application of interest. Although numerous ML and high-
throughput screening approaches exist, they require either large
databases or property-specific descriptors. To tackle these
challenges, we presented the LVGP-MOBBO framework to design

superior MOFs by only employing qualitative representations of
building blocks. The framework presented here provides three
main advantages compared to current similar efforts: (i) the
framework requires no specific descriptors and only uses the MOF
building blocks to perform the adaptive design space search, (ii)
the framework is application independent, meaning that it can be
applied to any property without the need to select important
descriptors for the application of interest, and (iii) the physically
justifiable latent variable approach provides interpretability on
how each building block influences the resulting performance
properties. We demonstrated our framework on a design space
with 47,740 MOF candidates. The LVGP-MOBBO successfully
identified all Pareto front designs and more than 97% of the 50
top-performing MOF candidate designs by scanning only ~1% of
the design space. Compared to Random Forest, LVGP has better
performance and robustness, and provides interpretability regard-
ing the design through physically justifiable latent variables.
Finally, although we demonstrated our framework on a MOF
design space with adsorption properties, LVGP-MOBBO can be
applied to any property that requires time consuming simulations
such as quantum mechanical calculations.
A key challenge in the presented framework lies in the high

number of building blocks. When a large number of blocks are
present, although the design optimization campaign works
efficiently to identify the top building blocks and MOF designs,
the LVGP model struggles to converge to a final latent space due
to high number of parameter (latent variables) estimations during
model fitting. We expect that by incorporating prior knowledge,
when available, into the framework such as assigning prior known
distributions to latent variables, the latent variable realizations can
be more accurate43. We can also incorporate additional finger-
prints, i.e., physical descriptors44–47, that can further differentiate
the MOF candidates from each other to build more accurate LVGP
models, which in return can further improve design optimization.
For enhancing the original LVGP method, we developed, in our
recent work, an approach that combines both categorial variables
and physical descriptors to address the many-level challenge

Fig. 10 Comparative study with Random Forest and LVGP-MOBBO. a Pareto front and b top-performing MOF designs identified by the two
methods after 15 different runs. c Hypervolume indicator comparison between two methods after 15 different runs.
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when using LVGP48. However, choosing the right fingerprints that
can be uniquely mapped to MOF designs is often application
specific and requires additional work. Therefore, due to the
formulation of the LVGP modeling, the main goal of this paper
was to search for MOF candidate designs that are known a prior.
As a result, predicting the properties of MOFs with unseen
building blocks through LVGP is a promising area of research.
Finally, an interesting application of our framework would involve
performing materials design and development through autono-
mous experimentation studies. As there is no human intervention
in LVGP-MOBBO, and the experimental inputs can be both
qualitative and quantitative, we envision that the method we
presented here can help researchers guide their experiments
efficiently.

METHODS
MOF representation and database construction
To validate our implementation of LVGP-MOBBO, we created a
design space using the fof topology, 7 organic nodes (Nodular
BB1), 4 inorganic nodes (Nodular BB1), 41 edges (Connecting BB1),
and 42 edges (Connecting BB2). The fof topology is a derived net
of nbo topology, in which the tetratopic linker in nbo is
decomposed into two organic nodes and two edges in fof.
Further details on fof topology were discussed in literature49.
From the combinations of the building blocks, we created 48,216
hypothetical MOFs. We eliminated 104 MOFs that had poor initial
geometries and missing bonds. We performed geometry optimi-
zation on the remaining 48,112 MOFs, in which we found and
eliminated 372 MOFs that collapsed after the geometry optimiza-
tion. Therefore, 47,740 MOFs were considered for this study.
Among the 47,740 MOFs, at least 8 MOFs were experimentally
synthesized (Supplementary Table 2).
Each MOFs with fof topology consisted of an inorganic node, an

organic node, and two edge blocks. Thus, to represent each MOF
we use a 5-element ‘vector’ representation with integer encoding
½A� B� C � D� E], where each letter represents Nodular BB1,
Nodular BB2, Connecting BB1, Connecting BB2, and Topology,
respectively. For each letter, an integer value is assigned to
represent a specific choice of building block and the choices of
building blocks can be seen in Fig. 2. In this study, we kept the
topology as a fixed variable to keep the design space at a
reasonable size for comprehensive validation of the method. The
letter “E” can be represented with “fof” or take the value of 1. A
visualization of this representation is shown in Fig. 1.
For the initial set of materials, also known as design of

experiments (DOE), that initialize the optimization framework, first
an optimal Latin hypercube sample with specified number of
samples and variables was created. Then, for each qualitative
variable, the design space was sliced into pi sections, where pi
represents the number of unique options for each qualitative
variable. Each DOE design is assigned to a qualitative variable that
falls under the sliced section. This approach enables us to select
initial MOF designs that cover the design space as evenly as
possible. An example DOE with two qualitative variables (Nodular
BB1 & Nodular BB2) that each have 7 and 4 levels is shown in Fig. 3
under the Initial Design of Experiments box.

MOF construction and geometry optimization
MOFs were created using the topologically based crystal
constructor (ToBaCCo 3.0)36 software. Geometry optimization
was carried out to optimize the unit cell parameters and atomic
position using LAMMPS37 with the UFF4MOF38 force field. For
each structure, the geometry optimization was performed in a
cycle that consisted of two steps, as recommended by Anderson
et al.36. The unit cell parameters and atomic positions were first
relaxed using a conjugate gradient (CG) algorithm, followed by

atomic position relaxation using the FIRE algorithm (we chose a
timestep of 0.1 fs). Each minimization converged only when the
change in energy from the previous step to the current step
divided by the current energy magnitude was less than 10−8 and
the forces on atoms were less than 10−8 kcal mol−1 Å. The cycle
stopped when the change in energy between the previous cycle
and the current cycle was less than 10−8 kcal mol−1.

GCMC simulations
Grand canonical Monte Carlo (GCMC) simulation was carried out
using the RASPA package39. Each simulation consisted of 10,000
equilibration cycles and 10,000 production cycles. The Monte
Carlo moves used were translation, rotation, insertion, deletion,
and random reinsertion. Lennard-Jones (LJ) and Coulombic
interactions were used to calculate the energies between non-
bonded atoms. LJ parameters between different atom types were
computed using the Lorentz-Berthelot mixing rules. CO2 and N2

were modeled as three-site rigid molecules with charges on each
site, using the LJ parameters and partial charges from the TraPPE
force field50. LJ parameters for the framework atoms were from
the Universal Force Field (UFF)51. Previous studies have shown
that using UFF parameters for framework atoms can adequately
demonstrate the interaction between MOFs and various adsor-
bates52–57. The framework atom partial charges were calculated
using the PACMOF (Partial Atomic Charges in Metal-Organic
Frameworks) software58. For each MOF, we carried out two GCMC
simulations; the first was at the adsorption condition of 1 bar,
313 K, and a bulk molar composition of CO2: N2= 0.15 : 0.85, and
the second was at the desorption condition of 0.1 bar, 313 K, and a
bulk molar composition of CO2 : N2= 0.9 : 0.1.
We used the CO2 working capacity (ΔNCO2 ) and the CO2/N2

selectivity at adsorption (αadsCO2=N2
) as the criteria to determine top-

performing MOFs for CO2/N2 separation. The two properties are
defined as follows:

ΔNCO2 ¼ Nads
CO2

� Ndes
CO2

(1)

αadsCO2=N2
¼ Nads

CO2

Nads
N2

yadsN2

yadsCO2

(2)

Here, ΔNCO2 is the CO2 working capacity, Nads
CO2

and Ndes
CO2

are the
CO2 adsorption loadings at the adsorption and desorption
conditions, αadsCO2=N2

is the selectivity of CO2 over N2 at adsorption
condition, Nads

N2
is the N2 loading at adsorption, and yadsN2

and yadsCO2

are the bulk mole fractions of N2 and CO2 at adsorption,
respectively. While CO2 working capacity reflects how effective
the MOF is at both capturing and releasing CO2, the selectivity
determines how selectively the MOF can separate CO2 from the
mixture of CO2 and N2.

Latent variable Gaussian process (LVGP)
One of the main contributions of this paper lies in the design
optimization of MOFs using only the readily available qualitative
representations of building blocks. On the other hand, due to the
nature of the correlation functions, it is not possible to directly
implement the building blocks into the Gaussian Process (GP)
models as the difference between variables becomes unclear.
Therefore, in this paper, we implemented the Latent Variable
Gaussian Process (LVGP) to account for the qualitative variables in
the GP model31. It is known that for every qualitative variable,
there are underlying, possibly high-dimensional, quantitative
variables that explain its effect on properties. The latent variable
approach helps us to map the qualitative variables to a
quantitative latent space. Consider a GP model input with t ¼
tq1; t

q
2; ¼ ; tqn

� � 2 Rq ´ n with n qualitative variables and q number of
points, where each point here represents a unique MOF design.
Each variable, ti , has pi unique levels (design choices)
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fl1ðtiÞ; l2ðtiÞ; ¼ lpi tið Þg for i ¼ 1 : n, (e.g., Cu, Co, Ni options for
nodular building block (pi ¼ 3)). Then, each qualitative variable
can be represented with a latent variable vector ztðlpi Þ ¼fzitðl1Þ; ¼ ; zit lpi

� �g for ziϵRk . The developers of the algorithm
have stated that users are free to choose the dimensions of zi but
also demonstrated that k ¼ 2 is enough to represent the
underlying high-dimensional quantitative space. Consequently,
we chose k ¼ 2. Thus, each level within a qualitive variable can be
represented with a latent vector of ztðlpi Þ ¼ fz1t lpi

� �
; z2t lpi

� �g, and
the input to the GP model becomes z tð Þ ¼ z1t lp1

� �
; z2t lp1

� �
; ¼ ;

�
z1t lpn
� �

; z2t ðlpnÞ� 2 Rq ´ 2n. An illustration of the latent variable
representation of qualitative building blocks is shown in Fig. 3
under the Latent Variable Gaussian Process box. Consider a typical
single response Gaussian Process model, which consists of prior
constant mean μ and KZðtÞ, describing the mean response at any
given point in the input space, and a zero-mean Gaussian Process
with a covariance function K t; t0ð Þ, respectively. The covariance
function K t; t0ð Þ determines the relationship or the correlation
between variables in the model. The covariance function can be
further extended to K t; t0ð Þ ¼ σ2 � c t; t0ð Þ where the σ2 represents
the prior variance of the GP model and c t; t0ð Þ describes the
correlation between each point in the model through the
specified correlation function. To explain the relationship between
each design candidate for this application, we have implemented
the Gaussian correlation function:

c t; t0ð Þ ¼ exp �
Xp
i¼1

jjz1t lpi
� �� z1t0 lpi

� �jj22 þ jjz2t lpi
� �� z2t0 lpi

� �jj22� �( )

(3)

The Gaussian correlation function shown in Eq. (3) evaluates the
correlation between points t and t0 based on 2-norm distance. The
main reason behind choosing this correlation function is because
we assume that points that are close in the spatial input space
should also reflect a similar behavior in the output space as well.
Along with the 2D mapped latent variables z ¼ z1t lð Þ; z2t lð Þ� �

for
level l of each qualitative variable t, the parameters; μ and σ are
estimated through Maximum Likelihood Estimation (MLE) of the
log-likelihood function

l μ; σ; zð Þ ¼ � q
2
ln σð Þ � 1

2
ln C zð Þj j � 1

2σ2
y � μ1ð ÞTC zð Þ�1 y � μ1ð Þ

(4)

where q is the number of samples, C is the q ´ q correlation matrix
with Cij ¼ c ti; tjð Þ for i; j ¼ 1; 2; 3; ¼ ;q, 1 is a vector of ones with
dimensions of q ´ 1, and y is the observed response with
dimensions of q ´ 1. Finally, the 2D quantitative latent variables
are then used to construct a GP model that provides both
prediction and statistical representation of uncertainty in the
design space for Bayesian optimization.

Multi-objective batch bayesian optimization (MOBBO)
Bayesian Optimization is a well-known efficient, fast, and easy-to-
implement optimization technique that has been used in
numerous materials design applications. For single objective
optimization, BO makes the decision on which design in the
design space should be sampled next based on the choice of an
acquisition function. Three well-known acquisition functions are
Lower Confidence Bound59, Probability of Improvement60, and
Expected Improvement (EI)61. With its ability to balance explora-
tion of the design space and exploitation of the objective, EI has
been a popular choice for most materials design applications.
Considering the large MOF design space, we have also chosen EI
as our base acquisition function. For a given candidate design x,
with its predicted objective value y0x and quantified uncertainty σx
from the LVGP model, EI for single objective optimization can be

calculated using,

EI xð Þ ¼ y� � y0x
� � � ψ y� � y0x

� �
σx

� 	
þ σx � ϕ

y� � y0x
� �

σx

� 	
(5)

where y� is the best observed objective so far in the optimization
campaign and ψ;ϕ represent the cumulative distribution function
(CDF) and probability distribution function (PDF), respectively. As
Eq. (5) shows, the EI function suggests a new design by not only
considering the exploitation of the objective function, ðy� � y0xÞ,
but also the uncertainties associated with the design space, σx .
Often there are tradeoffs between objectives, meaning that one

objective cannot be optimized without sacrificing the other one.
This type of problem is also known as Pareto front optimization
and is frequently observed in material systems34. Thus, for multi-
objective optimization problems, the goal becomes discovering
the Pareto front of the property space. Therefore, we have
expanded the EI formulation by implementing the Expected-
Maximin Improvement (EMI) acquisition function to serve as the
balancer of the exploration and exploitation for multi-objective
optimization. For the case of optimizing two objectives, the
formulation of EMI is

EMI xkð Þ ¼ min max EI1; EI2ð Þ; 0ð Þ (6)

where EIj corresponds to the Expected Improvement value of each
objective j:The EI formula was used to compare the candidates
with respect to the observed number of p Pareto front designs so
far in the optimization campaign. Therefore, each EIj is a vector of
p ´ 1 that contains the EI values of a candidate design on the
observed Pareto front designs for each objective:Lastly, we first
take the maximum of EI’s for both objectives to observe the
dominance of the candidate on the current Pareto frontier and
then select the minimum of the maximum EIs to balance the
multi-objective search. As a result, the EMI is formulated in a way
that both objectives have equal importance. Eq. (6) selects the
single best candidate in each multi-objective BO iteration.
Due to the large number of candidate designs and the cost of

training GP models, it is not ideal to train the LVGP with a single
design candidate at each iteration. Therefore, to extend single
candidate BO to select a batch of promising candidates, we select
B candidates that possess the highest EMI values in each iteration
and use them as the next design candidates. A demonstration of a
single MOBBO iteration is demonstrated in Fig. 3 under the Multi-
Objective Batch Bayesian Optimization box.

DATA AVAILABILITY
The crystal structures and calculated properties of 47,740 MOFs in this study are
deposited on Zenodo. (https://doi.org/10.5281/zenodo.7951588).

CODE AVAILABILITY
The LVGP-MOBBO code used to carry out this work are described in the Methods
section. The MATLAB codes used in this study for the LVGP-MOBBO framework are
provided at https://github.com/ideal-nu/MOF-LVGP-MOBBO. For interested readers,
the LVGP-code can be also accessed through the Comprehensive R Archive Network
(CRAN) at https://cran.r-project.org/package=LVGP.
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