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Discrepancies and error evaluation metrics for machine
learning interatomic potentials
Yunsheng Liu1, Xingfeng He1 and Yifei Mo 1✉

Machine learning interatomic potentials (MLIPs) are a promising technique for atomic modeling. While small errors are widely
reported for MLIPs, an open concern is whether MLIPs can accurately reproduce atomistic dynamics and related physical properties
in molecular dynamics (MD) simulations. In this study, we examine the state-of-the-art MLIPs and uncover several discrepancies
related to atom dynamics, defects, and rare events (REs), compared to ab initio methods. We find that low averaged errors by
current MLIP testing are insufficient, and develop quantitative metrics that better indicate the accurate prediction of atomic
dynamics by MLIPs. The MLIPs optimized by the RE-based evaluation metrics are demonstrated to have improved prediction in
multiple properties. The identified errors, the evaluation metrics, and the proposed process of developing such metrics are general
to MLIPs, thus providing valuable guidance for future testing and improvements of accurate and reliable MLIPs for atomistic
modeling.
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INTRODUCTION
Atomistic modeling, which simulates physical phenomena based
on the interactions of atoms, is a crucial research technique in a
range of disciplines including physics, chemistry, biology, and
materials science. Density functional theory (DFT) calculation have
been the standard technique for evaluating atom interactions
among a diverse range of configurations and chemistries, but their
applications are limited to small system sizes of a few hundred
atoms (up to a few nm) due to high computation costs1–3. By
contrast, classical interatomic potentials, also known as force
fields, have significantly lower computation costs and thus can be
employed for atomistic simulations with much larger length-scale
(nm–μm) and longer time-scale (ns–μs), but they lack the
transferability to different atomistic configurations that are not
considered in the potential fitting1,4,5.
As an emerging technique to bridge the gaps among different

computational techniques1–3,6–10, machine learning interatomic
potentials (MLIPs) utilize machine learning (ML) models to predict
energies and forces of atomistic structures, which are mapped into
the atomistic descriptors as input. Current state-of-the-art MLIPs
include Gaussian Approximation Potential (GAP) based on Smooth
Overlap of Atomic Positions (SOAP) descriptors11,12, Neural Net-
work Potential (NNP)13,14, Spectral Neighbor Analysis Potential
(SNAP)15, Moment Tensor Potential (MTP)16, and Deep Potential
(DeePMD) models5, and many MLIP variances derived from
different modifications and combinations of ML models and
descriptors. MLIPs are trained using DFT-calculated energies and
forces from a diverse range of atomistic configurations, typically
encompassing bulk and defected structures, equilibrium and non-
equilibrium structures, and solid and liquid phases. Current state-
of-the-art MLIPs are claimed to achieve accuracies similar to ab
initio calculations1,5,11,13,15–18, while maintaining low computation
costs and linear size scaling akin to classical interatomic potentials.
However, the MLIPs are black-box predictors not directly based

on physical principles. An open question is whether MLIPs can
always accurately reproduce physical phenomena in atomistic
simulations. Conventional ML error testing primarily quantifies

MLIP accuracies through average errors, such as root-mean-square
error (RMSE) or mean-absolute error (MAE), of energies and atomic
forces across a range of configurations known as testing dataset.
These atomistic configurations in the testing dataset are randomly
split from the entire datasets generated in the same manner as
the training dataset, and thus are similar to the training dataset
but may differ from the atomistic configurations that may
encounter during MD simulations. Most MLIPs are reported to
achieve small, average errors of energies and atomic forces as low
as 1 meV atom−1 and 0.05 eV Å−11,5,8,11,19,20, respectively, in
conventional ML testing. These low averaged errors reported
have created the impression that MLIPs are as accurate as DFT
calculations. However, these MLIPs with small average errors may
not always accurately reproduce the physical phenomena in
atomistic simulations, as shown in the following examples10,21,22.
An MLIP of Al by Botu et al. was reported a low MAE force error of
0.03 eV Å−1, but its MD simulations predicted the activation
energy of Al vacancy diffusion with an error of 0.1 eV compared
to the DFT value of 0.59 eV, even though vacancy structures and
vacancy diffusion were included in the training dataset23. In
Vandermause et al.20, an Al MLIP with a low RMSE force error of
0.05 eV Å−1 for solid phase and 0.12 eV Å−1 for liquid phase also
exhibited discrepancies with DFT in in surface adatom migration,
which were considered during the on-the-fly training. Zuo et al.1

reported a number of MLIPs (such as GAP, NNP, SNAP, MTP) with
small RMSEs of atomic forces at the level of 0.15–0.4 eV Å−1 and
10–20% errors in the vacancy formation energy and migration
barrier for a number of materials (such as Li, Mo, Si, Ge), while
vacancy structures were also included in the training. Additionally,
in the aforementioned studies, there were large errors of the
predicted migration energy barriers of defects, even though these
defects and their migrations were considered in the training and
testing datasets. Atomistic diffusion is determined by the
dynamics of atoms (often in the form of point defects) and the
potential energy surface (PES) beyond their equilibrium sites, but
the direct testing of MLIPs on these atomistic-level details in MD
simulations still shows errors and failures24. As reported by Fu
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et al.24, the MD simulations based on MLIPs observe errors, such as
radial density functions, and even the failure of the MD
simulations after a certain duration. These results suggest there
are errors in the MLIPs causing these errors and failures from
actual MD simulations. It is crucial to examine the accuracy of
MLIPs in simulating the atomic dynamics and reproducing
physical properties, understand potential discrepancies, and
develop appropriate testing metrics.
Typical approaches to improve the MLIPs include adjusting the

fraction or weights of certain structures in the training dataset,
modifying the cost/loss functions, and tuning hyperparameters25.
The average errors in energies and forces or a few easily
computable properties, such as elastic constants, energy vs.
volume curves for different crystal structures, and formation
energies of point defects1,26, are often used to optimize and select
the MLIP models. However, to test and quantify those errors that
can only be directly observed in actual MD simulations, such as
the errors in diffusional properties, one would need to conduct
numerous tests in MD simulations for an extended duration
before selecting the final MLIP models24. This approach requires a
large computational cost of running MD simulations to select
MLIPs, which may be impractical for optimizing MLIPs with many
combinations of training variables and hyperparameters. There-
fore, appropriate testing metrics should be developed to
thoroughly gauge the ability of an MLIP in reproducing atomic
dynamics and physical properties in a range of typically
encountered physical situations, and such quantitative metrics
are crucial for the further improvement of MLIPs.
In this study, by comparing atomic dynamics from MLIP-MD

simulations and ab initio MD (AIMD) simulations, we reveal that
state-of-the-art MLIPs, even with carefully selected training
datasets and small average errors evaluated by conventional

testing, may not fully reproduce atomic dynamics or related
properties (Discrepancies of MLIPs on atomic dynamics between
MLIP and DFT occur even when low average errors are reported).
The tested MLIPs show discrepancies in diffusions or rare events
(Rare events are sources of discrepancies), defect configurations
(Configurations with similar energies are discrepancy sources), and
atomic vibrations (Vibration near defects is a discrepancy source).
We then develop the error evaluation metrics based on the atomic
forces of RE atoms (Quantifying the force errors on RE migrating
atoms) and demonstrate them for indicating the performance of
MLIPs on atomistic dynamics in MD simulations (Force perfor-
mance scores as effective metrics). The MLIPs trained with
enhanced RE data and selected by newly developed metrics
show improved predictions of atom dynamics and diffusional
properties. In the end, we summarize our process of developing
the evaluation metrics for the observed simulation-based dis-
crepancies. The identified discrepancies, our evaluation metrics,
and their development process are general to all MLIPs and can
serve as guidance for future development and improvements of
accurate, robust, and reliable MLIPs for atomistic modeling.

RESULTS
Discrepancies of MLIPs on atomic dynamics between MLIP and
DFT occur even when low average errors are reported
We conduct our study on a number of MLIPs to show the
observed phenomena are general among MLIPs. In order to
perform a consistent comparison, we directly retrieve the MLIP
(GAP, GAPPRX, NNP, SNAP, and MTP) models of Si from previous
studies1,26, besides the DeePMD model27 trained using the same
training dataset from ref. 1. This training dataset of ref. 1 includes a
diverse range of selected atomistic structures of solid Si, melted

Fig. 1 Testing of MLIPs. The comparison of the atomic environments from (a) the interstitial-RE testing set DRE-I
Testing (blue), (b) the vacancy-

RE testing set DRE-V
Testing (red), and (c) the original training dataset from ref. 1 (cyan), using 6500, 6300, and 13553 atomic environments

respectively. All atomic environments here are quantified by the 1st and the 2nd principal components from principal component analysis
(PCA) of the SOAP descriptors. Comparison of the (g, h) atomic forces and (d, e) energies predicted from MLIP (GAP) versus the benchmark
(DFT K4) on (e, h) the vacancy-RE testing set DRE-V

Testing and (d, g) the interstitial-RE testing set DRE-I
Testing. Phonon dispersion of (f) the bulk Si

and (i) the Si supercell with a single vacancy calculated by DFT K4 and GAP.
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liquid Si, strained Si, Si surfaces, and Si-vacancy from AIMD
simulations at a wide range of temperatures (Fig. 1c, Methods and
Supplementary Note 1). In order to quantify the errors
on predicted energies and atomic forces of these MLIPs, we
construct interstitial-RE and vacancy-RE testing sets, DRE-I

Testing

and DRE-V
Testing, respectively, each consisting of 100 snapshots of

atomic configurations with a single migrating vacancy or
interstitial, respectively, from AIMD simulations at 1230 K
(Fig. 1a, b, Methods), with the true values of energies and atomic
forces evaluated by DFT calculations with a k-point mesh of
4 × 4 × 4 (DFT K4). The MLIPs accurately predict the energies and
atomic forces in the training dataset and the testing dataset in
consistency with the original studies1,26, showing low root-mean-
square errors (RMSEs) below 10meV atom-1 for energies and
0.3 eV Å−1 for forces (with the median force magnitude
of 1.67 eV Å−1) for most MLIPs on the vacancy-RE testing set
DRE-V

Testing (Fig. 1e, h, Supplementary Fig. 1, and Supplementary
Table 1). Given similar structures with vacancies are covered in the
training dataset, the good performance of MLIPs on vacancy
structures should be expected.
We also test the MLIPs on the structures not included in the

training data (Fig. 1c), specifically the interstitial-RE testing dataset
DRE-I

Testing, which comprises the snapshots from the AIMD simulations
of Si supercell with an interstitial. Most MLIPs (except for GAPPRX) do
not include the configurations with an interstitial in the training
dataset. While the MLIPs prediction of atomistic energies show a bias
with an average offset of 10–13meV atom−1 lower than DFT values,
the overall RMSEs are below 15meV atom−1 and 0.3 eV Å−1 (with the
median force magnitude of 1.69 eV Å−1) for these interstitial
structures for most MLIPs (Fig. 1d, g, Supplementary Fig. 2, and
Supplementary Table 1). These small error values in energy and force
on training and testing datasets are often interpreted as good
performance of MLIPs.
In addition to the errors of energies and forces, we evaluate and

compare the phonon dispersion relations predicted by MLIPs with
DFT (Fig. 1f, i, Supplementary Fig. 3, and Supplementary Fig. 4).
While most MLIPs have good agreement on phonon dispersions of
bulk Si (Fig. 1f)26,28, a number of MLIPs exhibit noticeable
differences on phonon dispersions in the Si supercell with a
vacancy (Fig. 1i and Supplementary Fig. 4, Methods). For example,
the phonon dispersion by GAP has imaginary frequencies (Fig. 1i),
and the phonon dispersion by SNAP has additional bands with
lower frequencies compared to DFT K4 in high frequency sections
(Supplementary Fig. 4). The training data includes the atom
vibration from AIMD simulations with vacancies, which should
help the training of phonon dispersion relations. Therefore, these
discrepancies require further investigation.

Rare events are sources of discrepancies
Here the MD simulations using these MLIPs are performed to
simulate atom dynamics and related physical properties in a Si
supercell with a single vacancy or a single interstitial, to identify

potential discrepancies between MLIP-MD and AIMD simulations.
The Si diffusivities are evaluated at a range of temperatures
730–1600 K from the mean-squared-displacements of Si over time
(Methods) (Fig. 2a, b). Given the MLIPs are trained on the DFT
calculations based on a fine k-point mesh of 4 × 4 × 4 (K4), the
MLIP results should be compared to DFT K4 benchmark as in
many of our tests. For the MD simulations, the MLIP results are
compared to the AIMD simulations based on coarser accuracy
setting of a k-point mesh of 2 × 2 × 2 (K2) and a single Γ-point (K1),
because AIMD simulations based on K4 is takes prohibitively long
to obtain enough number of atom hops. In addition, these lower
accuracy settings are commonly utilized for AIMD simulations in
previous studies4,29,30. The errors with lower-accuracy DFT
calculations also can be used as error ranges for comparison.
For vacancy diffusion, which is covered in the training data,

most MLIPs predict diffusivities within a reasonable error range of
the diffusivities predicted by K2 AIMD simulations. Most MLIPs
perform better than DFT-K1. DeePMD gives higher diffusivities
than AIMD simulations, but an agreement on the fitted activation
energy (0.17 eV compared with 0.2 eV given by AIMD K2). Some
MLIPs show discrepancies and deviations among each other in the
diffusivities at lower temperatures, leading to discrepancies in the
fitted activation energies and extrapolated room temperature
diffusivities. Nonetheless, the comparison of the MLIPs and AIMD
simulations should take into consideration the stochastic nature of
estimating diffusivities from MD simulations and the limited
number of data points, which would lead to large uncertainty of
the fitted activation energy and extrapolated diffusivity4. As
shown in the previous study4, even for a total mean square
displacement of ion diffusion over a few thousand Å2, the
standard deviation of obtained diffusivity can be as large as
20–30%. The error bars and range of all obtained diffusivity values
are shown in Supplementary Tables 4, 5 and 6.
While the Si interstitials are not covered in the training of MLIPs

(except for GAPPRX), all MLIPs show low RMSEs in the testing
dataset (Fig. 1d, g) with interstitial configurations. Here the MD
simulations of interstitial diffusion is performed to test whether
the atomic dynamics can be correctly reproduced. Some MLIPs,
such as GAPPRX, DeePMD, and SNAP, show significant deviations in
the interstitial diffusional properties predicted by MLIP-MD
simulations (Fig. 2a and Supplementary Table 2). The diffusivities
predicted by GAP and MTP agree reasonably with AIMD
simulations over the temperature range 1000–1600 K, and the
fitted activation energies of interstitial diffusion, EaI, show minor
differences. GAPPRX, which is the only MLIP considered interstitial
in the training, also shows discrepancies in interstitial diffusivities
with a low EaI of 0.12 eV. SNAP shows a EaI of 0.74 eV, much higher
than AIMD K2 (0.30 eV). For NNP, the crystalline Si structure melted
during the MD simulations at the temperature of 730–1600 K
(Supplementary Note 4). According to the tests, many MLIPs show
some discrepancies in predicting diffusivity, activation energy, or
both, and thus the ability to fully reproduce the atom dynamics of

Fig. 2 Diffusions of point defects in Si. Arrhenius plots of the diffusivity of (a) vacancy and (b) interstitial in Si from AIMD and MLIP-MD
simulations. The missing data points indicate the failure of the MD simulations due to either the melting of the crystal structure or an
insufficient number of atom hops to quantify diffusivities (See Supplementary Tables 4, 5). The error bars of diffusivities are estimated based
on the scheme in ref. 4 (Methods).

Y. Liu et al.

3

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   174 



Si interstitial diffusion is limited. The discrepancies in diffusional
properties indicate that having low average errors in energies and
forces are insufficient error evaluation metrics to judge whether
the atomic dynamics of diffusions in MD simulations are accurate.

Configurations with similar energies are discrepancy sources
In order to reveal the discrepancies of MLIPs in predicting
interstitial diffusions, we analyze the snapshots from MLIP-MD
simulations of interstitials in comparison with AIMD simulations.
DFT studies31–33 reported three types of Si interstitials, such as the
ground-state split-<110> (Fig. 3a), tetrahedral (Fig. 3b), and
hexagonal (Fig. 3c) interstitials, with the formation energies Ef of
3.56, 3.72, and 3.59 eV, respectively, from DFT (K4) calculations
(Fig. 3). Consistent with the trend of the formation energies, the
split-<110> interstitial has higher occurrence frequency in the
AIMD simulations than tetrahedral or hexagonal (Methods)
(Fig. 3d, e)31–33. By contrast, MLIP-MD simulations show higher
occurrence frequencies of either tetrahedral interstitial (by GAP,
SNAP, and MTP) or hexagonal interstitial (by DeePMD) (Fig. 3e and
Supplementary Fig. 7). Consistent with the occurrence frequencies
in MLIP-MD simulations, most MLIPs (except for GAPPRX) give
lower Ef for the tetrahedral interstitial than the ground-state split-
<110> interstitial (Fig. 3d). The trend of increasing occurrence
frequencies for different interstitials can be largely explained by
the decreasing formation energies, while the entropy of these
defects may also play an effect (Supplementary Note 5 and
Supplementary Note 10). Therefore, the errors in interstitial
diffusion during MLIP-MD simulations are caused by the
discrepancies of MLIPs in the predictions of different interstitial
configurations. These discrepancies should be expected given
interstitial configurations are not considered in the training
(except for GAPPRX). However, it is worth noting that small errors
are reported for the testing of energies and forces for interstitial

configurations (in the interstitial-RE test set DRE-I
Testing). Thus,

having small average errors in energies and forces in conventional
error testing on the defect configurations may be insufficient in
determining whether the MLIPs would correctly reproduce these
defect configurations in MD simulations.

Vibration near defects is a discrepancy source
The good performance of MLIPs on Si vacancies is expected given
the dynamical snapshots of Si vacancies in a wide range of
conditions are well covered in the training dataset. However, the
phonon dispersion of the vacancy structure predicted by the
MLIPs (Fig. 1i) suggests potential discrepancies of PES and atomic
vibrations. Additionally, for the vacancy diffusion (Fig. 2a,
Supplementary Table 3), the discrepancies of diffusional proper-
ties are observed in a few cases (Supplementary Note 4). The
diffusional properties, such as activation energies and the pre-
exponential factors of the Arrhenius relation of diffusivity, are
critically dependent on the PES of a migrating atom next to a
defect such as a vacancy.
We further analyze the vibrations of Si atoms neighboring the

vacancy, which is directly related to vacancy diffusion, in order to
gain insights into the observed discrepancies of the PES. We
visualize the vibrations of Si atoms near the vacancy by plotting
the distribution of the distance rs and rv of the atoms from the
nearest static Si site to its nearest static vacancy site, respectively
(Fig. 4a) (Methods). For the atoms that are not the nearest
neighbor (NN) atoms of the vacancy (Fig. 4d), the atom vibrations
are similar to those in crystalline bulk. The agreement in the
vibration of non-NN atoms is consistent with the good agreement
in the phonon dispersion relations (Fig. 1f) and elastic constants of
bulk crystalline Si1,26,28.
The vibrations of the vacancy nearest neighbor (vacancy-NN)

atoms in MLIP-MD simulations show major discrepancies with
AIMD simulations (Fig. 4e–h, and Supplementary Fig. 8). In the
MLIP-MD simulations, the vacancy-NN atoms vibrate much further
away from their static sites, as indicated by the distributions of rs
(Fig. 4c, Supplementary Fig. 8). The discrepancies in vacancy-NN
vibrations reveal that MLIPs do not accurately reproduce atom
dynamics around the defect.
The observed discrepancies in the vibrations of vacancy-NN

atoms can be explained by the errors of the PES of a vacancy-NN
Si atom moving along the direction toward the vacancy (Fig. 4b
and Supplementary Fig. 10). While some pathways of the
migration for a single atom in a static configuration with fully
relaxed static sites (Supplementary Fig. 10) may be poorly
predicted by the MLIPs, some different pathways can be
accurately predicted in very similar configurations with slightly
adjusted atom positions (near-equilibrium snapshots from AIMD
simulations) (Supplementary Note 6, Supplementary Fig. 11).
These observed discrepancies indicate that the PES predicted by
the MLIPs may not be always accurate and reliable under similar
atomic configurations with minor variances in positions.
These errors in the atom vibrations and PESs nearby a defect are

surprising, given that a range of dynamical configurations of
vacancies from AIMD simulations is considered in the training data
and that small errors in energies and forces are reported for these
configurations. These results show the challenges of MLIPs in
accurately reproducing the PES of atoms related to defects, even if
these defects and related dynamics are included in the training. In
addition, the conventional error testing of MLIPs based on average
errors of energies and forces are insufficient in indicating these
errors in atom vibration and PES near defects. Our results reveal
previously neglected errors on the PES of MLIPs in causing
inaccurate atom dynamics.
In summary, we have identified discrepancies based on

observations of atomic dynamics in MD simulations, such as
diffusions, configurations of defects, and atomic vibrations. In

Fig. 3 Si interstitials by MLIPs. Atomistic configurations of (a) split-
<110>, (b) tetrahedral, and (c) hexagonal Si interstitials. Comparison
of DFT (red dashed lines) and MLIPs on (d) the formation energies Ef
of the Si interstitials and (e) the occurrence frequencies in AIMD (K2)
and MLIP-MD simulations at 1230 K (Methods).
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order to train MLIPs that can more accurately reproduce these
dynamical phenomena, we need to quantify these discrepancies
by developing corresponding error evaluation metrics, which can
be further used to train and select the MLIPs with the highest
metric scores.

Quantifying the force errors on RE migrating atoms
Using the discrepancies on atom diffusions as an example, we
here develop corresponding error evaluation metrics, and improve
the performances of MLIPs on diffusional properties. The process
is as follows. We first develop a number of metrics for quantifying
the aforementioned sources of discrepancies (Quantifying the
force errors on RE migrating atoms). The evaluation metrics are
then statistically verified to effectively indicate diffusional proper-
ties derived from atom dynamics in MD simulations (Force
performance scores as effective metrics). This process can be
generalized to improve the training and testing of MLIPs, as
summarized in “Process of developing error evaluation metrics”.
Given the aforementioned discrepancies in diffusional proper-

ties, we identify the sources of errors on migrating atoms, which
are the atoms of interstitial or vacancy in the middle of the
hopping from the current equilibrium site to the neighboring site
(Methods). These atom hops are known as rare events (REs) in MD
simulations. To quantify the errors of MLIP predictions for RE
atoms, we compare the predicted atomic forces with DFT results
on these RE atoms. We evaluate the error of atomic force in the
magnitude δF and the direction δθ of as

δF ¼ ~Fpredicted
�
�

�
�� ~FDFT
�
�

�
� (1)

δθ ¼ arccos
~Fpredicted~FDFT

~Fpredicted
�
�

�
� � ~FDFT
�
�

�
�

 !

(2)

where ~FDFT is the benchmark true force values calculated by DFT
K4, and~Fpredicted is the force predicted by the MLIPs (or DFT K1, or
K2). For the RE atoms in the DRE-I

Testing and DRE-V
Testing datasets,

large errors were found in the force magnitude δF (Fig. 5a) and
force direction δθ (Fig. 5f) of the atomic forces predicted by MLIPs.
For the RE atoms and the nearby atoms within a distance r < 3 Å,
50–80% and >40% exhibit large errors of δF > 0.5 eV Å−1 or
δθ > 15°, respectively, whereas around 20% of the other atoms
that are >3 Å away from the migrating atoms show similar levels
of errors (Supplementary Note 7, Supplementary Table 7). While
other factors in addition to the force errors on RE atoms may

contribute to the discrepancies, the analyses nonetheless confirm
that there are large errors on the atoms near defects and RE atoms
are a major source responsible for discrepancies in diffusions.
The cumulative distribution functions (CDFs) of δF and δθ on RE

atoms show the distributions of force errors of MLIPs (Fig. 5d, e, i, j,
and Supplementary Fig. 12). Most MLIPs (except for GAPPRX)
exhibit errors in force prediction on RE atoms (8–25% for
δF > 0.5 eV Å−1 and 40–70% for δθ > 15°), whereas lower accuracy
DFT K2 (<0.5% for δF > 0.5 eV Å−1 and 1% for δθ > 15°) and DFT K1
calculations (5% for δF > 0.5 eV Å−1 and 30% for δθ > 15°) have
much smaller errors. These results clearly show MLIP predictions
have large errors on RE atoms. The force magnitude error δF of
larger than 0.5 eV Å−1 is significant, as the median force
magnitude of all atoms is around 1.7 eV Å−1 (Fig. 5b). Among
these atoms with δF > 0.5 eV Å−1, 10–35% interstitials and 3–15%
vacancies also exhibit significant force direction errors of δθ > 30°
(Fig. 5g), which would lead to major errors in predicting atom
dynamics in MD simulations. Therefore, these large errors in MLIP-
predicted forces on RE atoms (Fig. 5d, e, i, j) and their nearby
atoms (Supplementary Table 7 and Supplementary Fig. 12) are
major sources of the observed discrepancies in the atom vibration
and diffusion between MLIPs and DFT.
By identifying what atoms tend to give large errors, it can be

understood why conventional error testing of MLIPs shows very
small errors. In conventional error testing of MLIPs, most of the
atomistic configurations evaluated are for atoms near equilibrium
positions, which are accurately predicted by MLIPs with very small
errors. The RE atoms only consist of a very small fraction in most
typical testing datasets, e.g., <1% in the dataset of Zuo et al.1 and
Bartok et al.26 (2–3% in our RE-testing datasets). Therefore, the
large errors on RE atoms are averaged out by the majority of near-
equilibrium atom configurations. The total RMSEs of the forces on
all atoms in conventional error testing mostly reflect the accurate
MLIP prediction of near-equilibrium atoms, which often dominate
the typical testing dataset (Supplementary Note 7). However, it
should be noted that a few percent of RE-related atoms are critical
for the correct prediction of atom dynamics and physical
phenomena in MD simulations.
In order to overcome the limitations of conventional error

testing, we propose to quantify the CDFs of force errors δF or δθ on
RE atoms, using the normalized area of curve (NAC) under the CDF
curves (see details in Methods) as new metrics. The NAC of CDF
equals to 1 for an MLIP that completely agree with the benchmark
true values (DFT K4), and a lower value of NAC suggests larger

Fig. 4 Errors in atom vibrations. a Illustration of a vibrating Si atom by the distance rs to its static site and the distance rv to the nearest static
vacancy site. b The potential energy surface (PES) of the vibrating Si atom moving along the direction (green arrow) towards the vacancy. The
probability density of (c) the nearest neighbor (NN) atoms and (d) non-NN atoms of the vacancy plotted as a function of rs. e–h The probability
density for the NN atoms of the vacancy plotted as a function of rv and rs. All distributions are obtained from MD simulations at 1230 K, using
an averaging scheme described in the Methods.
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errors. To combine the metrics of force magnitude NAC(δF, D) and
force direction NAC(δθ, D), we define the force performance score
P(D), as the product of NAC(δF, D) and NAC(δθ, D) for errors of
atomic forces in a given dataset D (Methods),

PðDÞ ¼ NACðδF ;DÞ ´NACðδθ;DÞ: (3)

These quantitative metrics can be effectively used in training,
validation, and testing to improve MLIPs as demonstrated in the
next section.

Force performance scores as effective metrics
To evaluate the effectiveness of P(D), we here obtain MLIPs with
high P(D) scores and compare their atomic dynamics in diffusions

with previous MLIPs. A RE-enhanced training dataset is generated
to train the MLIPs that can achieve higher P(D) scores. For the RE-
enhanced training dataset, we replace a fraction (54%) of the
structures in the original dataset in ref. 1 by those containing
identified migrating interstitials. In this way, the size of the training
dataset is kept the same to eliminate the impact of training data
size in the comparison with original MLIPs (Methods). In the RE-
enhanced validation, the force errors on RE atoms are evaluated
for trained MLIPs using the enhanced validation set (EVS)
(Methods), which includes those structures with RE atoms
(migrating interstitials and vacancies) identified in addition to a
fraction of the original dataset in ref. 1. We use the evaluation
metrics on errors of energies, overall forces, forces of RE atoms
(migrating interstitials or vacancies) to fine-tune the

Fig. 5 Errors of atomic forces. Illustrations of (a) force magnitude error δF and (f) force direction δθ of atomic force Fpredicted predicted by an
MLIP in comparison to FDFT by DFT. For the RE atoms in the DRE-I

Testing, the errors (b) δF and (g) δθ of DeePMD (orange) and GAPPRX (cyan), the
corresponding distribution of (c) δF and (h) δθ, and the cumulative distribution function (CDF) of (d) δF and (i) δθ. The CDF of (e) δF and (j) δθ on
vacancy RE atoms in the DRE-V

Testing set. Interstitial- and vacancy-RE atoms are atoms in the middle of migration identified in the DRE-I
Testing

and DRE-V
Testing datasets, respectively.
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hyperparameters of MLIPs and select the MLIPs with good
performances on all evaluation metrics in the validation process
(Methods). Following this process, we train and obtain 135 MLIPs
to study the statistical effectiveness of our force performance
score and six representative RE-enhanced MLIPs (denoted by the
subscript RE-I), GAPRE-I, NNPRE-I, DeePMDRE-I, SNAPRE-I, and MTPRE-I
and compare their atomic dynamics in MD simulations with
previous MLIPs (Methods).
To evaluate the effectiveness of our force performance scores,

here we calculate and compare the force performance scores P(D)
and the diffusional properties from MD simulations, for a total of
81 MLIPs with a range of models and different hyperparameters,
such as 35 original MLIPs and 46 interstitial-enhanced MLIPs
selected by the metrics of force performance scores P(D) in the
validation step (Methods). Eight criteria measuring the energy
errors and force errors of both force magnitudes and directions
(Methods) on RE atoms are evaluated. The diffusional properties,
such as activation energies, diffusivities, and diffusion pre-factors,
from MD simulations of RE-enhanced MLIPs with high force
performance scores, show improved agreement with AIMD
simulations (Fig. 6b). Among these 81 MLIPs (Fig. 6a), the MLIPs
with higher force accuracies P(DRE-I

Testing) on interstitial RE atoms
than DFT K1 predict the activation energy EaI of interstitial
diffusion in good agreement with the AIMD K2 value (Fig. 6a and
Supplementary Fig. 14) (Supplementary Note 9). The other MLIPs
with lower P(DRE-I

Testing) lower scores than DFT K1 (below the red
dashed line in Fig. 6a) show much large variations and errors in
their predictions of diffusion. Among the RE-enhanced MLIPs with
high performance scores, GAPRE-I, SNAPRE-I, NNPRE-I, and MTPRE-I,
give EaI of 0.2, 0.33, 0.29, and 0.26 eV, respectively, in better
agreement with 0.25 and 0.30 eV from K1 and K2 AIMD
simulations, compared to 0.42, 0.74, and 0.42 eV by the original
MLIPs, (Fig. 6b, Supplementary Table 2). The predicted diffusion
pre-factors D0

I of enhanced MLIPs improve from
>5.7 × 10−5 cm2 s−1 (except for GAPPRX) in original MLIPs to

8.5 × 10-6–4.1 × 10−5 cm2 s−1, in better agreement with
7.7 × 10−6–2.3 × 10−5 cm2 s−1 from AIMD simulations (Fig. 6b). In
addition, the interstitial configurations observed in MLIP-MD
simulations also agree better with AIMD simulations. The
occurrence frequencies of split-<110> interstitials increase to
around 35% in RE-enhanced GAPRE-I, NNPRE-I, SNAPRE-I, and MTPRE-I
from less than 10% by the original MLIPs (Fig. 3e). In addition to
these improvements, the occurrence frequencies of ground-state
split-<110> interstitial are still lower than those of ground-state
tetrahedral, even the configurations of all three types of
interstitials are included in the RE-enhanced training data. Given
the total energy difference of 0.16 eV between the two interstitial
configurations is merely 3 meV atom−1 in the 65-atom supercell
used, these results indicate the difficulties of MLIPs in accurately
reproducing the atomic configurations with similar energies. In
summary, the force performance scores on RE atoms are effective
error evaluation metrics to indicate related diffusional properties
predicted by the MD simulations of the MLIPs. Using improved
error evaluation metrics for optimization and validation is
demonstrated as an effective step in training MLIPs with improved
performance.

Process of developing error evaluation metrics
Developing error evaluation metrics that are indicative of the
predictions of atomic dynamics is essential for the development of
MLIPs. In the conventional training process, optimizing MLIPs on
properties other than the errors of predicted energies and forces
can be either done by 1) adding additional terms and weights into
the loss functions as training targets (Fig. 7a-i)1,25, or 2) adding
additional metrics or material properties, such as elastic tensors in
ref. 1, when deciding the optimal hyperparameters for MLIPs
(Fig. 7a-ii). However, this conventional approach would be
computationally expensive for evaluating atomic dynamics (Fig.
6a-ii), because it requires running multiple MD simulations for
each trained model for the fine-tuning of hyperparameters24.

Fig. 6 The performance of RE-enhanced MLIPs. a Comparison of MLIPs for their force performance score P(DRE-I
Testing) on interstitial RE

atoms versus the fitted activation energy EaI of interstitial diffusion in MLIP-MD simulations. Black dashed lines are EaI from AIMD simulations,
and the red dashed line indicates P(DRE-I

Testing) calculated by DFT K1. b The calculated EaI and D0
I of interstitial diffusion from AIMD simulations

(blue bar and red dash line), original MLIPs (gray), and interstitial-enhanced MLIPs (green). c Comparison of MLIPs for their force accuracies
P(DRE-I

Testing) on interstitial RE dataset versus P(DRE-V
Testing) on vacancy RE dataset, showing the Pareto fronts (dash lines). These MLIPs are

comprised of newly trained MLIPs by RE-enhanced training data with interstitials RE-I (cross) or vacancies RE-V (triangles), original MLIPs
(circles), or MLIPs re-trained by the original dataset in ref. 1 and selected by the RE-validation process (Methods). Thin black dashed lines are
P(D) calculated by DFT K1.
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Thus, effective error evaluation metrics that do not require
extensive MD simulations and are indicative of atomic dynamics
are essential, so one can train MLIPs that can accurately predict
physical phenomena in MD simulations with lower computational
costs in the training and validation process.
Here we summarize the process of developing error evaluation

metrics as follows, which can be generalized for future develop-
ment to improve simulation-based performance of MLIPs (Fig. 2b):
(1) Identify the sources of discrepancies in the MD simulations, (2)
propose related but easy-to-calculate metrics that are related to
the physical properties based on the simulation (e.g., forces on RE
atoms to diffusional properties in our case), (3) quantify the
proposed error evaluation metrics and dynamical properties
based on simulations for a range of MLIPs, and (4) verify the
effectiveness of proposed metrics statistically among these MLIPs
with different models, hyperparameters, or training data. If the
metrics prove to have a statistically significant effect on improving
the atomic dynamics for MLIPs, we then can add the proposed
and verified evaluation metrics into the training process (Fig. 7a-ii).
There are important considerations in generalizing this process

of developing error evaluation metrics for simulation-derived
properties. It’s important to use a large amount of data, on metrics
and dynamical properties, predicted by diverse MLIPs, and
conduct statistical verification instead of using a single or a few
MLIPs because the developed metrics should be general enough
to be applied to most MLIPs, which may be in the future trained
by other descriptors, models, or training data. In some exception
cases, MLIPs (e.g., NNPs (orange crosses), SNAPs (purple crosses),
and the other models (circles) in Fig. 6a) may give poor scores in
evaluation metrics but may have small errors on dynamical
properties, thus statistically verifying the evaluation metrics is
important. There are many factors affecting the outcome of the
training of ML models, and many are random in nature and yet
poorly understood.

Trade-offs in MLIP performances: pareto fronts of MLIPs
Additionally, we compare the performance and force accuracies of
MLIPs based on a variety of ML algorithms and atomic descriptors
and observe the trade-off the accuracies on different properties
(Fig. 6c). We compare MLIPs including the 46 interstitial-enhanced

MLIPs which used training data with both interstitials and
vacancies, and 54 vacancy-enhanced MLIPs trained using vacancy
REs data (Supplementary Note 3), 11 original MLIPs, and 24 MLIPs
retrained from the original dataset1. We compare the force
accuracies P(DRE-I

Testing) and P(DRE-V
Testing) on interstitial- and

vacancy-RE atoms, respectively. For all MLIPs, there is a clear trend
of decreasing P(DRE-I

Testing) with increasing P(DRE-V
Testing) as shown

in Fig. 6c, indicating trade-offs on force accuracies of different
defects (interstitials versus vacancy). The Pareto front lines for
each type of MLIPs (GAP, NNP, SNAP, MTP, DeePMD, and DeepPot-
SE) can be shown (Fig. 6c) for the force accuracies P(DRE-V

Testing)
and P(DRE-I

Testing) on different defects, such as interstitial-RE and
vacancy-RE atoms.
These Pareto fronts indicate the difficulties of MLIPs in

achieving accurate predictions for all properties and serve as a
good way to compare the performance of different MLIPs. Some
MLIPs have lower Pareto fronts, indicating low force accuracies in
interstitials at given force accuracies in vacancies. Notably, a few
MLIPs, such as GAP and MTP, are able to achieve higher force
accuracies than DFT K1 in both interstitial and vacancy. These
MLIP models and descriptors may be more effective in accurate
prediction for different defect configurations at the given training
dataset, though the trade-offs between different predicted
properties generally exist for all MLIPs.
There are more examples showing the trade-offs of MLIPs on

other properties. MTP gives accurate predictions for atomic forces
and activation energies but shows discrepancies in the predicted
atomic vibrations near vacancy (Figs. 3f, 6a, c). GAP has good
predictions on diffusivities in MD simulations but shows dis-
crepancies on phonon spectra (Fig. 1f–h). DeePMD reproduces
activation energies of diffusion but shows errors for diffusivities,
atomic forces, and interstitial configurations (Supplementary
Table 2, Supplementary Table 3, Figs. 1, 2, 4, and Supplementary
Fig. 12). Therefore, the performance of MLIPs should not be
judged by a single property or a few properties. Even if an MLIP
may give good performance for a number of properties, good
performance for other properties should not be assumed.
Furthermore, overcoming the trade-off of MLIPs’ performance on
different properties is required to further improve MLIPs for a wide
variety of physical simulations. While a careful selection and

Fig. 7 Process of MLIP training and developing metrics. a Conventional process of MLIP training including the validation process of fine-
tuning hyperparameters. b The process of developing evaluation metrics.
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balance for different types of defect data are known to be
essential, it is also important to have a systematic process and
quantitative metrics to train MLIPs with balanced accuracies in a
range of structures and properties.

DISCUSSION
Our study presents a systematic testing on the current state-of-
the-art MLIPs, regarding the discrepancies in the prediction of
atom dynamics and physical properties, in comparison with DFT
calculations. Even with the carefully selected training dataset and
very low average errors in energies and atomic forces from
conventional ML testing, MLIPs may exhibit significant discrepan-
cies in their calculated properties and atom dynamics in MD
simulations. Examples of these discrepancies include different
defect types, atom vibration near defects, phonon dispersion, and
diffusional properties. These discrepancies of the MLIPs in actual
MD simulations should not be neglected. While the discrepancies
for cases that are not included in the training data may be
expected, significant discrepancies for presumed cases that are
fully covered in the training dataset (e.g., atomic vibration around
vacancy) are also significant in some cases and should be carefully
tested. These sources of potential discrepancies are summarized
as follows and should be carefully considered for improved
training and rigorous testing in the future development of MLIPs.

The properties related to rare events
Atomistic diffusion is a typical example of physical property
derived from MD simulations. However, the diffusion is largely
determined by the REs, which are often less sampled in the
training and testing data of the MLIPs34,35. The MLIP predictions
on the atomic forces (both in force magnitude and force direction)
of RE atoms deviate significantly from DFT values, causing errors in
the predicted atomic dynamics and diffusional properties from the
MD simulations. On the other hand, these errors associated with
RE atoms serve as effective metrics for quantifying errors of MLIPs.
Similar discrepancies are expected for diffusions in other materials
systems or other types of rare events, such as reactions and state
transitions. In addition, while the RE atoms analyzed in this study
are identified using a hand-designed algorithm based on local
atom distances, unsupervised machine learning, e.g., the k-means
clustering method, as we demonstrated in the Supporting
Information, can also be employed to identify these RE atoms.

The defects with similar energies
As shown in the examples of Si interstitials, the formation energies
and the occurrence in MD simulations of different defect
configurations (e.g., split-<110> vs tetrahedral interstitials) may
be incorrectly predicted by MLIPs. Even if these various defects are
considered in the training, as shown in our results generated by
RE-enhanced MLIPs (Fig. 6b), the MLIPs’ predictions still do not
completely agree with the DFT benchmark. These discrepancies
are not revealed by low average errors on energies and forces in
conventional ML testing for MLIPs, even if the testing dataset
includes these defect configurations.

Atomic vibration
The dynamics of atoms near defects are poorly reproduced by the
MLIPs, even though these atom dynamics are considered in the
training data. These errors are caused by the poor prediction of
PES around defects. Since the PES is a high dimensional function
of multi-atom configurations, the capability of MLIPs covering
these configuration spaces may still have limitations, which should
be further studied. It’s worthwhile to note that the atomic
vibration and the aforementioned formation energy of defect are

persistent challenges for MLIPs in our study and are not fully
resolved.
In general, these errors of MLIPs in defect energies, atom

vibrations, and REs are related to defects and their nearby atoms.
These aforementioned errors given by MLIPs, though yield large
errors in the prediction of atom dynamics and properties in MLIP-
MD simulations, are not reflected in the conventional testing of
MLIPs. In conventional testing, a majority of the testing data are
near-equilibrium atomic configurations, which are well described
by the MLIPs, leading to low average error values (Supplementary
Note 1). Those aforementioned error-prone atomic configurations,
such as RE atoms and those around defects, account for a very
small fraction of atomic configurations in the testing dataset and
their errors are averaged out in the RMSE/MAE error values.
This understanding provides important guidance for the

training, testing, and development of MLIPs. Careful considera-
tions are required for complex defects, their surrounding atoms,
and non-equilibrium structures in the training of MLIPs1,26. In
addition to the evaluation of average error values, the accuracies
and robustness of MLIPs should be carefully considered and
tested on a number of key scenarios with a high likelihood of
errors, including defects, atom vibrations near defects, and forces
(both direction and magnitude) on RE atoms. As demonstrated in
our study, the error evaluation metrics quantifying these errors
can effectively improve the training, validation, and testing of
MLIPs. For example, force accuracies on RE atoms are demon-
strated examples of such error metrics to be used in the validation
(Fig. 6a) and testing of MLIPs (Figs. 3, 6c). Furthermore, our
demonstrated process of developing error evaluation metrics,
which were verified over a large number of MLIPs with different
models and training datasets and were applied to selecting MLIP
models, can be generally applied and extended to alleviate or
overcome these MLIP errors.
It is very important to develop these error evaluation metrics

that are indicative of simulation-based errors. These error
evaluation metrics serve as an applicable and effective method
in the verification, testing, and selection of better MLIPs, because it
is computationally expensive to run a large number of MD
simulations for all MLIPs over an extended time duration to obtain
related physical properties (such as diffusion). For these error
evaluation metrics to be effective and generally applicable, it is
important to statistically verify these metrics on a large number of
MLIPs with different models and even different training datasets
and to compare many metrics and their values with the targeted
dynamical properties. Since evaluation metrics are effective in a
statistical sense, applying them to different MLIP models,
descriptors, and hyperparameters may show various levels of
improvement. Nonetheless, developing and applying error eva-
luation metrics are critical to developing MLIPs with improved
performance on atomic dynamics and other properties derived
from MD simulations. The process we demonstrate to develop
such evaluation metrics can be generalized and extended for
future studies.
Applying our RE-based evaluation metrics provides significant

improvements in MLIPs, and the aforementioned errors are
significantly reduced but not fully eliminated, including atom
vibration near defects and defect configuration occurrences since
they’re not directly related to RE atoms. Beyond the aforemen-
tioned issues of averaged errors and limited PES sampling, our
results reveal a number of other potential challenges of MLIPs for
improving performances on these defect-related errors. The
defect-related errors, such as on different types of interstitials or
the PES around defects, can be understood as atomistic
configurations with small perturbations and small energy differ-
ences (~101meV atom−1). Given the defect has a low concentra-
tion in the supercell model and the total energies of the entire
supercell model are used for training, it can be challenging for the
MLIPs to accurately reproduce the PES around all these atomistic
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configurations with small differences and similar energies. Small
differences in the PES would lead to significant change in the
probability density, atomic forces, occurrence frequency, and
dynamics of atoms. While more systematic testing and more
training data may be helpful, it is possible that the descriptors and
ML models can be further improved to capture the PES of these
varying atomistic configurations. Given the PES is a high-
dimension function of the atomic descriptor, it is possible the
interpolation among the given configurations from the training
dataset may be inadequate for accurately covering the entire
relevant portion of PES encountered during MD simulations.
Overall, to accurately reproduce all aforementioned error cases
with similar energies, more studies are needed to further test and
improve the atomistic descriptors, ML models, or the schemes of
training and testing.
In conclusion, we study a number of MLIPs and identified a

number of potential discrepancy sources in their applications.
Leveraging these, we develop evaluation metrics into a process
that identifies sources of discrepancies in atomic dynamics,
quantifies the discrepancies, statistically verifies the effectiveness
of the developed metrics, and optimizes MLIPs using enhanced
quantitative metrics. By proposing and demonstrating improved
evaluation metrics and the general process to develop such
metrics, we show the improvement of the MLIPs in the prediction
of physical properties. Overall, our results highlight general
guidance and potential challenges in the future development of
accurate, robust, and reliable MLIPs for atomistic modeling.

METHODS
Obtaining and training MLIPs
To obtain existing MLIPs in consistent with previous studies, we
retrieved MLIPs (GAP, NNP, SNAP, and MTP) directly from the
corresponding mlearn repository of Zuo et al.1, or trained MLIPs
(DeePMD) by using the training data the same as in ref. 1. The
mlearn package and the corresponding MLIP models, including
QUIP for GAP11, N2P2 for NNP36, MLIP for MTP16,37, and SNAP
coded in LAMMPS38, were used for the energy and force
evaluation. The GAPPRX model was retrieved from Ward et al.39.
Since different training data was used for the existing DeePMD
model by Zhang et al.5, the DeePMD model was trained here using
the training data from Zuo et al.1 in order to have a fair
comparison with other MLIP models. Here we refer to the early
version of Deep Potential Molecular Dynamics as DeePMD5 and
the later version of Deep Potential–Smooth Edition as DeepPot-SE
in Supporting Information27. The training of DeePMD models was
performed using the DeePMD-kit package27,40. The hyperpara-
meters of the DeePMD model, including the size of the neural
network, cut-off radius, and the number of iteration steps, were
optimized using a grid search algorithm (two to six values were
considered for each hyperparameter) by the RMSEs of energies
and forces in a separate set of 100 snapshots from AIMD
simulations of bulk Si with single vacancy defect (vacancy
validation dataset). The length of the neighbor list in DeePMD
model was estimated based on cutoff radius. The final set of
hyperparameters was selected to have the lowest RMSEs of
energies and forces in both training dataset and the vacancy
validation dataset.

First-principles computation
DFT calculations were performed to generate additional data of
energies, forces, PES and atomic configurations for training and
testing. All DFT calculations were performed by Vienna ab initio
simulation package41 (VASP) with the projector augmented-wave
approach on these snapshots. The Perdew–Burke–Ernzerhof42

(PBE) functionals by generalized-gradient approximation (GGA)
were adopted to calculate the total energies of snapshots. Static

relaxation of atomic configurations were performed using spin-
polarized DFT calculations with an energy cutoff of 520 eV, an
electronic relaxation convergence cut-off of 10-5 eV, and other
parameters set similar to those used in Materials Project43,44. Our
benchmark true values of energies and forces were calculated
using 4 × 4 × 4 k-point mesh (K4), while Γ-centered 1×1×1 (K1) and
2 × 2 × 2 (K2) were also evaluated for comparison.

Ab initio molecular dynamics simulation
Ab initio molecular dynamics (AIMD) simulations were performed
using non-spin-polarized, an electronic energy convergence cut-
off of 10-4 eV, a Γ-centered 1 × 1 × 1 (K1) or 2 × 2 × 2 (K2) k-point
mesh, and a time step of 2 fs. The PBE functionals by GGA were
adopted as in the First-Principles Computation section. The
supercell model consists of Si bulk-phase with 2 × 2 × 2 conven-
tional unit cells (64 atoms) with a single vacancy (63 atoms) or a
single interstitial (65 atoms). The initial temperature of the
simulations was set to 100 K after a static relaxation of the initial
structures, and the structures were heated to the final tempera-
tures during a period of 2 ps with a constant rate by velocity
scaling, and afterwards an NVT ensemble with Nosé-Hoover
thermostat was adopted. To obtain diffusional properties, AIMD
simulations were performed at different temperatures 730, 840,
1000, 1230, 1500, and 1600 K following the same scheme in
refs. 4,45. Missing diffusivities at certain temperatures in Fig. 2a, b
are either due to the melting of the crystal structures or
inadequate numbers of hopping events (specified in Supplemen-
tary Tables 4, 5, and 6). Given the stochastic nature of ion hopping
in estimating diffusivities, the diffusivity calculations were
converged using our developed scheme4,45. and the error bars
are estimated correspondingly based on the total number of ion
hops. The diffusivities and their error bars of AIMD simulations at
all temperatures are available in Supplementary Tables 4, 5, and 6.
The diffusivities and their error bars were evaluated according

to the total mean-squared-displacement (TMSD) of Si atoms as in
ref. 4. The total time durations of AIMD simulations were in the
range of 100 and 1000 ps, so the values of TMSD were in the range
of 1200–3000 Å2 and were 600 Å2 for AIMD K2 simulations at
temperatures of 1000 K and 1230 K due to high computation cost.

MLIP-MD simulations
All classical MD simulations based on MLIPs were carried out using
LAMMPS. The MLIP-MD simulations for vacancy and interstitial
diffusion were performed on the same supercells with single
interstitial or vacancy defect as in the AIMD simulations with NVT
ensemble. The time step of all MD simulations was set to 1 fs. MLIP-
MD simulations of all MLIPs are performed at six different
temperatures 730, 840, 1000, 1230, 1500, and 1600 K. The total time
duration of MD simulations was in the range of 500 to 5000 ps, similar
to those used in AIMD simulations. The TMSDs of MD simulations
were between 6000 and 320,000 Å2 for NNP, SNAP, MTP, DeePMD,
and DeepPot-SE, and >1500 Å2 for GAP models. The convergence of
diffusivity and the error bars are estimated correspondingly based on
the total number of ion hops in the same scheme as in the AIMD
simulations4,45. The diffusivities and their error bars from MLIP-MD
simulations are summarized in Supplementary Table 4 and 5,
following the same scheme described in “Ab initio molecular
dynamics simulation” section.

Analyzing Si interstitial in MD simulations
The occurrence frequency of each interstitial configuration (split-
<110 > , tetrahedral, and hexagonal) was counted among
2000 snapshots (taken every 100 fs) from the single-interstitial
supercell model from MD simulations at 1230 K. To determine the
interstitial type, a structural matching algorithm was performed
for each snapshot following the scheme adopted in ref. 46 using
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pymatgen43. The interstitial configurations used as matching
templates were fully relaxed using the fixed lattices of a crystalline
Si bulk and a Γ-centered 4 × 4 × 4 k-point mesh, with energy and
the force convergence criteria at 10−7 eV and 0.01 eV Å−1,
respectively. The matching algorithm used the tolerance para-
meters of the lattice angle of 5°, the lattice length of 20%, and the
site root-mean-square tolerance of 0.275(V/n)1/3, where V/n was
the volume V normalized by the number of atoms n. Some
interstitial configurations, e.g., migrating interstitials or concerted
migrations of multiple interstitials, happened in MD simulations,
cannot be classified as either of three interstitials, and thus the
occurrence frequencies of three interstitials do not always sum
up to 1.

Identifying static sites, vacancies, and migrating atoms
The algorithms for identifying static sites, vacancies, and migrating
atoms during MD simulations were as follows. The static sites of Si
were set to the sites of the perfect crystalline Si bulk. A static site that
has no Si atoms within 1.1 Å was identified as a vacancy. A migrating
Si atom (RE atom) was a Si atom between two nearest-neighbor static
sites, which was selected if the distances to their 1st nearest and 2nd
nearest static sites has a difference below 0.75 Å (~31% of distances
between two static sites). This criterion can effectively distinguish
migrating atoms from atoms vibrating around static sites.
The values of the distance to the nearest static site, rs, the

distances to its nearest vacancy, rv, and the distances to its nearest
RE atom, r, were quantified correspondingly from these static sites.
All distributions in Fig. 3c–h was generated with 50×50 grid size
by collecting rv and rs distances of vacancy NN or non-NN atoms
over 2000 snapshots taken randomly (>every 100 fs) from each
simulation of MLIPs or AIMD at 1230 K. The Gaussian filter with
smoothing parameter σ set to 3 was applied in plotting the
distributions using scipy library47.

Testing dataset with REs
Two testing sets, DRE-I

Testing and DRE-V
Testing sets, are constructed

from 100 snapshots taken from AIMD simulations at 1230 K with
single-vacancy and single-interstitial, respectively, with every
snapshot having a RE. The energies and atomic forces of each
snapshot were further converged by single-step self-consistent
DFT calculations to a higher accuracy (Γ-centered 4 × 4 × 4 k-point
mesh) with fixed atom positions and lattices, and these converged
values (DFT K4) were used as true values for testing.

Error evaluation of atomic forces
Using the DRE-I

Testing and DRE-V
Testing sets, the error evaluation of

atomic forces was performed for all MLIPs. The errors of atomic
forces by DFT calculations with lower accuracy setting (K1 and K2)
commonly used in AIMD simulations were also evaluated in
comparison to the MLIPs. The magnitude error δf and the
directional error δθ of forces were evaluated according to Eqs. (1)
and (2), respectively. From the error evaluation results on the RE
atoms (i.e., migrating atoms as defined above) in the DRE-I

Testing or
DRE-V

Testing dataset, the CDFs of δF and δθ were generated. The
normalized area under the curves NAC(δ, D) of the CDFs of δF and
δθ were quantified in corresponding dataset D for δF over 0 –
1 eV Å−1 (20 bins) or for δθ over 0–90° (20 bins), respectively, for
each MLIP or DFT K1/K2 as shown in Fig. 4, and were normalized
by the total area of the evaluation range of 0–1 eV Å−1 for x-axis
and 0–100% for y-axis, giving to a value between 0 and 1. Higher
NAC values (closer to 1) correspond to smaller errors in the MLIP
prediction compared to DFT K4 benchmark.

Generating RE-enhanced training dataset
To train MLIPs with low errors of forces on RE atoms, 120 snapshots
with identified RE atoms were randomly selected to replace the

structures in the original training dataset1 from the following
categories, such as liquid Si, AIMD simulations of Si bulk, and the
strained Si bulk, from the original training dataset, in order to
maintain a balance of structures for each category. The RE-
enhanced training dataset has the same size and similar diversity
of different types of atomic configurations as the original dataset
in ref. 1, so we can make a fair comparison between existing and
RE-enhanced MLIPs.

Optimizing enhanced MLIPs
The validation dataset to optimize the MLIPs trained by RE-
enhanced training data was constructed as follows. The enhanced
validation set (EVS) contains 50 total structures, consisting of
20 structures randomly selected from the 120 replaced structures
of the original training dataset, 11 snapshots with vacancy RE from
AIMD simulations, and 19 snapshots with interstitial RE from AIMD
simulations. The optimization of the hyperparameters of MLIPs
considered 4 to 10 values for each parameter including the band
limit of spherical harmonic basis functions and the number of
radial basis functions for GAP, the size of neural network for NNP,
the number of radial basis functions number for MTP. For each
MLIP model, grid search algorithms were performed among
300–2000 sets of hyperparameters to identify the selected MLIPs
as explained below.
For the selection of optimal MLIP models, which were used to

study the force performances of MLIPs in Fig. 6c, we evaluated the
following eight metrics, such as the RMSEs of energies and forces
of 31 structures (excluding the 19 interstitial structures), the RMSEs
of energies and forces of RE atoms in 11 vacancy structures, the
RMSEs of the energies and forces of RE atoms in 19 interstitial
structures, the RMSEs of the energies and forces of RE atoms in 30
vacancy and interstitial structures in the EVS. We used the force
performance score P (D for the dataset D. The evaluations were
performed for different data such as all atoms in EVS, the RE atoms
of the interstitial structures in EVS, the RE atoms of the vacancy
structures in EVS, or all RE atoms in EVS.
Using these evaluation scores, we first selected those MLIPs

with the lowest RMSE or the highest NAC in any one of the eight
criteria, giving a total of 46 MLIPs as interstitial-enhanced MLIPs.
The same optimization process using eight criterion was also
applied on selecting additional MLIPs trained by the original
dataset in ref. 1 obtaining 24 additional MLIPs. All these 46
interstitial-enhanced MLIPs and 24 additional MLIPs were used in
Fig. 6a for testing of their force performances on interstitial RE
atoms. These RE-enhanced MLIPs were further down selected to
have the optimal one as the representative MLIPs, using the joint
force error score of P(DRE-I

EVS)2+ P(DRE-V
EVS)2. All NACs of δF and

δθ were computed using the RE atoms in the EVS. Six optimal
MLIPs, one for each model, were selected. Both MLIP-MD
simulations with single vacancy and MD simulations with single
interstitial were further performed at six different temperatures to
analyze their diffusional properties.

Testing interstitial-enhanced MLIPs
Our testing of the MLIPs from RE-enhanced training dataset (all 46
interstitial-enhanced MLIPs) included the evaluation of joint force
error matrices calculated from DRE-I

Testing and DRE-V
Testing sets,

P(DRE-I
Testing) and P(DRE-V

Testing) respectively, and the evaluation of
their diffusivities, pre-exponential factors, interstitial occurrence
frequencies and activation energies of vacancy and interstitial in
MD simulations. The joint force error metrics and their calculated
diffusional properties are compared as shown in Fig. 6a. The joint
force error metrics, P(DRE-I

Testing) and P(DRE-V
Testing), of the existing

MLIPs and the additional MLIPs were also calculated using the
DRE-I

Testing and DRE-V
Testing sets.
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DATA AVAILABILITY
The structural (POSCAR files), energies, and forces data to support the finding of this
study, including original training dataset from ref. 1, the enhanced validation set DEVS,
the interstitial-enhanced training set, the interstitial-RE testing set DRE-I

Testing, the
vacancy-enhanced training set, the vacancy-RE testing set DRE-V

Testing are available
from: https://github.com/mogroupumd/Silicon_MLIP_datasets.

CODE AVAILABILITY
The computation codes and programs to support the finding of this study is available
from the corresponding author on reasonable request. All DFT calculations are
performed using VASP version 5.4.4. Python packages of pymatgen, mlearn, scipy,
quippy, scikit-learn, and DeePMD-kit (Python interface) are used to analyze data, train
corresponding MLIPs, or perform MLIP-MD simulations. MLIP-MD simulations also
utilizes scripts using LAMMPS and DeePMD-kit.
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