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AdsorbML: a leap in efficiency for adsorption energy
calculations using generalizable machine learning potentials
Janice Lan1,4, Aini Palizhati2,4, Muhammed Shuaibi1,4, Brandon M. Wood 1,4, Brook Wander2, Abhishek Das 1, Matt Uyttendaele1,
C. Lawrence Zitnick1✉ and Zachary W. Ulissi2,3✉

Computational catalysis is playing an increasingly significant role in the design of catalysts across a wide range of applications. A
common task for many computational methods is the need to accurately compute the adsorption energy for an adsorbate and a
catalyst surface of interest. Traditionally, the identification of low-energy adsorbate-surface configurations relies on heuristic
methods and researcher intuition. As the desire to perform high-throughput screening increases, it becomes challenging to use
heuristics and intuition alone. In this paper, we demonstrate machine learning potentials can be leveraged to identify low-energy
adsorbate-surface configurations more accurately and efficiently. Our algorithm provides a spectrum of trade-offs between
accuracy and efficiency, with one balanced option finding the lowest energy configuration 87.36% of the time, while achieving a
~2000× speedup in computation. To standardize benchmarking, we introduce the Open Catalyst Dense dataset containing nearly
1000 diverse surfaces and ~100,000 unique configurations.
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INTRODUCTION
The design of novel heterogeneous catalysts plays an essential
role in the synthesis of everyday fuels and chemicals. To
accommodate the growing demand for energy while combating
climate change, efficient, low-cost catalysts are critical to the
utilization of renewable energy1–4. Given the enormity of the
material design space, efficient screening methods are highly
sought after4–7. Computational catalysis offers the potential to
screen vast numbers of materials to complement more time- and
cost-intensive experimental studies.
A critical task for many first-principles approaches to hetero-

geneous catalyst discovery is the calculation of adsorption
energies. The adsorption energy is the energy associated with a
molecule, or adsorbate, interacting with a catalyst surface.
Adsorbates are often selected to capture the various steps, or
intermediates, in a reaction pathway (e.g., *CHO in CO2 reduction).
Adsorption energy is calculated by finding the adsorbate-surface
configuration that minimizes the structure’s overall energy. Thus,
the adsorption energy is the global minimum energy across all
potential adsorbate placements and configurations. These adsorp-
tion energies are the starting point for the calculation of the free
energy diagrams to determine the most favorable reaction
pathways on a catalyst surface8. It has been demonstrated that
adsorption energies of reaction intermediates can be powerful
descriptors that correlate with experimental outcomes such as
activity or selectivity9–13. This ability to predict trends in catalytic
properties from first principles is the basis for efficient catalyst
screening approaches1,14.
Finding the adsorption energy presents a number of complex-

ities. There are numerous potential binding sites for an adsorbate
on a surface, and for each binding site there are multiple ways to
orient the adsorbate (see bottom left in Fig. 1). When an adsorbate
is placed on a catalyst’s surface, the adsorbate and surface atoms
will interact with each other. To determine the adsorption energy

for a specific adsorbate-surface configuration, the atom positions
need to be relaxed until a local energy minimum is reached.
Density Functional Theory (DFT)15–17 is the most common
approach to performing this adsorbate-surface relaxation. DFT
first computes a single-point calculation where the output is the
system’s energy and the per-atoms forces. A relaxation then
performs a local optimization where per-atom forces are iteratively
calculated with DFT and used to update atom positions with an
optimization algorithm (e.g., conjugate gradient18) until a local
energy minimum is found. To find the global minimum, a strategy
for sampling adsorbate-surface configurations and/or a technique
such as minima hopping19,20 for overcoming energy barriers
during optimization is required.
Adsorption energy (ΔEads) is calculated as the energy of the

adsorbate-surface (Esys) minus the energy of the clean surface (i.e.,
slab) (Eslab) and the energy of the gas phase adsorbate or
reference species (Egas), as defined by Chanussot et al. and
detailed in the Supporting Information (SI)2,4.

ΔEads ¼ Esys � Eslab � Egas (1)

Relaxed adsorbate-surface structures must respect certain desired
properties in order for their adsorption energy to be both accurate
and valid. One example of a constraint is the adsorbate should not
be desorbed, i.e., float away, from the surface in the final relaxed
structure (Fig. 1, bottom right). In addition, if the adsorbate has
multiple atoms it should not dissociate or break apart into
multiple adsorbates because it would no longer be the adsorption
energy of the molecule of interest19,21. Similarly, if the adsorbate
induces significant changes in the surface compared to the clean
surface, the Eslab reference would create a surface mismatch. It is
important to note that if a relaxed structure breaks one of these
constraints it does not necessarily mean the relaxation was
inaccurate; these outcomes do arise but they lead to invalid or
inaccurate adsorption energies as it has been defined.
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Identifying the globally optimal adsorbate-surface config-
uration has historically relied on expert intuition or more
recently heuristic approaches. Intuition and trial and error can
be used for one-off systems of interest but it does not scale to
large numbers of systems. Commonly used heuristics are often
based on surface symmetry22,23. These methods have been
used successfully in past descriptor-based studies9,10,24–27.
More recently, a graph-based method has been used to
identify unique adsorbate-surface configurations28. Neverthe-
less, as the complexity of the surfaces and adsorbates increase,
the challenge of finding the lowest energy adsorbate-surface
configuration grows substantially. This is especially challenging
when the adsorbate is flexible, having multiple configurations
of its own, such that there are many effective degrees of
freedom in the system.
While DFT offers the ability to accurately estimate atomic

forces and energies, it is computationally expensive, scaling
O(N3) with the number of electrons. Evaluating a single
adsorbate-surface configuration with a full DFT relaxation can
take ~24 h to compute2,29. Since numerous configurations are
typically explored to find the adsorption energy, all the DFT
calculations involved can take days or even weeks. Hypothe-
tically, if one were to brute-force screen 100,000 materials from
the Materials Project database30 for CO2 Reduction Reaction
(CO2RR) using 5 adsorbate descriptors, ~90 surfaces/material,
and ~100 sites/surface, one would need ~4.5 billion CPU-days
of compute, an intractable problem for even the world’s largest
supercomputers. To significantly reduce the required compu-
tation, a promising approach is to accelerate the search of
lowest energy adsorbate-surface configurations with machine-
learned potentials.
Recently, machine learning (ML) potentials for estimating

atomic forces and energies have shown significant progress on
standard benchmarks while being orders of magnitude faster than
DFT2,31–36. While ML accuracies on the large and diverse Open
Catalyst 2020 Dataset (OC20) dataset have improved to 0.3 eV for
relaxed energy estimation, an accuracy of 0.1 eV is still desired for
accurate screening37. This raises the question of whether a hybrid
approach that uses both DFT and ML potentials can achieve high
accuracy while maintaining efficiency.
Assessing the performance of new methods for finding low-

energy adsorbate-surface configurations is challenging without
standardized validation data. It is common for new methods to
be tested on a relatively small number of systems, which makes
generalization difficult to evaluate19,28,38–40. While OC20
contains O(1M) “adsorption energies”, it did not sample
multiple configurations per adsorbate-surface combination

meaning the one configuration that was relaxed is unlikely to
be the global minimum. This makes OC20 an inappropriate
dataset for finding the minimum binding energy2. To address
this issue, we introduce the Open Catalyst 2020-Dense Dataset
(OC20-Dense). OC20-Dense includes two splits—a validation
and test set. The validation set is used for development; and
the test set for reporting performance. Each split consists of
~1000 unique adsorbate-surface combinations from the
validation and test sets of the OC20 dataset. No data from
OC20-Dense is used for training. To explore the generalizability
of our approach, we take ~250 combinations from each of the
four OC20 subsplits—In-Domain (ID), Out-of-Domain (OOD)-
Adsorbate, OOD-Catalyst, and OOD-Both. For each combina-
tion, we perform a dense sampling of initial configurations and
calculate relaxations using DFT to create a strong baseline for
evaluating estimated adsorption energies.
We propose a hybrid approach to estimating adsorption

energies that takes advantage of the strengths of both ML
potentials and DFT. We sample a large number of potential
adsorbate configurations using both heuristic and random
strategies and perform relaxations using ML potentials. The best
k-relaxed energies can then be refined using single-point DFT
calculations or with full DFT relaxations. Using this approach, the
appropriate trade-offs may be made between accuracy and
efficiency.
Considerable research effort has been dedicated to determining

the lowest energy adsorbate-surface configuration through the
improvement of initial structure generation and global optimiza-
tion strategies19,21,28,38–41. Peterson19 adopted the minima hop-
ping method and developed a global optimization approach that
preserves adsorbate identity using constrained minima hopping.
However, the method relies entirely on DFT to perform the search,
still making it computationally expensive. More recently, Jung
et al.21 proposed an active learning workflow where a Gaussian
process is used to run constrained minima hopping simulations.
Structures generated by their simulations are verified by DFT and
iteratively added to the training set until model convergence is
achieved. The trained model then runs parallel constrained
minima hopping simulations, a subset is refined with DFT, and
the final adsorption energy identified. We note that prior attempts
to use machine learning models to accelerate this process have
typically relied on bespoke models for each adsorbate/catalyst
combination, which limits broader applicability42,43. One possibi-
lity to greatly expand the versatility of these methods while
continuing to reduce the human and computational cost is using
generalizable machine learning potentials to accelerate the search
for low-energy adsorbate-surface configurations.

Initial Configurations 

Adsorbate

DFT 
Relaxationsmin E

Surface Mismatch Dissociation Desorption 

Surface Filter
Constraints

Initial Configuration Strategies Constraints: Invalid Relaxed Configurations

Random Heuristic

Adsorption 
Energy( )

Fig. 1 An overview of the steps involved in identifying the adsorption energy for an adsorbate-surface combination. First, an adsorbate
and surface combination are selected, then numerous configurations are enumerated heuristically and/or randomly. For each configuration,
DFT relaxations are performed and systems are filtered based on physical constraints that ensure valid adsorption energies (i.e., desorption,
dissociation, surface mismatch). The minimum energy across all configurations is identified as the adsorption energy.
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The contributions of this work are threefold:

● We propose the AdsorbML algorithm to identify the adsorption
energy under a spectrum of accuracy-efficiency trade-offs.

● We develop the Open Catalyst 2020-Dense Dataset (OC20-
Dense) to benchmark the task of adsorption energy search.

● We benchmark literature Graph Neural Network (GNN) models
on OC20-Dense using the proposed AdsorbML algorithm;
identifying several promising models well-suited for practical
screening applications.

RESULTS
OC20-Dense evaluation
To evaluate methods for computing adsorption energies, we
present the Open Catalyst 2020-Dense Dataset (OC20-Dense) that
closely approximates the ground truth adsorption energy by
densely exploring numerous configurations for each unique
adsorbate-surface system. Each OC20-Dense split comprises
~1000 unique adsorbate-surface combinations spanning 74
adsorbates, 800+ inorganic bulk crystal structures, and a total of
80,000+ heuristically and randomly generated configurations. A
summary of the two splits are provided in Table 1. The dataset
required ~4 million CPU-hrs of compute to complete. A more
detailed discussion on OC20-Dense can be found in “Methods”.
We report results on a wide range of GNNs previously

benchmarked on OC20 to evaluate the performance of existing
models on OC20-Dense. These include SchNet31, DimeNet++32,33,
PaiNN44, GemNet-OC34, GemNet-OC-MD34, GemNet-OC-MD-
Large34, SCN-MD-Large35, and eSCN-MD-Large45 where MD
corresponds to training on OC20 and its accompanying ab initio
Molecular Dynamics (MD) dataset. Models were not trained as part
of this work; trained models were taken directly from previously
published work and can be found at https://github.com/Open-
Catalyst-Project/ocp/blob/main/MODELS.md. Of the models, (e)
SCN-MD-Large and GemNet-OC-MD-Large are currently the top
performers on both OC20 and Open Catalyst 2022 Dataset (OC22).
Exploring the extent these trends hold for OC20-Dense will be
important to informing how well progress on OC20 translates to
more important downstream tasks like the one presented here.
Ideally, the ground truth for OC20-Dense would be the

minimum relaxed energy over all possible configurations for each
adsorbate-surface system. Since the number of possible config-
urations is combinatorial, the community has developed heuristic
approaches to adsorbate placement on a catalyst surface22,23.
When evaluating only heuristic configurations, we refer to this as
DFT-Heuristic-Only (DFT-Heur). To add to the configuration space,
we also uniformly sample sites on the surface at random with the
adsorbate placed on each of those sites with a random rotation
along the z axis and slight wobble around the x and y axis. When
evaluating against both heuristic and random configurations, we
refer to this as DFT-Heuristic-Only (DFT-Heur). Although compu-
tationally more expensive, this benchmark provides a more
thorough search of configurations and a more accurate estimate
of the adsorption energies than using only heuristic

configurations, a common baseline used by the community. More
details on the two benchmarks can be found in “Methods”.

ML relaxations
We explore to what extent ML predictions can find the adsorption
energy within a threshold of the DFT minimum energy, or lower.
While a perfect ML surrogate to DFT will only be able to match
DFT, small errors in the forces and optimizer differences have the
potential to add noise to relaxations and result in configurations
previously unexplored46. For each model, relaxations are per-
formed on an identical set of adsorbate configurations. Initial
configurations are created based off heuristic strategies com-
monly used in the literature22,23 and randomly generated
configurations on the surface. ML-driven relaxations are run on
all initial configurations; systems not suitable for adsorption
energy calculations due to physical constraints are removed,
including dissociation, desorption, and surface mismatch. An in-
depth discussion on relaxation constraints can be found in
“Methods”.
When evaluating performance, we define success as finding an

adsorption energy within an acceptable tolerance (0.1 eV in this
work2,37,46) or lower of the DFT adsorption energy in OC20-Dense.
Note that the ground truth adsorption energies in OC20-Dense are
an upper bound, since it is possible that a lower adsorption energy
may exist. When evaluating ML-predicted adsorption energies, the
results must be verified using a single-point DFT calculation, since
an evaluation metric without a lower bound could be easily
gamed by predicting low energies (see SI). To reliably evaluate ML
we consider an ML adsorption energy successful if its within 0.1 eV
of the DFT adsorption energy or lower, and a corresponding DFT
single-point evaluation of the predicted ML structure is within
0.1 eV of the predicted ML energy. This ensures that a ML
prediction not only found a low adsorption energy but is accurate
and not artificially inflated. Results are reported in Table 2, where
top OC20 models including eSCN-MD-Large and GemNet-OC-MD-
Large achieve success rates of 56.52% and 48.03%, respectively.
Energy MAE between ML and DFT adsorption energies are also
reported in Table 2, correlating well with success rates and OC20
S2EF metrics.

Table 1. Size of OC20-Dense validation and test splits.

Split Unique
systems

Unique
configurations

Adsorbates Bulks

Validation 973 85, 658 74 833

Test 989 105,714 74 837

Unique adsorbate-surface systems are selected from the respective OC20
validation and test splits. Each split samples ~250 systems from each of its
respective distribution subsplits—ID, OOD-Ads, OOD-Catalyst, OOD-Both.

Table 2. Success rates evaluated using ML-predicted energies.

OC20-Dense Test

Model Success rate*
[%] ↑

Energy MAE
[eV] ↓

OC20 S2EF MAE ↓

Forces
[eV/Å]

Energy [eV]

SchNet 1.01% 0.5150 0.0496 0.4445

DimeNet++ 1.72% 0.4329 0.0446 0.4753

PaiNN 10.92% 0.2994 0.0294 0.2459

GemNet-OC 46.51% 0.1849 0.0179 0.1668

GemNet-OC-
MD

50.05% 0.1966 0.0173 0.1694

GemNet-OC-
MD-Large

48.03% 0.1935 0.0164 0.1665

SCN-MD-Large 51.87% 0.1758 0.0160 0.1730

eSCN-MD-
Large

56.52% 0.1739 0.0139 0.1709

*ML predictions that lead to valid configurations and are within 0.1 eV of
their DFT evaluation.
ML predictions are only considered if their predicted energies are within
0.1 eV of its DFT evaluation. Energy MAE is also computed between
predicted ML and DFT energy minima. We also show OC20 S2EF Val-ID
results, with metrics correlating well with success rates and energy MAE.
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While the current state of models have made incredible
progress37, higher success rates are needed for everyday
practitioners. In a high-throughput setting where successful
candidates go on to more expensive analyses or even experi-
mental synthesis, a success rate of ~50% could result in a
substantial waste of time and resources studying false positives.
As model development will continue to help improve metrics, this
work explores hybrid ML+DFT strategies to improve success rates
at the cost of additional compute.

AdsorbML algorithm
We introduce the AdsorbML algorithm to use ML to accelerate the
adsorbate placement process (Fig. 2). For each model, we explore
two strategies that incorporate ML followed by DFT calculations to
determine the adsorption energy. We note that this strategy is
general and can be used with any initial configuration algorithm.
In both approaches, the first step is to generate ML relaxations.

However, rather than taking the minimum across ML-relaxed
energies, we rank the systems in order of lowest to highest
energy. The best k systems with lowest energies are selected and
(1) DFT single-point calculations are done on the corresponding
structures (ML+SP) or (2) DFT relaxations are performed from ML-
relaxed structures (ML+RX). The first strategy aims to get a more
reliable energy measurement of the ML-predicted relaxed
structure, while the second treats ML as a pre-optimizer with
DFT completing the relaxation. By taking the k lowest energy
systems, we provide the model with k opportunities to arrive at
acceptably accurate adsorption energy. As we increase k, more
DFT compute is involved, but compared to a full DFT approach, we
still anticipate significant savings. The adsorption energy for a
particular system is obtained by taking the minimum of the best k
DFT follow-up calculations.
In both strategies, ML energies are used solely to rank

configurations, with the final energy prediction coming from a
DFT calculation. While computationally, it would be ideal to fully
rely on ML, the use of DFT both improves accuracy and provides a
verification step to bring us more confidence in our adsorption
energy predictions.

Experiments
Our goal is to find comparable or better adsorption energies to
those found using DFT alone in OC20-Dense. The metric we use to
quantify this task is success rate, which is the percentage of OC20-
Dense systems where our ML+DFT adsorption energy is within
0.1 eV or lower than the DFT adsorption energy. A validation of the
ML energy is not included in these experiments since all final
adsorption energies will come from at least a single DFT call,
ensuring all values are valid. Another metric we track is the speedup
compared to the DFT-Heur+Rand baseline. Speedup is evaluated as
the ratio of DFT electronic steps used by DFT-Heur+Rand to the
proposed hybrid ML+DFT strategy. A more detailed discussion on
the metrics can be found in “Methods”. Unless otherwise noted, all
results are reported on the test set, with results on the validation set

found in the SI. When evaluating the common baseline of DFT-Heur
that uses only DFT calculations, a success rate of 87.76% is achieved
at a speedup of 1.81×.

ML+SP. The results of using single-point evaluations on ML-
relaxed states are summarized in Fig. 3. eSCN-MD-Large and
GemNet-OC-MD-Large achieve a success rate of 86+% at k= 5
with eSCN-MD-Large outperforming all models with a success rate
of 88.27%, slightly better than the DFT-Heur baseline. Other
models including SchNet and DimeNet++ do significantly worse
with success metrics as low as 3.13% and 7.99%, respectively;
suggesting the predicted relaxed structures are highly unfavor-
able. The speedups are fairly comparable across all models,
ranging between 1400× and 1500× for k= 5, orders of magnitude
faster than the DFT-Heur baseline. Specifically, eSCN-MD-Large
and GemNet-OC-MD-Large give rise to speedups of 1384× and
1388×, respectively. If speed is of most importance, speedups as
high as 6817× are achievable with k= 1 while still maintaining
success rates of 82% for eSCN-MD-Large. At a more balanced
trade-off, k= 3, success rates of 87.36% and 84.43% are attainable
for eSCN-MD-Large and GemNet-OC-MD-Large while maintaining
speedups of 2296× and 2299×, respectively. In Fig. 4, the
minimum energy binding sites of several systems are compared
as identified with ML+SP across different models.

ML+RX. While single-point evaluations offer a fast evaluation of
ML structures, performance is heavily reliant on the accuracy of the
predicted relaxed structure. This is particularly apparent when
evaluating the max per-atom force norm of ML-relaxed structures
with DFT. SchNet and DimeNet++ have on average a max force,
fmax, of 2.00 eV/Å and 1.21 eV/Å, respectively, further supporting the
challenge these models face in obtaining valid relaxed structures.
On the other hand, models like GemNet-OC-MD-Large and eSCN-
MD-Large have an average fmax of 0.21 eV/Å and 0.15 eV/Å,
respectively. While these models are a lot closer to valid relaxed
structures (i.e., fmax ≤ 0.05 eV/Å), these results suggest that there is
still room for further optimization. Results on DFT relaxations from
ML-relaxed states are plotted in Fig. 3. eSCN-MD-Large and GemNet-
OC-MD-Large outperform all models at all k values, with a 90.60%
and 91.61% success rate at k= 5, respectively. Given the additional
DFT costs associated with refining relaxations, speedups unsurpris-
ingly decrease. At k= 5, we see speedups of 215× and 172× for
eSCN-MD-Large and GemNet-OC-MD-Large, respectively. Both
SchNet and DimeNet++ see much smaller speedups at 42× and
55×, respectively. The much smaller speedups associated with
SchNet and DimeNet++ suggest that a larger number of DFT steps
is necessary to relax the previously unfavorable configurations
generated by the models. Conversely, eSCN-MD-Large’s much larger
speedup can be attributed to the near relaxed states (average
fmax ~0.15 eV/Å) it achieves in its predictions. With k= 1, speedups
of 1064× are achievable while still maintaining a success rate of
84.13% for eSCN-MD-Large. At a more balanced trade-off, k= 3,
success rates of 89.28% and 89.59% are attainable for eSCN-MD-
Large and GemNet-OC-MD-Large while maintaining speedups of

DFT 
Single-point 

or Relaxation 

Constraints

CPU 

SP mins. RX hrs.Seconds

ML
Relaxation 

Constraints

GPU 

AdsorbML

Initial Configurations 

Adsorbate

min ESurface
Adsorption 

Energy( )
Fig. 2 The AdsorbML algorithm. Initial configurations are generated via heuristic and random strategies. ML relaxations are performed on
GPUs and ranked in order of lowest to highest energy. The best k systems are passed on to DFT for either a single-point (SP) evaluation or a
full relaxation (RX) from the ML-relaxed structure. Systems not satisfying constraints are filtered at each stage a relaxation is performed. The
minimum is taken across all DFT outputs for the final adsorption energy.
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356× and 288×, respectively.
The results suggest a spectrum of accuracy and efficiency trade-

offs that one should consider when selecting a strategy. For our best
models, ML+SP results are almost 8x faster than ML+RX with only a
marginal performance decrease in success rates (3–4%), suggesting
a worthwhile comprise. This difference is much more significant for
worse models.

In Table 3, we measure the distribution of predictions that are
much better, in parity, or much worse than the ground truth, where
much better/worse corresponds to being lower/higher than 0.1 eV
of the DFT adsorption energy. Across both strategies, we observe
that the most accurate models do not necessarily find much better
minima. For instance, at k= 5 ML+RX, eSCN-MD-Large finds 9.10%
of systems with much lower minima, compared to DimeNet++
finding 15.57%. Similarly, while eSCN-MD-Large outperformed
models in ML+SP, it observes less of an improvement with ML
+RX; a consequence of the model arriving at a considerable local
minima that a subsequent DFT relaxation has minimal benefit. This
further suggests that some form of noise in models can aid in
finding better minima. The full set of tabulated results for ML+SP
and ML+RX experiments can be found in the SI for the OC20-Dense
test and validation sets.

Distribution splits. In addition, we evaluate success metrics across
the different dataset subsplits. OC20-Dense uniformly samples
from the four OC20 splits—ID, OOD-Adsorbate, OOD-Catalyst, and
OOD-Both. Across our best models, we observe that performance
remains consistent across the different distribution splits (Fig. 5).
This suggests that for applications including adsorbates or
surfaces that are not contained in OC20, AdsorbML still provides
accurate and meaningful results. While we expect results to be
consistent with OC20 where ID outperforms OOD, that is not
necessarily the case here. eSCN-MD-Large, ML+SP at k= 5,
achieves 86.00% on ID while a 88.35% success rate on OOD-Both,
with similar trends on ML+RX. We attribute this discrepancy to the
fairly small sample size per split (250). The full set of results can be
found in the SI.

Configuration analysis. Alongside the main results, we explore
the performance of using only heuristic or only random ML
configurations on the OC20-Dense validation set. Results are
reported on SCN-MD-Large, for the ML+SP strategy. At k= 5,
when only random configurations are used, success drops from
87.77% to 82.94%. More drastically, when only considering
heuristic configurations, success drops significantly to 62.18%.
This suggests that random configurations can have a larger
impact. Additional results can be found in the SI.

-1.99eV -1.21eV -2.01eV -2.00eV

DFT Heur+Rand SchNet GemNet-OC SCN-MD-Large

-4.61eV -0.18eV -4.57eV -4.54eV

-2.20eV

-2.21eV 10.31eV -2.31eV -2.33eV

-0.72eV -2.25eV -2.26eV

Fig. 4 Illustration of the lowest energy configurations as found by
DFT-Heur+Rand, SchNet, GemNet-OC, and SCN-MD-Large on the
OC20-Dense validation set. Corresponding adsorption energies are
shown in the bottom right corner of each snapshot. ML-relaxed
structures have energies calculated with a DFT single-point, ML+SP.
A variety of systems are shown including ones where ML finds lower,
higher, and comparable adsorption energies to DFT. Notice that
several of the configurations in the third and fourth systems are
symmetrically equivalent, and that SchNet induces a large surface
reconstruction in the third system resulting in the extremely large
DFT energy (10.31 eV).

Fig. 3 Overview of the accuracy-efficiency trade-offs of the proposed AdsorbML methods across several baseline GNN models. For each
model, DFT speedup and corresponding success rate are plotted for ML+RX and ML+SP across various best k. A system is considered
successful if the predicted adsorption energy is within 0.1 eV of the DFT minimum, or lower. All success rates and speedups are relative to
Random+Heuristic DFT. Heuristic DFT is shown as a common community baseline. The upper right-hand corner represents the optimal region
—maximizing speedup and success rate. The point highlighted in teal corresponds to the balanced option reported in the abstract—a 87.36%
success rate and 2290x speedup. A similar figure for the OC20-Dense validation set can be found in the SI.
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DISCUSSION
We envision this work as an important but initial step towards
reducing the computational cost of DFT for not just catalysis
applications, but computational chemistry more broadly.
AdsorbML provides a spectrum of accuracy and efficiency trade-

offs one can choose depending on the application and computa-
tional resources available. For example, if we are interested in
screening the largest number of CO2 reduction reaction catalysts
possible, given a fixed compute budget, we could choose ML+SP
at k= 2 for a 85% success rate while screening ~3400× more
materials than would have been possible with DFT alone. On the
other hand, if depth of study is more important, ML+RX is a good
alternative as the structures are fully optimized with DFT and the
computational speedup comes from reducing the total number of
relaxation steps required. In this scenario, the ML potential serves
as an efficient pre-optimization step. Even though ML models
comprise a small portion of the overall compute (see SI for details),
we expect these requirements to be reduced even further as more
effort is placed on inference efficiency in the future.
One observation that merits additional studies is that ML

models found much better minima between 5 and 15% of the
time, depending on the efficiency trade-offs (Table 3). If our ML
models were perfect there would be no instances with lower
adsorption energies; however, implicit noise in the form of
inaccurate force predictions allows the ML models to traverse
unexplored regions of the potential energy surface. Exploring to
what extent implicit and explicit noise46,47 impact ML relaxations
and downstream tasks such as success rate is an important area of
future research.
Another natural extension to this work is focusing on alternative

methods of global optimization and initial configuration genera-
tion. Here, we focused on accelerating brute-force approaches to
finding the global minimum by enumerating initial adsorbate-
surface configurations. However, there are likely to be much more
efficient approaches to global optimization such as minima

Table 3. Distribution of success rates for the proposed ML+SP and ML+RX strategies on the OC20-Dense test set.

Success rate

DFT single-point on ML-relaxed structures (ML+SP)

k= 1 k= 5

Model Much better Parity Much worse Much better Parity Much worse

SchNet 0.40% 1.92% 97.67% 0.71% 2.43% 96.87%

DimeNet++ 0.91% 4.25% 94.84% 1.31% 6.67% 92.01%

PaiNN 2.12% 26.79% 71.08% 3.34% 34.98% 61.68%

GemNet-OC 6.47% 66.13% 27.40% 6.88% 74.12% 19.01%

GemNet-OC-MD 6.27% 70.17% 23.56% 7.58% 76.24% 16.18%

GemNet-OC-MD-Large 5.86% 73.31% 20.83% 7.18% 79.27% 13.55%

SCN-MD-Large 6.67% 71.69% 21.64% 7.58% 79.47% 12.94%

eSCN-MD-Large 5.06% 76.95% 18.00% 6.27% 82.00% 11.73%

DFT relaxations on ML-relaxed structures (ML+RX)

k= 1 k= 5

Model Much better Parity Much worse Much better Parity Much worse

SchNet 10.82% 33.87% 55.31% 18.71% 46.81% 34.48%

DimeNet++ 9.40% 40.85% 49.75% 15.57% 54.30% 30.13%

PaiNN 9.81% 62.49% 27.70% 14.26% 70.48% 15.27%

GemNet-OC 9.81% 72.30% 17.90% 12.23% 75.73% 12.03%

GemNet-OC-MD 8.29% 74.12% 17.59% 11.63% 78.26% 10.11%

GemNet-OC-MD-Large 7.48% 75.73% 16.78% 10.11% 81.50% 8.39%

SCN-MD-Large 8.90% 75.23% 15.87% 12.94% 78.46% 8.59%

eSCN-MD-Large 6.47% 77.65% 15.87% 9.10% 81.50% 9.40%

“Parity” corresponds to being within 0.1 eV of the DFT adsorption energy; “Much better” corresponds to being less than 0.1 eV than DFT; and “Much worse”
being higher than 0.1 eV of DFT.

Fig. 5 ML+SP success rate at k= 5 across the different subsplits
of the OC20-Dense test set and several baseline models. Top
performing models show marginal differences across the different
distribution splits, suggesting good generalization performance to
out-of-domain adsorbates and catalysts not contained in the OC20
training dataset.
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hopping20, constrained optimization19,21, Bayesian optimization,
or a directly learned approach. It is worth noting that while our
enumeration spanned a much larger space than traditional
heuristic methods, it was not exhaustive and all-encompassing.
We found that increasing the number of random configurations
beyond what was sampled had diminishing returns, as the change
in success rate from heuristic + 80% random DFT to heuristic +
100% random DFT was only 1.6% (see the SI for more details). If
screening more ML configurations continues to be advantageous,
thinking about how we handle duplicate structures could further
help accuracy and efficiency. We explore this briefly in the SI,
where removing systems with nearly the same ML energies
resulted in marginal benefit.
While current models like GemNet-OC and eSCN-MD-Large

demonstrate impressive success rates on OC20-Dense, ML
relaxations without any subsequent DFT are still not accurate
enough for practical applications (Table 2). In order for future
modeling work to address this challenge, there are a number of
observations worth highlighting. First, there is a positive correla-
tion between success rate on OC20-Dense and both the S2EF and
relaxation-based Initial Structure to Relaxed Energy (IS2RE) OC20
tasks. Thus, relaxation-based IS2RE and S2EF metrics can be used
as proxies when training models on OC20. Another important
note on model development is that OC20-Dense’s validation set is
a subset of the OC20 validation set; as a result, the OC20 validation
data should not be used for training when evaluating on OC20-
Dense. Lastly, it is strongly encouraged that results reported on
the OC20-Dense validation set be evaluated using a DFT single-
point calculation because the success rate metric can be
manipulated by predicting only low energies. This could be done
with as few as ~1000 single-point calculations. Alongside the
release of the OC20-Dense test set, we will explore releasing a
public evaluation server to ensure consistent evaluation and
accessibility for DFT evaluation, if there’s interest.
Tremendous progress in datasets and machine learning for

chemistry has enabled models to reach the point where they can
substantially enhance and augment DFT calculations. Our results
demonstrate that current state-of-the-art ML models not only
accelerate DFT calculations for catalysis but enable more accurate
estimates of properties that require global optimization such as
adsorption energies. While the models used in this work are best
suited for idealized adsorbate-surface catalysts, fine-tuning
strategies can help enable applications to other chemistries
including metal-organic frameworks and zeolites29. Similarly, the
models used in this work were trained on a consistent level of DFT
theory (revised Perdew–Burke–Ernzerhof, no spin polarization),
generalizing to other functionals and levels of theory could also be
enabled with fine-tuning or other training strategies. Given the
timeline of ML model development, these results would not have
been possible even a couple of years ago. We anticipate this work
will accelerate the large-scale exploration of complex adsorbate-
surface configurations for a broad range of chemistries and
applications. Generalizing these results to more diverse materials
and molecules without reliance on DFT is a significant community
challenge moving forward.

METHODS
Open Catalyst 2020-Dense Dataset (OC20-Dense)
The evaluation of adsorption energy estimations requires a
ground truth dataset that thoroughly explores the set of potential
adsorption configurations. While OC20 computed adsorption
energies for O(1M) systems, the energies may not correspond to
the minimum of that particular adsorbate-surface combination.
More specifically, for a given catalyst surface, OC20 considers all
possible adsorption sites but only places the desired adsorbate on
a randomly selected site in one particular configuration. The tasks

presented by OC20 enabled the development of more accurate
machine-learned potentials for catalysis34,35,47–49, but tasks like
IS2RE, although correlate well, are not always sufficient when
evaluating performance as models are penalized when finding a
different, lower energy minima—a more desirable outcome. As a
natural extension to OC20’s tasks, we introduce OC20-Dense to
investigate the performance of models to finding the adsorption
energy.
OC20-Dense is constructed to closely approximate the adsorp-

tion energy for a particular adsorbate-surface combination. To
accomplish this, a dense sampling of initial adsorption configura-
tions is necessary. OC20-Dense consists of two splits—a validation
and test set. For each split, ~1000 unique adsorbate-surface
combinations from the respective OC20 validation/test set are
sampled. A uniform sample is then taken from each of the
subsplits (ID, OOD-Adsorbate, OOD-Catalyst, OOD-Both) to explore
the generalizability of models on this task. For each adsorbate-
surface combination, two strategies were used to generate initial
adsorbate configurations: heuristic and random. The heuristic
strategy serves to represent the average catalysis researcher,
where popular tools like CatKit23 and Pymatgen22 are used to
make initial configurations. Given an adsorbate and surface,
Pymatgen enumerates all symmetrically identical sites, an
adsorbate is placed on the site, and a random rotation along
the z axis followed by slight wobbles in the x and y axis is applied
to the adsorbate. While heuristic strategies seek to capture best
practices, they do limit the possible search space with no
guarantee that the true minimum energy is selected. To address
this, we also randomly enumerate M sites on the surface and then
place the adsorbate on top of the selected site. In this work,
M= 100 is used and a random rotation is applied to the adsorbate
in a similar manner. In both strategies, we remove unreasonable
configurations—adsorbates not placed on the slab and/or placed
too deep into the surface. DFT relaxations were then run on all
configurations with the results filtered to remove those that
desorb, dissociate or create surface mismatches. The minimum
energy across those remaining is considered the adsorption
energy. While random is meant to be a more exhaustive
enumeration, it is not perfect and could likely miss some
adsorbate configurations. The OC20-Dense validation set was
created in a similar manner but contained notable differences,
details are outlined in the SI.
The OC20-Dense test set comprises 989 unique adsorbate

+surface combinations spanning 74 adsorbates and 837 bulks.
Following the dense sampling, a total of 56,282 heuristic and
49,432 random configurations were calculated with DFT. On
average, there were 56 heuristic and 50 random configurations
per system (note—while M= 100 random sites were generated,
less sites were available upon filtering.) In total, ~4 million hours of
compute were used to create the dataset. All DFT calculations
were performed using Vienna Ab initio Simulation Package
(VASP)50–53. A discussion on DFT settings and details can be
found in the SI.

Evaluation metrics
To sufficiently track progress, we propose two primary metrics—
success rate and DFT speedup. Success rate is the proportion of
systems in which a strategy returns energy that is within σ, or
lower of the DFT adsorption energy. A margin of σ= 0.1 eV is
selected as the community is often willing to tolerate a small
amount of error for practical relevance2,37. Tightening this
threshold for improved accuracy is a foreseeable step once
models+strategies saturate. While high success rates are achiev-
able with increased DFT compute, we use DFT speedup as a
means to evaluate efficiency. Speedup is measured as the ratio of
DFT electronic, or self-consistency (SC), steps used by DFT-Heur
+Rand and the proposed strategy. Electronic steps are used as we
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have seen them correlate better with DFT compute time than the
number of ionic, or relaxation, steps. DFT calculations that failed or
resulted in invalid structures were included in speedup evaluation
as they still represent realized costs in screening. We chose not to
include compute time in this metric as results are often hardware-
dependent and can make comparing results unreliable. ML
relaxation costs are excluded from this metric as hardware
variance along with CPU+GPU timings make it nontrivial to
normalize. While ML timings are typically negligible compared to
the DFT calculations, a more detailed analysis of ML timings can
be found in the SI. Metrics are reported against the rigorous
ground truth—DFT-Heur+Rand, and compared to a community
heuristic practice—DFT-Heur. Formally, metrics are defined in
Equs. (2) and (3).

Success Rate ¼
PN

i 1 minðÊiÞ �minðEiÞ � σ
� �

N
(2)

DFT Speedup ¼
P

NNSCsteps
P

NN̂SCsteps
(3)

where i is an adsorbate-surface system, N the total number of
unique systems, 1ðxÞ is the indicator function, &̂ is the proposed
strategy, NSCsteps is the number of self-consistency, or electronic
steps, and minðEÞ is the minimum energy across all configurations
of that particular system. For both metrics, higher is better.

Relaxation constraints
It is possible that some of the adsorbate-surface configurations we
consider may relax to a state that are necessary to discard in our
analysis. For this work, we considered three such scenarios: (1)
desorption, (2) dissociation, and (3) significant adsorbate-induced
surface changes. Desorption, the adsorbate molecule not binding
to the surface, is far less detrimental because desorbed systems
are generally high energy. Still, it is useful to understand when
none of the configurations considered have actually adsorbed to
the surface. Dissociation, the breaking of an adsorbate molecule
into different atoms or molecules, is problematic because the
resulting adsorption energy is no longer consistent with what is of
interest, i.e., the adsorption energy of a single molecule, not two
or more smaller molecules. Including these systems can appear to
correspond to lower adsorption energies, but due to the energy
not representing the desired system it can result in false positives.
Lastly, we also discard systems with significant adsorbate-induced
surface changes because, just as with dissociation, we are no
longer calculating the energy of interest. In calculating adsorption
energy, a term is included for the energy of the clean, relaxed
surface. An underlying assumption in this calculation is that the
corresponding adsorbate-surface system’s resulting surface must
be comparable to the corresponding clean surface, otherwise this
referencing scheme fails and the resulting adsorption energy is
inaccurate. For each of these instances, we developed detection
methods as a function of neighborhood connectivity, distance
information, and atomic covalent radii. Depending on the user’s
application, one may decide to tighten the thresholds defined
within. Details on each of the detection methods and further
discussion can be found in the SI.

DATA AVAILABILITY
The full open dataset is provided at https://github.com/Open-Catalyst-Project/
AdsorbML.

CODE AVAILABILITY
All accompanying code is provided at https://github.com/Open-Catalyst-Project/
AdsorbML.
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