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High-throughput study of the anomalous Hall effect
Jakub Železný1✉, Yuta Yahagi 2, Carles Gomez-Olivella1, Yang Zhang3,4 and Yan Sun5

Despite its long history, the anomalous Hall continues to attract attention due to its complex origins, its connection to topology,
and its use as a probe of magnetic order. In this work we investigate the anomalous Hall effect in 2871 ferromagnetic materials
using an automatic high-throughput calculation scheme. We analyze general properties of the effect, such as its reliance on spin-
orbit coupling strength and magnetization. In materials with the largest anomalous Hall effect, we find that symmetry-protected
band degeneracies in the non-relativistic electronic structure, such as mirror symmetry-protected nodal lines, are typically
responsible for the large effect. Furthermore, we examine the dependence of the anomalous Hall effect on magnetization direction
and demonstrate deviations from the commonly assumed expression jAHE ~M × E.
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INTRODUCTION
When magnetic field is applied to a metal in which current is
flowing, a transverse electrical current appears. This is the so-
called classical Hall effect. In some magnetic materials a transverse
current appears even in absence of external magnetic field, an
effect known as the anomalous Hall effect (AHE)1. It originates
from the time-reversal symmetry breaking due to the magnetic
order and the relativistic spin-orbit coupling (although in non-
collinear magnetic materials it can also exist in absence of spin-
orbit coupling). Historically, it has been mainly studied in
ferromagnetic materials, however, it has recently been shown
that it can also exist in some antiferromagnetic materials2–8.
Although the anomalous behavior of the Hall effect in

ferromagnetic materials has already been noticed by Hall in
18819, the AHE is still an actively investigated effect. Theoretically,
it is known that its origin can be split into two main categories: the
intrinsic and extrinsic. The intrinsic contribution is determined
purely by the electronic structure of a perfect crystal. In contrast,
the extrinsic contributions originate from electron scattering on
impurities. Here, we will only consider the intrinsic contribution as
it is much easier to calculate and has a universal value for each
material, whereas the extrinsic contribution will depend on
presence of impurities. A remarkable aspect of the intrinsic
contribution is that it describes a non-dissipative transport.
Furthermore, it can be understood in a geometrical sense: the
intrinsic contribution is given by integral of the Berry curvature of
each occupied band. In this way it is also connected to topology
since in insulators the integral of the Berry curvature determines
the Chern number topological invariant. In metallic materials,
dissipation cannot be avoided since a dissipative current will
always be present together with the AHE. However, in topologi-
cally non-trivial magnetic insulators, i.e., insulators with nonzero
Chern number, only the intrinsic AHE is present (known as the
quantum AHE10), which then allows for a truly dissipationless
transport at the edge.
The intrinsic AHE can be in many materials described well by

ab-initio calculations based on density functional theory (DFT).
Here, we utilize automatic DFT calculations to calculate the
intrinsic AHE in a large number of magnetic materials. Such high-

throughput computational approach has seen intense develop-
ment in recent years and has recently been also applied to
transport effects11–13. Our work provides a large reference
database of the intrinsic AHE values and furthermore, we use
the large number of calculated materials to explore general
properties of the AHE.
We mainly focus on ferromagnetic materials here. We only

consider collinear magnetic materials since our calculation
procedure is not applicable to non-collinear magnetic materials.
Unfortunately, no comprehensive experimental database of
ferromagnetic materials exists. MAGNDATA14,15, the only large
experimental database of magnetic materials, contains mostly
antiferromagnets. Because of this we use as a source of materials,
the computational materials database Materials Project16. This
database contains both real crystal structures and materials
computationally predicted to be potentially stable, however, it
includes no information about experimental magnetic order since
that is not available for most materials. Instead, a ferromagnetic
configuration is used as a starting point for the DFT calculation. If
this converges to ferromagnetic state this signifies that the
material is likely magnetic, although its real magnetic order could
be different. Here we consider the ferromagnetic order for the
magnetic materials from the Materials Project, since theoretically
determining the ground state magnetic order is a very complex
problem, beyond the scope of this project. This approach means
that the calculated AHE value for any given material cannot be
used without further verification of the magnetic order, however,
importantly even in cases where the actual magnetic order differs
from the assumed ferromagnetic one, the calculation can be used
to infer general, statistical properties of the AHE. A similar
computational approach has been recently used for high-
throughput calculations of the anomalous Nernst effect12.
We explore the statistical properties of the AHE. In particular we

focus on the relation between the AHE magnitude, spin-orbit
coupling strength, magnetization or symmetry. Although, a
relation between the magnitude of magnetization and spin-orbit
coupling exists, we find that this is relatively weak and large AHE
can exist also in materials with relatively small magnetization and
light elements. Analogously to our previous study of the spin Hall
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effect (SHE), we find that large AHE is typically associated with
symmetry protected degeneracies in the non-relativistic electronic
structure11. These are typically mirror symmetry protected nodal
lines. They are split by the spin-orbit coupling interaction and the
two split bands can then carry large Berry curvature, leading to
large AHE, if they appear at the Fermi level. Consequently, we find
a statistical link between the symmetry and the AHE magnitude,
although this link is fairly weak and the most apparent for large
AHE materials.
Additionally, we study in a subset of the materials, the

dependence of the AHE on the rotation of the magnetization.
We find, that in contrast to usual expectations, the magnetization
dependence can deviate significantly from the simple relation
jAHE ~M × E, where M is the magnetization, E is the electric field
and jAHE is the AHE current. This formula has to be satisfied in fully
isotropic materials (such as polycrystals) but does not in general
hold in crystalline materials. We find that this relation approxi-
mately holds in some high-symmetry materials, however, even in
high-symmetry materials significant deviations are typically
present and in some materials the AHE dependence can be
completely different. In low symmetry materials, the AHE
dependence cannot usually be described by the simple formula
at all. The deviation of AHE from the simple relation has been
studied previously17, however, here we show that the deviations
are very common and without further verification the simple
relation cannot be used in single crystalline materials at all.
Most of the materials we have calculated are metallic, however,

our calculations also include several hundred insulators. Our
results suggest that all of these are topologically trivial and thus
do not exhibit the quantum anomalous Hall effect. Similarly, to the
case of the SHE, our results show that large AHE values are very
rare. None of the calculated materials has a much larger AHE
magnitude than the well-known case of Ni, thus suggesting
existence of a practical limit to the intrinsic AHE magnitude.
In addition to the AHE we also calculate the ordinary

conductivity tensor, using the constant relaxation time approx-
imation. Since the relaxation time is unknown and sample and
conditions dependent, these calculations are less general than the
AHE calculations. Nevertheless, they can be used as a rough
estimate of the conductivity magnitude or broad trends, and we
use them to obtain the anomalous Hall angle: the ratio between
the anomalous Hall and longitudinal conductivities.

RESULTS AND DISCUSSION
Workflow
We consider materials that were found to be magnetic in the
Materials Project database16. The vast majority of these materials
assume ferromagnetic order, although a few are antiferromag-
netic. This magnetic order is not necessarily the proper ground
state magnetic order; however, we assume it here for simplicity.
We exclude materials for which LDA+ U approach was used in the
Materials Project. We have calculated 2871 materials in total. We
use Aiida18,19 for automatization of the calculations.
For each material, we use a three-step calculation procedure,

analogous to the one used in our high-throughput study of the
spin Hall effect11. First, we obtain a ground state electronic
structure using the FPLO DFT code20. Afterwards, we construct a
Wannier tight-binding like Hamiltonian. This procedure is
straightforward in FPLO since FPLO uses a local basis set. We
use the same set for the construction of the Wannier Hamiltonian.
The Hamiltonian thus differs from the full DFT Hamiltonian only in
that matrix elements that are small are set to zero. Consequently,
the Wannier Hamiltonian is very accurate and can easily be
constructed automatically, which is a significant advantage over
the often used approach based on the maximally localized

Wannier functions21. In the last step, we use the Wannier
Hamiltonian for a linear response conductivity calculation.
Although our main aim is the intrinsic AHE, we include disorder

description into the linear response calculation, via the so-called
constant Γ approximation. Γ is a parameter that describes the
disorder, corresponding to a constant relaxation time τ= ℏ/2Γ. We
use the linear response formulas derived in ref. 22.
The full database of all our calculations is available at ref. 23 and

in the Supplementary Material. Here we discuss general statistical
properties of the AHE and its dependence on the magnetization
direction. In addition, we discuss the origin of AHE in the materials
with largest AHE and its relation to nodal lines in the non-
relativistic electronic structure.

Statistics
In Fig. 1a we give the histogram of the AHE magnitudes for all
calculated materials. This shows that materials with large AHE
(larger than ~1000 S cm−1) are very rare. The tail of the histogram
below around ~1 S cm−1 is dominantly due to materials with very
low magnetization density (less than 0.01 μBÅ−3) or very low
conductivity (less than 100 S cm−1), which corresponds to
insulators or semimetals with low density of states at the Fermi
level. Most metals with non-negligible magnetization thus have
AHE between 10 and 1000 S cm−1.
In Fig. 1b we show the histogram of the xx components of the

conductivity tensor for all calculated materials. Since the value of
the broadening parameter Γ is unknown we set here Γ= 10meV
for all materials. This allows comparison between materials or
estimating general trends, however, it cannot be used as an
accurate quantitative estimate of the conductivity in individual
materials. The full Γ dependence is given at ref. 23. As can be seen
in Fig. 1b the conductivity of most metals lies between 104 and
106 S cm−1.
Using the conductivity, the (anomalous) Hall angle, i.e., the ratio

σAHExy =σxx can also be evaluated. Histogram of all the Hall angles is
given in Fig. 1c. Interestingly, we find that the distribution of Hall
angles drops much less slowly for large Hall angles than the AHE
or the conductivity. This thus suggests that although it may be
very hard to obtain very large intrinsic AHE, it may be more
feasible to find materials with large Hall angles. The reason for this
behavior is that the conductivity and the AHE are not significantly
correlated in metallic materials and thus it can happen that a
material has large AHE but low conductivity.
Since the AHE in the materials that we consider originates from

the spin-orbit coupling and the magnetic order, it is often
assumed that the AHE will strongly depend on the spin-orbit
coupling strength and on the magnetization. To explore this, we
study the dependence of AHE on the magnetization and on the
atomic number, which we use as a proxy for the spin-orbit
coupling strength, since the spin-orbit coupling strength is largely
determined by the atomic number.
In Fig. 1d we give the relation between the maximum atomic

number of each compound and the magnitude of AHE. Since the
sample sizes for some atomic numbers are small, we separate the
atomic numbers into ten bins and average the AHE value for each
bin. We find that AHE tends to increase with the atomic number,
but the dependence is strong only for atoms with small atomic
number. For atomic numbers beyond 25, the dependence
becomes very weak. This goes somewhat against the common
understanding of the AHE and suggests that the atomic number
and the spin-orbit coupling strength play smaller role than
commonly assumed. We note that when considering the AHE
dependence on individual atomic numbers, as also shown in Fig.
1d, we see that the AHE dependence is not monotonous and that
the average AHE is very large for some atomic numbers. This could
suggest that the dependence on the atomic number may not be
linear but more complicated. This could happen because the
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dependence of spin-orbit coupling on the atomic number is not in
fact monotonous and because there may be other factors
influencing the magnitude of AHE that depend on the atomic
number. However, the sample sizes for individual atomic numbers
and especially the ones where we see large AHE values are very
small and thus no strong conclusions can be made based on this.
The clear conclusion we can make is that large atomic number is
not a necessary condition for large AHE, and that atomic number
does not have a huge effect on the AHE beyond small atomic
numbers. This is likely because for atomic numbers larger than 25
or so, the spin-orbit coupling is large enough that other factors
become important.
In Fig. 1e we give an analogous plot for the relation between

the magnetization density and the AHE magnitude. Here we also
see that the dependence on magnetization is strongest for small
magnetization values, but the overall trend is clearer than for the
case of atomic number, as we see that the average AHE value
consistently increases with the magnetization. However, similarly
to the atomic number dependence we see that the even materials
with low magnetization can have large AHE. Thus, large
magnetization is not a necessary condition for large AHE and
the dependence on magnetization only becomes clear after
averaging many different materials. As with the atomic number
dependence, this is likely because once the magnetization is large
enough, it is just one of many factors that influence the AHE value.
In Fig. 1f we show a 2D histogram that illustrates the AHE
dependence on both the magnetization and the atomic number.
This suggests that materials with large AHE tend to be those with
either large magnetization or large atomic number or both. We

find that even low magnetization materials can have large AHE if
they have large atomic number and vice versa. It is also clear from
this plot, however, that the magnetization has a more pronounced
effect on the AHE magnitude.
In our high-throughput study of the SHE we have found that

large SHE is typically associated with mirror symmetry protected
nodal lines in the non-relativistic electronic structure. As discussed
below, our analysis of the materials with largest AHE also reveals
that the AHE hotspots in the materials with largest AHE are usually
associated with symmetry protected band degeneries, most
commonly mirror symmetry protected nodal lines. Consequently,
we observe a statistical relationship between symmetry and AHE
magnitude, see Fig. 1g. However, similarly to the case of the SHE11,
this effect is fairly subtle. As shown in Fig. 1g, we observe a very
similar relation between AHE magnitude and symmetry both
when we consider number of mirror symmetry operations and
total number of symmetries. Since the number of mirrors is
strongly correlated with the number of total symmetries it is not
possible to say whether it is mainly the mirrors that play a role, or
all symmetry operations.

Magnetization rotation
For a subset of materials, we rotate the magnetization to study the
dependence of AHE on magnetization direction. We always rotate
from the [010] direction to the [001] direction. Here the directions
are given in a cartesian coordinate system. The coordinate system
is always chosen such that [001] direction is along the c axis of the
conventional lattice and for all groups except triclinic the [010]

Fig. 1 AHE statistics. In the histogram plots we show the kernel density estimation along with the histogram. a The histogram of all the
calculated AHE values for Γ= 0.1meV. We separate materials with either small magnetization density (less than 0.01 μBÅ−3) or very low
conductivity (less than 100 S cm−1). b The histogram of the σxx conductivities for Γ= 10meV. c The histogram of the Hall angle calculated
using Γ= 0.1 meV for AHE and Γ= 10meV for the conductivity. d The dependence of the AHE magnitude on the maximum atomic number of
each compound. The gray dots show the individual calculations. The dashed blue line shows the dependence for each atomic number,
whereas the solid blue line is obtained by separating all maximum atomic number values into 10 bins and averaging within each bin. The light
blue region shows the 95% confidence intervals estimated using the empirical bootstrap method for the binned plot. For this plot we exclude
all materials with very low magnetization (less than 0.01 μBÅ−3) or very low conductivity (less than 100 S cm−1). e The dependence of AHE on
the magnetization density, using the same binning as in (d). We exclude all materials with very low conductivity (less than 100 S cm−1). f Each
hexagonal bin in this plot shows the mean value of AHE for materials with corresponding maximum atomic number and magnetization
density. We also show histograms of the magnetization density values and maximum atomic numbers. We exclude all materials with very low
conductivity (less than 100 S cm−1). g Average number of mirrors (left) and total symmetry operations (right) as a function of the AHE decile
for materials with AHE magnitude larger than 10 S cm−1. This means that we separate all AHE values by their magnitude into 10 bins such that
each bin has the same number of values and then calculate the average number of mirrors resp. symmetry operations in each bin. Thus, decile
1 corresponds to 10% materials with the smallest AHE and decile 10 to the largest 10%.
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direction is along the b axis (for triclinic b is in the (100) plane).
Since AHE is described by an antisymmetric 3 × 3 tensor, it can
equivalently be described by a (pseudo)-vector: j=− h × E, where
the h is the Hall vector defined as h ¼ ðσAHEyz ;�σAHExz ; σAHExy Þ.
Along high-symmetry directions, the Hall vector is constrained by
symmetry to lie along the same axis as magnetization, however, in
general their directions differ. Below we discuss general properties
of the rotation dependence and give one material as an example.
The detailed results for all materials can be found in the
Supplementary Material.
We separate the materials by symmetry into three types

depending on the symmetry of the Hall vector along the
magnetization rotation. For all the materials that we have
considered the Hall vector is constrained to lie along the same
axis for the [010] magnetization direction. In group A the Hall
vector in addition lies along the magnetization for the [110] and
[001] directions and its magnitude is the same for the [010] and
[001] directions. In group B, the Hall vector is constrained to lie
along magnetization for the [001] direction, but not the [110]
direction and the magnitudes for [010] and [001] directions are
not the same. In group C the Hall vector is furthermore not
constrained to lie along the magnetization even for the [001]
direction.
As shown in Fig. 2 we find that the magnitude of the Hall vector

can strongly depend on the magnetization direction. This is more
pronounced in the lower symmetry groups, but even in the
highest symmetry materials significant differences between the
Hall vector magnitudes for the [011] and [001] magnetization
direction are commonly found (Fig. 2a). For the difference
between [010] and [001] magnetization directions, a large

difference is also found for materials with symmetry type B and
C (we also find a small difference for materials with symmetry type
A, however, this is a numerical error). Furthermore, we find that
the Hall vector can deviate significantly from the magnetization
direction, if it is not constrained by symmetry (see Fig. 2c, d). This
is again more pronounced for the lower symmetry materials, but
even in the highest symmetry materials significant deviations are
often present outside of the [010], [011] and [001] magnetization
directions. These calculations show that the assumption of
jAHE ~M × E can only be used in polycrystalline materials. In single
crystals, significant deviations from this expression are common
even for crystals with very high symmetry. We note that we
typically see only small changes in the magnitude of the magnetic
moments as they are rotated, thus the anisotropy of the AHE are
mainly due to AHE itself, not due to changes of magnetic
moments.
An example of a significant deviation from the simple

dependence of the Hall vector on magnetization is given in
Fig. 3, which shows the evolution of Hall vector for rotation of the
magnetization in the y–z plane for HfMnTl24. Even though this
material has the highly symmetric F43m space group, which
constrains the Hall vector to lie along magnetization for [010],
[011] and [001] magnetization directions, we find that as the
magnetization is rotated from the [010] direction to [001] direction
the Hall vector rotates in the opposite direction to the
magnetization.

Analysis of top materials
In ref. 11 it was found that in materials with large intrinsic SHE, the
hotspots of the spin Berry curvature are typically associated with

Fig. 2 Magnetizatin rotation statistics. Histogram of the differences between Hall vector magnitudes for magnetizations along (a) [011] and
[001] directions and (b) [010] and [001] directions. For materials with symmetry type A, the magnitudes are constrained to be the same along
the [010] and [001] directions. In practice we find that they usually differ by a few % or less, due to numerical inaccuracy. The angle between
magnetization and the Hall vector for magnetization along (c) [011] direction and (d) ½0; cosðπ=8Þ; sinðπ=8Þ� direction, which is a low symmetry
direction.
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symmetry protected band degeneracies in the non-relativistic
band structure. These degeneracies are split by spin-orbit coupling
and the two bands then carry large spin Berry curvature if the
Fermi level is positioned in between them. Usually, these
degeneracies are associated with mirror-symmetry protected
nodal lines.
To explore whether this also applies to the AHE, we have

studied the Berry curvature hotpots in six materials with the
largest AHE in our database. The materials we consider are U2P2,
GdTmRh2, Ni, Eu2SeO2, MnCoPt2 and CeTe2, as shown in Table 1.
Note that we do not consider MnInRh2, which is the material with
largest AHE in the database since the linear response k-point
convergence in this material is poor. We identify degeneracies in
the non-relativistic band structure by finding points where bands
are closer than 0.1 eV. In ferromagnetic materials crossings
between bands with opposite spin are common in the non-
relativistic band structure. These appear without any association
with symmetry since in collinear magnetic system the opposite
spins are not coupled without spin-orbit coupling. These crossings
are split by SOC; however, we find that this does not usually result
in a large Berry curvature. Thus, we focus on crossings of bands
with the same spin, which are usually protected by some
symmetry. We also note that in some cases, depending on the
magnetization direction with respect to the mirror, the mirror
symmetry may protect the nodal lines even with SOC and the
nodal lines may thus not be split by SOC25. In most cases we have
considered the nodal lines are split by SOC and the main

contributions to the AHE come from the split nodal lines, similarly
to the case of the SHE in non-magnetic materials.
We give some of the results for U2PN2 and Ni in Fig. 4, the full

results are available at ref. 23. We find that in Ni, the large AHE
comes mainly from sharp hotspots, which all very closely overlap
with mirror symmetry protected nodal lines in the non-relativistic
electronic structure. The main hotspots are located in six
symmetry equivalent mirror planes (110), (101), (011), (−101),
(01−1) and (1−10), which is shown in Fig. 4a. In Fig. 4b we give
the band structure along a path through this plane, which
demonstrates how the non-relativistic crossing results in a large
Berry curvature if the SOC split bands are at the Fermi level.
In U2PN2 we find that the main Berry curvature hotspots are

located in 3 equivalent mirror planes (100), (010) and (110) and in
the (1–10) plane, which is not a mirror plane, but contains a
rotation symmetry protected nodal lines. In Fig. 4c we give the
Berry curvature and nodal lines in the (100) mirror plane and in
Fig. 4d we give a band structure on a path through this plane. We
find that also in this case the hotspots are most likely associated
with nodal lines, however, the overlap is less clear since the large
SOC shifts the bands considerably from the non-relativistic bands.
As shown in ref. 23 the hotspots within the (1–10) plane are
associated with the rotation symmetry protected nodal lines.
As shown in23, in all of the materials that we have studied, we

find that the Berry curvature hotspots are mainly located along
high–symmetry planes or lines, suggesting a connection to
symmetry. In many cases we can identify non-relativistic nodal
lines from which these hotspots originate, however, this is not
always possible clearly since often the SOC is large and many
bands are present at the Fermi level. This thus suggests that
symmetry plays an important role for existence of large AHE and
in particular that materials with high symmetry and especially
many mirror planes are beneficial for large AHE.

METHODS
DFT
The FPLO DFT calculations utilize the PBE-GGA exchange correlation
potential26 and we use 20 × 20 × 20 k-point mesh for every material.
We have tested the AHE dependence on the number of k-points for
the DFT calculation for 20 materials with varying number of unit cell
sizes. As shown in Fig. 5a we find that the difference between
28 × 28 × 28 mesh and 20 × 20 × 20 is for most materials below 10 S/
cm, although larger errors can also happen.

Fig. 3 Magnetization rotation for HfMnTl. The dependence of the Hall vector on the magnetization direction in HfMnTl. Here the
magnetization is rotated from the [010] direction to the [001] direction. The blue arrows show the magnetization direction, the red arrows
show the Hall vector, which has been scaled so that its magnitude is comparable to the length of the magnetization arrow. The individual
plots show different orientations with the number denoting the step along the rotation. For this calculation we have improved the parameters
compared to other calculations. We have used 30 × 30 × 30 kpoints for the FPLO calculation and set the Wannier energy cutoff to 0.0001 eV
and the length cutoff to 50a0.

Table 1. Materials with the largest AHE (exluding MnInRh2) for which
we have studied origin of AHE in detail.

Formula id ∣∣h∣∣ [S c m−1] Spacegroup

U2PN2 mp-5381 3023.35 164

GdTmRh2 mp-1184489 2848.17 225

Ni mp-23 2437.72 225

Eu2SeO2 mp-753314 2428.01 139

MnCoPt2 mp-1221704 2400.29 123

CeTe2 mp-505536 2342.23 129

Here id refers to the Materials Project id, ∣∣h∣∣ is the Hall vector magnitude
and spacegroup is the non-magnetic spacegroup number.
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Fig. 4 Nodal lines in Ni and U2PN2. In these plots we give the Berry curvature summed over all occupied bands, given in units of Scm�1Å
3
.

When integrated over the first Brillouin zone, this directly gives the intrinsic AHC. a Berry curvature distribution and nodal lines in the (110)
mirror plane in Ni. Only a part of the mirror plane containing the main hotspots is shown, to better highlight the overlap with nodal lines. The
plot is given in relative coordinates of the [010] and [101] vectors of the primitive reciprocal lattice. b The non-relativistic and relativistic band
structure of Ni and the associated Berry curvature along the dashed line denoted in (a). Here, the green and yellow circles denote the
corresponding nodal lines in (a). c, d Same as (a, b) but for the (100) mirror plane in U2PN2.

Fig. 5 Convergence tests. a The dependence of the xy component of the AHE on the DFT k-mesh for 20 materials. The plot shows the
histogram of the differences between the 20 × 20 × 20 and 12 × 12 × 12 meshes and between 28 × 28 × 28 and 20 × 20 × 20 meshes. b The
difference between the DFT bands and the bands obtained from the Wannier Hamiltonian for 2312 materials. We calculate the relative
difference for every k-point and band. The plot shows the histogram of the median differences for each material. c Histogram of the Γ
convergence for materials with AHE larger than 0.1 S/cm. The Γ convergence is defined as the relative difference between the xy component
of AHE for Γ= 0.1 meV and Γ= 0.5 meV. d Convergence in the number of k-points for the linear response calculation. Histogram of the relative
difference of the xy component of AHE between the 250 × 250 × 250 and 125 × 125 × 125 meshes for all materials with AHE larger than
10 S cm−1.
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Since FPLO does not include magnetic symmetry, we use the
non-magnetic space group for the input, which is obtained by
setting all magnetic atoms with different magnetic moments as
chemically distinct atoms. Apart from the rotation dependence
calculations, we always set the direction of magnetic moments
along the c axis of the conventional lattice.
For the construction of the Wannier Hamiltonian we use the full

DFT basis set, apart from the core states. We use no energy
windows. We set to zero all the matrix elements smaller than
0.001 eV or those involving states with a distance more than 25a0,
where a0 is the Bohr radius. We have tested the AHE calculation for
BCC Fe with the energy cutoff set to 0.000 1eV and the length cutoff
to 50a0 and have found that the difference is well below 1% for all
considered Γ values. The accuracy of the Wannier Hamiltonian can
be further tested by comparing the band structure obtained from
the DFT calculation and the band structure from the Wannier
Hamiltonian, which we have calculated for most (although not all)
materials. As shown in Fig. 5b we find a very good agreement
between the bandstructures in most materials.

Linear response
To obtain the Kubo formula for conductivity from the formulas
given in ref. 22 we replace the torque operator �T i by current
density operator �ev̂i=V , where e is the elementary charge (e > 0),
v̂i is the i-th component of the velocity operator and V is the unit
cell volume. Then the following formulas are obtained

σeven
ij ¼ e2_

Vπ

X

knm

Γ2 Re huknjv̂ijukmihukmjv̂jjukni
� �

½ðEF � EknÞ2 þ Γ2�ð½EF � EkmÞ2 þ Γ2�
; (1)

σAHE
ij ¼ e2_

2Vπ

P
kn≠m

Im huknjv̂ijukmihukmjv̂jjukni
� �

´ ΓðEkm � EknÞ
½ðEF � EknÞ2 þ Γ2�½EF � EkmÞ2 þ Γ2�

n

þ 2Γ
½ Ekn � Ekmð �½ðEF � EkmÞ2 þ Γ2�

þ 2
ðEkn � EkmÞ2

Im ln Ekm � EF � iΓ
Ekn � EF � iΓ

o
:

(2)

Here, σeven denotes the time-reversal invariant component of the
conductivity, which corresponds to the ordinary conductivity. σAHE

ij
is the time-reversal odd part, which corresponds to the AHE. Ekn
and ukn respectively denote the Bloch energy and wavefunction
for band n and k-point k, EF denotes the Fermi level. The sum runs
over all k-points in the Brillouin zone. For practical evaluation, the
sum is replaced by integral, which is evaluated by discretizing on a
finite mesh.
In the Γ→ 0 limit, Eq. (1) becomes the well-known Boltzmann

constant relaxation time formula, which scales as 1/Γ, whereas Eq. (2)
goes to the intrinsic formula, which is Γ independent:

σintij ¼ � 2e_
V

X

n occ.

m unocc.

k;m≠n

Im huknjv̂ijukmihukmjv̂jjukni
Ekn � Ekmð Þ2

:

(3)

We use the Γ dependent formula since the intrinsic formula can be
numerically difficult to evaluate and because including the Γ
broadening is more realistic since every system contains disorder
in practice. For small Γ our results will typically be very close to the
intrinsic formula, however.
We have found that Eq. (2) can in rare cases be numerically

unstable and give wrong results, due to band degeneracies. These
cases can be identified easily as they give the wrong symmetry
and erratic Γ dependence. In these situations, we used a different
Kubo formula, given by Eq. (5) in ref. 27, which has the same Γ→ 0
limit and is more numerically stable.

For linear response calculation we use Γ values 0.1meV, 0.5meV,
1meV, 5meV and 10meV. We find that in most cases the AHE
becomes Γ independent for small Γ, which shows that the obtained
small Γ value is very close to the intrinsic value. We define a Γ
convergence parameter, which is defined as the relative AHE
difference between the two lowest Γ values. This parameter
estimates how close is the lowest Γ value to the intrinsic value. As
shown in Fig. 5c in most materials this parameter is less than a few
percent. Since the linear response calculation is very sensitive to the
number of k-points we use a dense 250 × 250 × 250 k-mesh for the
integration. To check the k-point convergence we also do a test
calculation with 125 × 125 × 125 for most materials. As shown in
Fig. 5d, the k-point convergence is strongly dependent on Γ: the
smaller the Γ is, the more k-points are needed. Nevertheless, even for
Γ= 0.1meV the relative difference between AHE for 250 × 250 × 250
and 125 × 125 × 125 is smaller than 25% for 85% of materials.
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