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Replica higher-order topology of Hofstadter butterflies in
twisted bilayer graphene
Sun-Woo Kim 1,2, Sunam Jeon3, Moon Jip Park4,5✉ and Youngkuk Kim 6✉

The Hofstadter energy spectrum of twisted bilayer graphene (TBG) is found to have recursive higher-order topological properties.
We demonstrate that higher-order topological insulator (HOTI) phases, characterized by localized corner states, occur as replicas of
the original HOTIs to fulfill the self-similarity of the Hofstadter spectrum. We show the existence of exact flux translational symmetry
in TBG at all commensurate angles. Based on this result, we identify that the original HOTI phase at zero flux is re-entrant at a half-
flux periodicity, where the effective twofold rotation is preserved. In addition, numerous replicas of the original HOTIs are found for
fluxes without protecting symmetries. Like the original HOTIs, replica HOTIs feature both localized corner states and edge-localized
real-space topological markers. The replica HOTIs originate from the different interaction scales, namely, intralayer and interlayer
couplings, in TBG. The topological aspect of Hofstadter butterflies revealed in our results highlights symmetry-protected topology
in quantum fractals.
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INTRODUCTION
Magnetic translational symmetry of crystals in the presence of an
external magnetic field1,2 manifests as a fractal form of the energy
spectrum that resembles recurring replicas of butterflies, known as
Hofstadter butterflies3–9. Although a strong magnetic field is
generally required, Hofstadter butterflies have recently been
observed owing to advances in two-dimensional van der Waals
materials10–18. The magnetic field required to produce replicas of
the Landau levels could be significantly reduced by the large-scale
synthesis of a van der Waals superlattice with a macroscopic unit
cell. For this crucial development, the Hofstadter butterflies have
been experimentally realized in a graphene superlattice19–24,
magic-angle twisted bilayer graphene (TBG)25,26, and twisted
double-bilayer graphene27.
Notably, the link with the magnetic translational symmetry and

symmetry-protected topological phases of matter has been
revealed recently28–37. In a general lattice model with multiple
sites per unit cell, the Hofstadter energy spectrum becomes
approximately replicative under the addition of the flux periodi-
city, E(ϕ) ≈ E(ϕ+Φ), which constitutes the additional flux transla-
tional symmetry via the unitary transformation of the Hamiltonian,
H(ϕ), as,

UðAÞHðϕÞ UyðAÞ � Hðϕþ ΦÞ; (1)

where UðAÞ ¼
P

Rc
y
RcR expði e_

R R
r0
A � drÞ with

R
ð∇ ´AÞ � dS ¼ Φ; cyR

(cR) is a creation (annihilation) operator of an electron at R in the
real space, A is the vector potential, and S is the unit cell area.
Remarkably, the effective time-reversal symmetry UT is restored
at a half-flux periodicity ϕ ¼ 1

2Φ
30, allowing for the existence of

diverse topological states of matter protected by symmetries28–32.
In this work, we study the higher-order topological insulator

(HOTI) phases of Hofstadter butterflies in TBG. Archetypal HOTIs
have been studied with respect to symmetry protection28,30. By
contrast, the replica HOTIs that we find here recur in the form of

quasiperiodic replicas without explicit symmetry protection.
Instead, they rely on the self-similar nature of Hofstadter
butterflies. We prove that the full lattice model of TBG possesses
the exact flux periodicity at all commensurate angles, which
rigorously characterizes the band topological protection in the
presence of the magnetic field. Two original HOTIs exist at time-
reversal invariant fluxes (TRIFs) ϕ= 0 and ϕ ¼ 1

2Φ, where ϕ=− ϕ
(mod Φ). In addition, replicas HOTIs recur at the specific fluxes
ϕ ¼ p

2Nrep
Φðp 2 Z; p≠NrepZÞ [Fig. 1b; See Eq. (3) for the definition

of Nrep]. To quantitatively diagnose HOTIs, we extend the concept
of real-space topological markers38–43 to the HOTI version. Similar
to the original HOTIs, replica HOTIs are characterized by localized
HOTI markers and corner modes. The origin of the replica HOTIs is
attributed to the reduced interior area of the Peierls path because
of the interlayer hopping in TBG.

RESULTS AND DISCUSSION
Lattice model and symmetries
We use the Moon-Koshino tight-binding model for TBG44

H ¼
X
ij

tijðRi � RjÞcyRi
cRj þ h:c:; (2)

where the hopping integral tij(Ri− Rj) is modeled as an
exponentially decaying function of Ri− Rj44 (see Methods).
Magnetic flux ϕ is introduced using the Peierls substitution45:

tijðRi � RjÞ ! tijðRi � RjÞ exp i e_
R Ri

Rj
A0 � dr

� �
, where A0 is the vec-

tor potential in the Landau gauge (see Methods). We consider the
atomic structure of TBG in the hexagonal space group #177,
generated by twisting the AA-stacked bilayer graphene about the
hexagonal center with the twist angle θm;n ¼ arccos 1

2
m2þn2þ4mn
m2þn2þmn

(m; n 2 Z;m≠n) (Fig. 1a). This construction of TBG preserves
C6z, C2x, and C2y rotational symmetries. The twist lowers the
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discrete translational symmetry, leading to the translational
symmetry of the moiré lattice with the enlarged unit cell area
by NL=m2+ n2+mn times. In the presence of a uniform
perpendicular magnetic field, a flux translational symmetry
emerges, which locally restores crystalline symmetries for specific
fluxes. For example, for ϕ ¼ 1

2Φ, combination of C2x and unitary
matrix U leaves the system invariant. Therefore, UC2x is preserved
at ϕ ¼ 1

2Φ because 1
2Φ ¼ � 1

2Φ (mod Φ).

Hofstadter butterflies
For the nearest-neighbor tight-binding model of graphene, the
flux periodicity is given as the magnetic field strength B=Φ0/SG,
where Φ0 ¼ h

e is the flux quantum and SG is the graphene unit cell
area11,44,46. However, when next neighbor hoppings are intro-
duced, the minimal loop along the allowed hoppings, namely, the
minimal Peierls path, has decreased inner area SGmin ¼ 1

6 S
G (Fig. 1a),

leading to an increased flux periodicity. A stronger magnetic field
of B ¼ Φ0=SGmin ¼ 6Φ0=SG is required to implement the full flux
quantum into the decreased inner area SGmin of the minimal Peierls
path. Consequently, the entire cycle is completed by repeating six
times modulated quasiperiodic replicas of the nearest-neighbor
graphene spectrum30.
For TBG, we show the existence of the exact flux periodicity at

the twist angle θm,n, dictated by,

Nrep � SGmin=S
TBG
min ¼ NL

gcdðz1; z2; z3Þ
2 Z; (3)

where gcd indicates the greatest common divisor and z1=m2−
n2, z2= 3m2, z3= 2m2−mn− n2 (see Supplementary Note 2). For
θ= 21. 8∘(m= 1, n= 2), Nrep= 7 corresponds to the area of the
minimal Peierls path, STBGmin � S ¼ 1

7 S
G
min ¼ 1

42 S
G (see Fig. 1a). As a

result, a self-similar pattern is rendered by 42 replicas of the
original graphene spectrum, only having the nearest-neighbor
hopping term.
Figure 2 shows the calculated Hofstadter butterflies for both

graphene and TBG by using the kernel polynomial method (see
Methods). Quasi-periodicity is exhibited, as our tight-binding
model includes electron hopping beyond the nearest neighbors.
For example, in the graphene spectrum (Fig. 2a), the quasi-
periodicity of 1

6Φ is displayed by having similar patterns recurring
at every integer multiple of 1

6Φ. Similarly, for TBG spectrum
(Fig. 2b), a quasi-periodicity of 1

42Φ occurs as expected. Moreover,
the energy spectrum that resembles the graphene spectrum in
Fig. 2a recurs at every integer multiple of 1

7Φ. This modulation of
the graphene spectrum by 1

7Φ is weaker than that of 1
42Φ because

the interlayer hopping is relatively weaker in TBG compared to
next-nearest-neighbor intralayer hopping. Therefore, the quasi-

periodicity of 1
7Φ is more prominent than that of 1

42Φ in TBG
spectrum.
The computed spectrum exhibits symmetries of Hofstadter

butterflies (Fig. 2b). Translational flux symmetry is displayed in the
recurring patterns at ϕ and ϕ= ϕ+Φ. Moreover, the C2x
symmetry that is broken under the flux gives rise to the mirror-
symmetric spectrum about TRIFs (both ϕ= 0 and ϕ ¼ 1

2Φ). The
Hamiltonian is transformed under the C2x operator as

C2xHðϕÞCy
2x ¼ Hð�ϕÞ: (4)

Combined with the unitary matrix U , we obtain

UC2xH
1
2
Φþ ϕ

� �
ðUC2xÞy ¼ H

1
2
Φ� ϕ

� �
: (5)

Therefore, the energy eigenvalues for ϕ and− ϕ about TRIFs are
equivalent.

Exact HOTIs
The proposed tight-binding model reproduces the HOTI phase of
TBG well at zero flux, showing good agreement with previous
studies47,48. Consequently, the system harbors localized states at
the corner of a diamond-shaped flake under an open boundary
condition (OBC) (Fig. 3b). In energy space, two corner states reside
inside the spectral gap of the bulk (Fig. 3a). In general, these two
(in-gap) corner states can have different energies owing to the
finite-size effect, in which they spatially overlap and cause
hybridization48.
The bulk gap at ϕ= 0 is ~9meV. This leads to a spectral gap of

approximately 236 meV for a flake width of ~ 11 nm (2800 atoms).
The HOTI at ϕ= 0 is under multiple protection conditions47,48.
Two distinct topological invariants exist: the second Stiefel-
Whitney number ω2

49–55 and Z2 rotation-winding number56–58,
protected by space time-reversal symmetry [ðC2zT Þ2 ¼ 1] and
rotation symmetry C2x, respectively. The combined symmetry
ðC2zT Þ2 ¼ 1 imposes the reality condition on the Hamiltonian,
leading to the real-valued corner state (Fig. 3b). The C2x rotation-
resolved Zak phase ν± along the rotation-invariant line ky= 0,
where ± denotes the rotation eigenvalue c2x= ± 1, gives rise to a
nontrivial Z2 rotation-winding number (Fig. 3c).
We suggest a HOTI marker given by χ ± ðrÞ ¼ � rh jeC ±

2xP
± X̂Q± rj i,

where eC ±
2x ¼ P ± C2xP ± is a projected symmetry operator, and X̂ is

a position operator (see Methods). Here, P±(Q±) is the projection
operator to the occupied (unoccupied) c2x= ± 1 subspaces. In
OBC, χ±(r) successfully diagnoses the rotation-winding number in
real space: χ±(r) dictates the nontrivial rotation-winding number
by being localized along the edge of the flake (Fig. 3d), whereas in
the trivial case, it is delocalized over the entire geometry (see
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Fig. 1 Replica HOTI states in TBG. a Atomic structure of TBG. S denotes the smallest area enclosed by a Peierls path for TBG at θ=21.8∘. For
comparison, we illustrate the corresponding area for graphene SGmin and the area of the graphene unit cell SG, where S ¼ 1

7 S
G
min ¼ 1

42 S
G.

b Schematic of re-entrant exact HOTI and replica HOTI phases as a flux ϕ function. Red and blue colors indicate the exact HOTI and replica
HOTI phases, respectively. The kx and ky are pseudo-momenta, well defined in the presence of the magnetic translational symmetry under
arbitrary rational flux.
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Supplementary Fig. 3). Interestingly, the corner state appears at
the boundary between the opposite signs of each HOTI marker
χ±(r). The sum of the opposite HOTI markers χ+(r)+ χ−(r) is zero,
which indicate a trivial winding number. The HOTI marker can be
applied to symmetry-breaking perturbations, as demonstrated in
TBG under the uniform magnetic field.
To study the effect of the magnetic field on the HOTI states, we

track the corner states by investigating their spectral flow at fixed
filling30 (see red and green lines in Fig. 2b). At zero flux, the

highest occupied (HO) and lowest unoccupied (LU) states are
identified as corner-localized states (Fig. 3b). They adiabatically
evolve as a flux function and undergo a series of discontinuity
transitions at specific fluxes. This discontinuity is indicative of a
topological change due to bulk gap change30,31. Indeed, we reveal
that HO and LU states at the discontinuity transitions are quantum
Hall chiral edge states (see Supplementary Note 4).
Remarkably, we find a reentrance of the HOTI phase at ϕ ¼ 1

2Φ,
characterized by edge-localized marker χ+(r) (Fig. 4a). χ+(r) decays
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Fig. 2 Hofstadter butterflies of the atomistic tight-binding model of TBG. a, b Hofstadter spectrum of TBG a without and b with interlayer
coupling calculated by using the kernel polynomial method (see Methods). Red dashed lines indicate the system’s half and full flux periodicity.
Blue dashed lines indicate quasi periodicities at ϕ ¼ p

14Φðp ¼ 1; 2; ¼ ; 6Þ. In b, the red and green solid lines denote the highest occupied and
lowest unoccupied states, respectively. c–j Magnified view of b at specific flux values c ϕ= 0, d ϕ ¼ 1

2Φ, e ϕ ¼ 1
14Φ, f ϕ ¼ 1

7Φ, g ϕ ¼ 3
14Φ,

h ϕ ¼ 2
7Φ, i ϕ ¼ 5

14Φ, and j ϕ ¼ 3
7Φ, where ε ¼ 1

1680Φ.
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exponentially along the bulk as exp½�αðx � x0Þ� with α= 0.52,
which is identical to that of the exact HOTI state at zero flux
(Fig. 4b) (see also Supplementary Note 3 for the detailed
quantitative analysis). The re-entrant HOTI phase relies on
composite symmetry UC2x exactly preserved at ϕ ¼ 1

2Φ because
ðUC2xÞHð12ΦÞðUC2xÞy ¼ Hð12ΦÞ from C2xHð12ΦÞC

y
2x ¼ Hð� 1

2ΦÞ and
Hðϕþ ΦÞ ¼ UHðϕÞUy . Note that the corner boundary modes of
the re-entrant HOTI phase are localized at the corner, but the node
appears slightly more concentrated off the corner (Fig. 4a) (see
also Supplementary Fig. 4 for the reason of the nodal structure of
the corner states).

Replica HOTIs
In addition to the exact HOTIs at TRIFs (ϕ= 0 and ϕ ¼ 1

2Φ), replicas
of the original HOTIs are found at the 1

7Φ quasi-periodic
counterparts of TRIFs. We employ HO and LU states as indicators
of a replica of the original HOTI. We find that they are positioned
within the spectral gap at the specific fluxes of quasi-periodicity
ϕ ¼ p

14Φðp 2 Z; p≠7ZÞ (Fig. 2e–j). A close inspection reveals that
HO and LU states show oscillatory behavior of HO and LU energies
as a function of flux, which originates from the Aharonov-Bohm
tunneling in the presence of an external magnetic flux. Notably,
the oscillation is a finite-size effect rather than a characteristic
behavior of corner states, as is evident in the oscillations of other
states near HO and LU states.
To demonstrate the characteristics of the replica HOTIs, we plot

the HO states in the left panels in Fig. 4d–i. The real-space
distribution arguably shows the corner-localized states, supporting
the HOTI phases. Nonetheless, these states exhibit stark contrast
to the corner states of the exact HOTI at zero flux in that they are
complex-valued functions, while the exact HOTI hosts real-valued
corner states (Fig. 3b). The complex-valued wave functions
manifest the broken reality condition ½ðC2zT Þ2 ¼ 1� at finite
fluxes, implying that the Stiefel-Whitney characterization is
inapplicable. Furthermore, these quasiperiodic fluxes also break
the C2x and UC2x symmetries, which were utilized to characterize
the exact HOTIs at TRIFs.

Remarkably, the HOTI marker can be defined without the
protecting symmetries, enabling the evaluation of rotation-
winding numbers. We find that the HOTI marker can quantitatively
characterize the corner states in the presence of flux, that is, under
rotational-symmetry C2x breaking. At a small flux ϕ1 ¼ 1

21000Φ, the
eigenstate shows the remaining localized corner state, and the
corner state is characterized by the marker χ+(r) which is
sufficiently localized along the entire edge despite the small
permeated values towards the bulk (Supplementary Figure 3).
Quantitatively, χ+(r) exhibits an exponential decay as exp½�αðx �
x0Þ� with α= 0.10, which is smaller than α= 0.52 of the exact
HOTIs due to the symmetry breaking (Fig. 4b). The exponential
localization of χ+(r) from the edge for the corner states is in stark
contrast to a linear delocalization∝− β(x− x0) of χ+(r) along the
whole geometry for the trivial state that occurs at, for example,
ϕ= 13ϕ1 (Fig. 4b). Such localization characteristics of the markers
serve as a hallmark to identify nontrivial bulk topology, which
fundamentally originates from the action of the projected
symmetry operator, as in the generic topological crystalline
insulating phases protected by spatial symmetries42,43 (see also
Methods for the detailed explanation for the real-space behavior
of the HOTI marker).
Our HOTI marker captures the replica HOTI phases as well, at

ϕ ¼ p
14Φðp 2 Z; p≠7ZÞ (Fig. 4d–i). χ+(r) at ϕ ¼ p

14Φ show robust
edge localization, consistent with the corner-localized eigenstates.
The line profiles of χ+(r) (Fig. 4c) exhibit exponential decay (see
also Supplementary Fig. 6). The replica HOTIs can be viewed as the
copies of exact HOTIs disordered by the fractional flux quantum
acquired when electrons travel through the minimal Peierls path
because the composite symmetry U0C2x becomes exact when the
interlayer coupling is turned off.
We also verify that replica HOTIs generally appear at other large

angles. Figure 5 shows the HO states and HOTI markers at the
other twist angles θ= 13. 2∘(m= 2, n= 3) and 9. 4∘(m= 3, n= 4).
We find that both the corner localized states in real space and the
localization behavior of the calculated HOTI markers support the
existence of the replica HOTI states at the flux ϕ ¼ p

2Nrep
Φm;nðp 2

Z; p≠NrepZÞ where the flux periodicity is given by Φm,n= NrepΦG
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Fig. 3 Characterization of HOTI states. a Energy spectrum of TBG with θ= 21. 8∘ in OBC. Red Data points indicate corner states. b Topological
corner state in OBC. The colored circle indicates the phases of eigenstate components. c Zak phase calculated using c2x=+ 1 bands along the
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with the flux periodicity of graphene ΦG. Here, Nrep= 19 and 37
for θ= 13. 2∘ and 9. 4∘, respectively. We note that the localization
strength of the HOTI markers (see the line profiles in Fig. 5) is
weakened as we decrease the twist angle because the bulk gap is
significantly reduced (see Supplementary Fig. 9).
We find that the out-of-plane rotational symmetry C2x is

essential to realize the re-entrant exact and replica HOTI phases
in TBG under a magnetic field. In contrast to our model, there is no
re-entrant corner state at half-flux periodicity in the magic-angle
TBG model30 with only C2zT symmetry, where the flux pumps
corner states into the bulk. The disappearance of the corner states
at half periodicity confirms the inapplicability of the Stiefel-
Whitney characterization for the HOTI states in the presence of a
magnetic field. This indicates that additional crystalline symmetry,
such as C2x, is required to protect the corner states in TBG under a
strong magnetic field.
In summary, we have demonstrated that HOTIs can occur

without explicit protecting symmetries because of the self-
similarity of Hofstadter butterflies as replicas of original HOTIs.
We expect the distinct symmetry dependence of replica HOTIs can
lead to distinct physical properties from the exact HOTIs (see
Supplementary Note 6 for the detailed discussion). The HOTI
marker is an invaluable tool for studying HOTI states in various
situations beyond conventional methods using periodic boundary
conditions. It offers the distinct advantage of being able to readily
identify the HOTI phase, even at a small magnetic field in the open
boundary condition. This is particularly advantageous compared
to momentum-space methods relying on periodic boundary
conditions, as they are computationally demanding at low

magnetic fields, with their computational cost scaling inversely
with the strength of the magnetic field. The exponents of our HOTI
marker allows for quantitative analysis, which can be potentially
useful for future study such as many-body disordered HOTIs. The
observation of the replica HOTI at the fixed filling requires a huge
magnetic field B ~ 105T, but replica topology may occur at
different filling near low fields. Therefore, establishing an exact
relationship between discrete scale invariance and band topology
in this quantum fractal will be exciting future research with direct
experimental implications. Additionally, a critical challenge that
needs to be tackled in order to realize the observation is ensuring
the stability of large TBG flakes under high magnetic fields. It
would also be interesting to explore the Coulomb repulsion effect
on replica phases at smaller angles, where the role of Coulomb
repulsion is crucial59–64. With much progress in synthesis of moiré
materials65–70 and measurement of Hofstadter energy spec-
trum33,71, our results can pave the way for studying replica
topology under magnetic field in generic moiré multilayer67–69

and moiré quasiperodic70 systems that host multiple interaction
scales.

METHODS
Tight-binding model
We employ the Moon-Koshino tight-binding model for twisted
bilayer graphene in ref. 44, which is written as

H ¼
X
ij

tijðRi � RjÞcyRi
cRj þ h:c:; (6)
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where cyRi
(cRj ) is a creation (annihilation) operator of an electron at

the lattice site Ri, and tij(Ri− Rj) is the hopping integral between
the sites Ri and Rj. The hopping integral is given by

�tijðRi � RjÞ ¼ Vppπ 1� d � ẑ
d

� �2
" #

þ Vppσ
d � ẑ
d

� �2

: (7)

Here, the hopping parameters are given as a decaying function of
a hopping distance d= ∣d∣= ∣Ri− Rj∣

Vppπ ¼ V0
ppπ exp � d � a0

δ

� �
and Vppσ ¼ V0

ppσ exp � d � d0
δ

� �
;

(8)

where a0 ≈ 1.42Å is the bond length of graphene, d0 ≈ 3.35Å is the
interlayer distance, and δ= 0.319a0 is the decay length. Here, we
set V0

ppπ ¼ �2:7 eV and V0
ppσ ¼ 0:82 eV, which reproduce the band

structure of 21.8∘ twisted bilayer graphene with a bulk gap ~ 9
meV in a HOTI state47,48. Our tight-binding model under a periodic
boundary condition (see atomic geometry used in Supplementary
Figure 1) has 14 occupied pz orbital bands that consist of the same
number of c2x=+ 1 and c2x=− 1 bands, where c2x is an
eigenvalue of a twofold rotational symmetry operator C2x about
the x-axis. This implementation of the model successfully
reproduces the nontrivial rotation-winding number (Fig. 3c) in
line with the previous DFT results47. For the calculations of
Hofstadter butterflies and topological markers, we use the flake
geometry with an open boundary condition (see Supplementary
Fig. 1).
To study the effect of the magnetic field, we incorporate a

magnetic flux ϕ into the hoppings as an additional phase via

Peierls substitution45:

tijðRi � RjÞ ! tijðRi � RjÞ exp i e_
R Ri

Rj
A0 � dr

� �
¼ tijðRi � RjÞ exp i e_

ϕ
2Smin

ðxi þ xjÞðyj � yiÞ
h i

;
(9)

where the vector potential A0 ¼ Bð0; xÞ ¼ ϕ
Smin

ð0; xÞ for B ¼ Bẑ and
Smin is the interior area of the minimal Peierls path. We prove that
our twisted bilayer graphene lattice has exact flux periodicity (see
Supplementary Note 2). The Hofstadter energy spectrum of our
system is thus periodic under the translation by a magnetic flux
quantum Φ ¼ h

e because the Hamiltonian can be gauge trans-
formed according to30

Hðϕþ ΦÞ ¼ UðAÞHðϕÞUyðAÞ: (10)

The unitary matrix UðAÞ ¼
P

Rc
y
RcR expði e_

R R
r0
A � drÞ (r0: a fixed

lattice site) is defined for the vector potential A( ≠ A0) that leads to
the flux quantum

R
Smin

ð∇ ´AÞ � dS ¼ Φ.

Kernel polynomial method
Hofstadter butterflies of twisted bilayer graphene can be
efficiently calculated by using the kernel polynomial method72.
The essential idea of the kernel polynomial methods is to expand
the density of states ρ(E) (E: energy) in terms of Chebyshev
polynomials as,

ρðEÞ ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p XM
n¼0

μnUnðEÞ; (11)
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Fig. 5 Replica HOTI states at other large angles. a–c Real-space distribution of corner states (the highest occupied eigenstates), HOTI marker
χ+(r) and its line profile for the twist angles a θ1,2= 21.8∘, b θ2,3= 13.2∘, and c θ3,4= 9.4∘. For the geometry in the open boundary condition, the
10 × 10 unit cell is used for the angles θ= 21.8∘, 13.2∘, and 9.4∘, which contains 2800, 7600, and 14,800 atoms, respectively. Here, we represent
the replica HOTIs at a ϕ ¼ 1

14Φ1;2, b ϕ ¼ 1
38Φ2;3, and c ϕ ¼ 1

74Φ3;4 where Φm,n is the flux periodicity at given integers m and n.
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where Un(E) is the second kind n-th Chebyshev polynomials,

UnðEÞ ¼
sin½ðnþ 1Þ arccosðEÞ�

sin½arccosðEÞ� : (12)

Here, μn is the moment for an operator ÔðEÞ, which reads

μn ¼
2
π2

Z 1

�1
dE ÔðEÞUnðEÞ: (13)

The targeting density of states operator ρ̂ðEÞ is given by

ρ̂ðEÞ ¼ 1
N

XN
k¼1

δðE � EkÞ: (14)

After putting ρ̂ðEÞ into μn, we obtain

μn ¼ 2
π2

R 1
�1 dE ρ̂ðEÞUnðEÞ

¼ 2
π2

1
N

PN
k¼1

UnðEkÞ

¼ 2
π2

1
N

PN
k¼1

k UnðHÞj jkh i

¼ 2
π2 TrðUnðHÞÞ:

(15)

A stochastic approach is employed to obtain the trace by
introducing the R-number of random vectors rj i, instead of
(potentially unknown) exact eigenvectors:

TrðUmðHÞÞ ’
1
R

XR
r¼1

r UmðHÞj jrh i; (16)

where R is set to a sufficiently large value to attain the converged
density of states. Then, we take advantage of a recursive relation
for the polynomial,

Umþ1 ¼ 2HUm � Um�1; (17)

to rewrite the trace as

TrðUmðHÞÞ ’
1
R

XR
r¼1

hrjrim; (18)

where

rj im ¼ UmðHÞ rj i and rj imþ1 ¼ 2H rj im � rj im�1: (19)

As a result, the density of states is obtained as

ρðEÞ ¼ 2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p XM
n¼0

gMmTrðUmðHÞÞUnðEÞ; (20)

where gMm is the Jackson kernel,

gMm ¼ 1
Mþ 1

ðM�mþ 1Þ cos mπ

Mþ 1
þ sin

mπ

Mþ 1
cot

π

Mþ 1

� �
;

(21)

which is introduced to reduce the Gibbs oscillation72.

HOTI topological marker
Topological marker is a local quantity in real space that
characterizes the topological phases38–42. The local Chern marker
was first introduced as a topological marker whose spatial average
in bulk in thermodynamic limit corresponds to the Chern number
of the system38. The topological marker was then generalized to
the topological crystalline insulating (TCI) phases, in which the
topological states are protected by the spatial symmetries42. The
generalized topological marker T GðrÞ related to the symmetry G is
given by

T GðrÞ ¼ rh jeGFðPÞ rj i; (22)

where eG ¼ PGP is a projected symmetry operator and a function
FðPÞ encodes the types of topological invariants. For example,

FðPÞ / P½X̂; P� and P½½X̂; P�; ½Ŷ; P�� for 1D winding39 and 2D Chern
numbers38, respectively, where X̂ and Ŷ are position operators.
We extend the topological marker to a HOTI version in our

twisted bilayer graphene system. The extension is straightforward
because the HOTI phase in twisted bilayer graphene is protected
by the C2x rotation symmetry resolved winding number, the
rotation-winding number. Let us first see the topological marker
χ(r) for the C2x symmetry, which is given by

χðrÞ � T C2x ðrÞ ¼ rh jeC2xP½X̂; P� rj i ¼ � rh jeC2xPX̂Q rj i; (23)

where we used the relation Q= 1− P in the last equality. By
projecting the projection operators to the C2x rotation ± subspaces
as P= P++ P− and Q=Q++Q−, we obtain

χðrÞ ¼ � rh jeC2xPX̂Q rj i
¼ � rh jðPþC2xPþ þ P�C2xP�ÞðPþX̂Qþ þ P�X̂Q�Þ rj i
¼ � rh jðPþC2xPþX̂Qþ þ P�C2xP�X̂Q�Þ rj i
� χþðrÞ þ χ�ðrÞ;

(24)

where we used the condition P+P−=Q+Q−= PQ= 0. The C2x
rotation-resolved topological marker χ±(r) serves as the real space
local expression of the rotation-resolved Zak phase ν±.

Real-space behavior of HOTI marker
To understand the real-space behavior of the HOTI marker, we first
consider the localization property of the topological markers for
TCI phases. The topological markers for TCI phases feature the
exponential localization from the subspace restricted by the
spatial symmetries42,43. It is different from the case of the typical
Chern insulators without symmetries where the localization sites
of the topological marker are all the sites within the bulk38,40,41. In
a TCI phase, protected by a spatial symmetry G, the eigenvalues of
G classify the eigenstates of the Hamiltonian f uij ig and thus the
projection matrix for occupied states P ¼

P
n2occ: unj i unh j at the

symmetry-invariant subspace S. As a result, the bulk topology of a
TCI phase is encoded by the projection matrix P at the invariant
subspace S, which allows the introduction of the real-space
topological invariant, the topological marker T GðrÞ in Eq. (22). It is
proven that the topological marker T GðrÞ exhibits the exponential
localization from the fixed points rSð2 S;S ¼ frjGr ¼ rgÞ of the
spatial symmetry G as42

jT GðrÞj<Oðe�jrS�rj=ζÞ when jrS � rj � ζ: (25)

Here the length scale ζ is rough in the order of the inverse gap/
localization strength. We note that the localization property is
fundamentally arising from the action of the projected symmetry
operator eG: the projection matrix P is exponentially localized for
the insulators73–75 and the symmetry G restricts the localization
site of the markers42,43. The localization property is more general
than the exponentially localized Wannier functions because the
topological marker is localized even in the presence of a nonzero
Chern number, which prohibits the construction of localized
Wannier functions.
In the case of C2x winding number, the presence of the

projected symmetry operator eC ±
2x gives rise to the exponential

localization of the HOTI marker χ±(r) from the edge. The absence
of the winding number allows for the C2x specification of the
winding number, revealing the presence of the C2x-protected
metallic edge states. As in the case of the known HOTI phases
characterized by C2x winding number47,48, the corner state is the
Su-Schrieffer-Heeger type domain wall state, arising from the gap
opening of the edge states. The edge is the bulk of the corner
states in the HOTI state. Due to the action of the projected
symmetry operator eC ±

2x , our HOTI marker of HOTI states exhibits
exponential localization from the edge rE as

jχ ± ðrÞj<Oðe�jrE�rj=ζÞ when jrE � rj � ζ: (26)
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On the contrary, HOTI trivial cases do not show such localization
behavior from the edge. Instead, they are linearly delocalized
over the entire geometry ( ∝ the position operator X̂) which
follows from the form of the C2x-marker formula proportional to
X̂ in Eq. (24).
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