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Hyperactive learning for data-driven interatomic potentials
Cas van der Oord1✉, Matthias Sachs2, Dávid Péter Kovács1, Christoph Ortner3 and Gábor Csányi 1

Data-driven interatomic potentials have emerged as a powerful tool for approximating ab initio potential energy surfaces. The most
time-consuming step in creating these interatomic potentials is typically the generation of a suitable training database. To aid this
process hyperactive learning (HAL), an accelerated active learning scheme, is presented as a method for rapid automated training
database assembly. HAL adds a biasing term to a physically motivated sampler (e.g. molecular dynamics) driving atomic structures
towards uncertainty in turn generating unseen or valuable training configurations. The proposed HAL framework is used to develop
atomic cluster expansion (ACE) interatomic potentials for the AlSi10 alloy and polyethylene glycol (PEG) polymer starting from
roughly a dozen initial configurations. The HAL generated ACE potentials are shown to be able to determine macroscopic
properties, such as melting temperature and density, with close to experimental accuracy.
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INTRODUCTION
Over the last decade there has been rapid progress in the
development of data-driven interatomic potentials, see the review
papers1–6. Many systems are often too complex to be modelled by
an empirical description yet inaccessible to electronic structure
methods due to prohibitive computational cost. Richly para-
metrised data-driven interatomic potentials bridge this gap and
are able to successfully describe the underlying chemistry and
physics by approximating the potential energy surface (PES) with
quantum mechanical accuracy7–9. This approximation is done by
regressing a high-dimensional model to training data collected
from electronic structure calculations.
Over the years many approaches have been explored using a

range of different model architectures. These include artificial neural
networks (ANN) based on atom centred symmetry functions10 and
have been used in models such as ANI11,12 and DeepMD5. Another
widely used approach is Gaussian process regression (GPR)
implemented in models such as SOAP/GAP13,14, FCHL15 and
sGDML16. Linear approximations of the PES have also been
introduced initially by using permutation invariant polynomials
(PIPs)17 and the more recent atomic PIPs variant18,19. Other linear
models include spectral neighbour analysis potentials4 based on the
bispectrum20, moment tensor potentials21 and the atomic cluster
expansion (ACE)22–24. More recently, message passing neural
network (MPNN) architectures have been introduced25–31 the most
recent of which have been able to outperform any of the previously
mentioned models regarding accuracy on benchmarks such as
MD1732 and ISO1733. Central to all of these models is that they are
fitted to a training database comprised of configurations R labelled
with total energy ER , forces F R and perhaps virial stress VR

observations, obtained from electronic structure calculations. By
performing a regression on the training data model predictions E of
the total energy, and estimates of the respective forces Fi=−∇iE
can be determined. Here, the ∇i operator denotes the gradient with
respect to the position of atom i.
Building suitable training databases remains a challenge and

the most time-consuming task in developing general data-driven
interatomic potentials34–36. Databases such as MD17 and ISO17
are typically created by performing molecular dynamics (MD)

simulations on the structures of interest and selecting decorre-
lated configurations along the trajectory. This approach samples
the potential energy surface according to its Boltzmann distribu-
tion. Once the training database contains sufficient number of
configurations, a high-dimensional model may be regressed in
order to accurately interpolate its potential energy surface. The
interpolation accuracy can be improved by further sampling,
albeit with diminishing returns. However, it is by no means clear
that the Boltzmann distribution is the optimal measure, or even a
“good” measure, from which to draw samples for an ML training
database. Indeed, it likely results in severe undersampling of
configurations corresponding to defects and transition states,
particularly for material systems with high barriers, which never-
theless have a profound effect on material properties and are
often the subject of intense study.
A lack of training data in a sub-region can lead to deep unphysical

energy minima in trained models, sometimes called “holes”, which
are well known to cause catastrophic problems for MD simulations:
the trajectory can get trapped in these unphysical minima or even
become numerically unstable for normal step sizes. A natural
strategy to prevent such problems is active learning (AL): the
simulation is augmented with a stopping criterion aimed at
detecting when the model encounters a configuration for which
the prediction is unreliable. Intuitively, one can think of such
configurations as being “far” from the training set. When this
situation occurs, a ground-truth evaluation is triggered, the training
database extended, and the model refitted to the enlarged
database. In the context of data-driven interatomic potentials, this
approach was successfully employed by the linear moment tensor
potentials37,38 and the Gaussian process (GP) based methods
FLARE39,40 and GAP41 which both use site energy uncertainty arising
from the GP to formulate a stopping criterion in order to detect
unreliable predictions during simulations.
The key contribution of this work is the introduction of the

hyperactive learning (HAL) framework. Rather than relying on
normal MD to sample the potential energy and wait until an
unreliable prediction appears (which may take a very long time
once the model is decent), we continually bias the MD simulation
towards regions of high uncertainty. By balancing the physical MD
driving force with such a bias, we accelerate the discovery of
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unreliably predicted configurations but retain the overall focus on
low energy configurations carrying large contributions to the
partition function. This proposed framework is reminiscent of the
exploration-exploitation trade-off originating from Bayesian opti-
misation (BO), a technique used to efficiently optimise a compu-
tationally expensive “black box” function. BO has been shown to
yield state-of-the-art results for optimisation problems while
simultaneously minimising incurred computational costs by requir-
ing fewer ground-truth evaluations42. In the wider community BO is
seen as a type of AL, and so is the proposed HAL framework in this
work. The novelty of this work is combining MD with BO to
accelerate the development of data-driven interatomic potentials.
BO has been applied to atomistic systems previously in global

structure search43–46 where the PES is optimised to find stable
structures. Other previous work balancing exploration and exploita-
tion in data-driven interatomic potentials is also closely related, where
configurations were generated by balancing high uncertainty and
high-likelihood (or rather low-energy)47. Here the PES was explored
by perturbing geometries while monitoring uncertainty rather than
explicitly running MD. Note that upon the completion of this work,
we discovered a closely related work that also uses uncertainty-
biased MD48. The two studies were performed independently, and
appeared on preprint servers near-simultaneously.
In BO, an acquisition function balances exploration and

exploitation, controlled by a biasing parameter. In our hyperactive
learning framework, the HAL potential energy surface EHAL:

EHAL :¼ E � τσ (1)

takes on a similar role. Here, E is the predicted potential energy
and σ is an uncertainty measure, which in this work is set to be the
standard deviation of predicted total energy. The parameter τ,
referred to as the biasing strength, controls the exploration of
unseen parts of the PES and needs to be carefully tuned in order
for the HAL-MD trajectory to remain energetically sensible. This is
achieved by the introduction of an on-the-fly auto-tuning scheme
using a relative biasing parameter τr (see § “Methods” for details).
The addition of a biasing potential has a long history in the study
of rare events and free energy computations, using adaptive
biasing strategies such as meta-dynamics49,50, umbrella sam-
pling51,52, and similar methods (e.g. refs. 53,54). While the biasing
force in these methods is implicitly specified by the choice of a
collective variable, the direction of the biasing force in HAL is
towards increasing uncertainty corresponding to regions of
configuration space not accurately described by the training data.
Viewing HAL as an adaptive-biasing technique also contrasts it
against more aggressive AL approaches that explore configuration
space via thermostated MD at high temperature. In the latter case
all degrees of freedom are indiscriminately accelerated. In the
absence of strong energetic barriers this drastically increases
the size of the sampled configurational space rendering an
exhaustive exploration of physically relevant configurations
infeasible. In contrast, HAL only accelerates the degrees of
freedom in the direction of increasing uncertainty. Intuitively,
one may expect that this keeps the size of sampled configura-
tional space constrained and exploration effective.
Choosing σ to be the predicted energy’s standard deviation

makes EHAL coincide exactly with the lower confidence bound (LCB),
which is a commonly used acquisition function in BO. In particular, it
has previously been used to optimise the potential energy surface43

rather than to sample the corresponding statistical ensembles as
performed in this work. From both a theoretical and modelling
perspective other versions of HAL are of high interest. For example,
we expect that using the relative force uncertainties that we
introduce below as biasing potentials, would result in a more
targeted biasing that is consistent with the proposed stopping
criterion presented in Eq. (6). However, since such a formulation of
HAL would require the evaluation of higher order derivatives of the
predicted energy, we leave this to future work.

We make the general HAL concept concrete in the context of
the ACE “machine learning potential” framework22,23, however,
the methods we propose can be directly applied to any linear
models and Gaussian process type models, and are in principle
also extendable to any other ML potential that comes with an
uncertainty measure, including deep neural network models.
Different methods of setting up such ensembles or committees
exist for linear, GP or NN frameworks, such as dropout55, or
bootstrapping56. In the context of Bayesian models, ensembles
can be obtained as Monte Carlo samples from the corresponding
posterior distribution. More specifically, considering linear ACE,
the site (or atomic) energy is expressed as follows:

Ei ¼ c � Bi : (2)

and the total energy E is defined as E= ∑iEi= c ⋅ B where B= ∑iBi
is the linear ACE basis. Due to this linearity, implementing a
Bayesian model formulation is particularly straightforward allow-
ing for efficient and analytical uncertainty estimation as described
in § “Bayesian ridge regression (BRR)”. Assuming an isotropic
Gaussian prior on the model parameters and Gaussian indepen-
dent and identically distributed (i.i.d) noise on observations, yields
an explicit definition of the standard deviation of the posterior-
predictive distribution:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
λ
þ BTΣB

r
; (3)

which has energy units, in correspondence with Eq. (1). Here, the
covariance matrix Σ is defined as:

Σ�1 ¼ αIþ λΨTΨ: (4)

and α, λ are hyperparameters whose treatment are detailed in the
Methods section, and Ψ is the design matrix of the linear
regression problem.
The evaluation of σ in Eq. (3) is computationally expensive for a

large basis B; scaling as OðN2
basisÞ. To improve computational

efficiency, σ can be approximated by a committee of K potentials
parameterised by an ensemble of parameters fckgKk¼1 that are
obtained by sampling from the posterior distribution π(c) (see Eq.
(25) for further details). This gives rise to K committee energy
predictions, Ek= ck ⋅ B, resulting in:

~σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
λ
þ 1
K

XK
k¼1

ðEk � EÞ2
vuut ; (5)

where E ¼ c � B with c being the mean of the posterior
distribution. We provide the explicit form of c in Eq. (25). The
expression for ~σ is computationally efficient to evaluate, requiring
a single basis evaluation B followed by K+ 1 dot-products with
the mean c and committee parameterisations ck.
Having introduced EHAL, it remains to specify an uncertainty

measure, or stopping criterion, to terminate the dynamics,
identifying new training configurations and extending the training
database (as used in AL). To that end, we introduce a relative force
uncertainty, fi, which is attractive from a modelling perspective:
For instance, liquid and phonon property predictions require
vastly different absolute force accuracy but rather similar relative
force accuracy, typically on the order of 3–10%. Given the
committee forces Fki ¼ �∇iEk ¼ ck � ∇iB, we define:

f i ¼
1
K

PK
k¼1 kFki � Fik
kFik þ ε

; (6)

where Fi is force prediction as predicted by the mean parameters
c. Further, ε is a regularising constant to prevent divergence of the
fraction. This parameter is specified by the user and should be
chosen to be smaller than the typical force magnitude observed
during dynamics. In practice it is found that 0.2–0.4 eV/Å generally
yields good behaviour.
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During HAL simulations, fi provides a computationally efficient
means to detect emerging local (relative force) uncertainties and
is used to trigger new ab initio calculations once it exceeds a
predefined tolerance:

max
i

f i > f tol: (7)

The specification of ftol is both training data and model specific,
and requires careful tuning to achieve good performance. Too
small ftol keeps triggering unnecessary ab initio calculations,
whereas a too large value leads to generation of unphysical high
energy configurations. To avoid manual tuning and aid generality,
we normalise fi onto [0, 1] through the application of the softmax
function sðf iÞ ¼ expðf iÞ=

P
i expðf iÞ, and redefine the stopping

criterion as:

max
i

sðf iÞ> stol: (8)

This setup is chosen to mimic a probabilistic classifier whereby a
binary decision is made between two options: triggering a QM
calculation or continue HAL dynamics. A default tolerance of
stol= 0.5 is used as it correspond to the decision boundary
between the two options.
The main purpose of this work is to present an accelerated AL

scheme for generating data-driven interatomic potentials, and
showcase it by determining alloy melting temperature and
polymer density with close to experimental accuracy. Using an
initial database that comprises a few atomistic configurations, the
HAL procedure is started by biasing dynamics towards uncertainty
while running MD (and optionally Monte Carlo (MC), for e.g.
volume changes or atom swaps). If the uncertainty exceeds a
predefined (AL) uncertainty tolerance, or stopping criterion (stol),
during the biased dynamics, a DFT calculation is triggered. This

newly labelled configuration is added to the training database and
the ML model is refitted. Then the next HAL iteration commences
using the newly fitted potential. The HAL scheme is illustrated in
Fig. 1 where τ corresponds to the biasing parameter in Eq. (1). This
parameter requires careful tuning and an on-the-fly adaptive
scheme controlled by a relative biasing parameter τr is discussed
in § “Methods”.
The remainder of this article is organised as follows. In the §

“Results and discussion” we first demonstrate the suitability of the
relative force error measure fi as a selection criterion in an AL
framework by evaluating its correlation with the true relative force
error and by using it to sequentially re-assemble a much-reduced
diamond structure silicon database (section “Results and discus-
sion”). In sections “AlSi10” and “Polyethylene glycol (PEG)” we
show how the HAL framework can be used to build training
databases from scratch in the case of an alloy (AlSi10) and
polymer (polyethylene glycol or PEG), respectively. The assembled
training databases are shown to contain sufficient information to
fit ACE potentials that enable stable simulation of MD trajectories
on long time scales and can accurately predict macroscopic
properties such as the melting temperature of AlSi10 and the
density of PEG. Section “Methods” describes the HAL scheme with
§ “Hyperactive learning (HAL)”) describing in detail the Monte
Carlo estimate of the HAL biasing force and the adaptive on-the-
fly auto-tuning scheme for the determination of the relative
biasing parameter τr. A brief recap of ACE is also provided in §
“Atomic cluster expansion (ACE)” as well as detailed description of
the Bayesian regression methods that we use to obtain the
uncertainty measures in HAL (§ “(Bayesian) Linear regression” to
“Posterior predictive distribution”).

RESULTS AND DISCUSSION
Silicon database filtering
Before illustrating the HAL algorithm itself, we first demonstrate
the ability of the relative force uncertainty estimate fi in Eq. (6) to
detect true relative force errors. To that end, we will use this
estimator to significantly reduce a large training set while
maintaining accurate model properties relative to the DFT
reference. The database we use for this demonstration was
originally developed for a silicon GAP model35 and covers a wide
range of structures ranging from bulk crystals in various phases,
amorphous, liquid and vacancy configurations. The filtering
process builds a reduced database by starting from a single
configuration and selecting configurations containing the max-
imum fi from the remaining test configurations. Iterating this
process accelerates the learning rate and rapidly converges model
properties with respect to the DFT reference. The models trained
are linear ACE models that consist of basis functions up to
correlation order ν= 3, polynomial degree 20, outer cutoff set to
5.5 Å and inner cutoff set to the closest interatomic distance in the
training database. An auxiliary pair potential basis was used using
polynomial degree 3, outer cutoff 7.0 Å and no inner cutoff. The
weights for the energy wE, forces wF and virials wV, which are
described in detail in the “Methods” section, were set to 5.0/1.0/
1.0. The size of the committees used to determine fi was K= 32.
Prior to training database reduction the ability of the relative

force uncertainty estimate fi to predict relative force error is
investigated. Fig. 2a compares the maximum relative force error in
a configuration against the maximum of fi for two different
training databases, containing 4 and 10 silicon diamond config-
urations respectively. The test configurations are the remaining
configurations contained in the 489 silicon diamond configura-
tions that comprise of the entire silicon database (which in total
contains 16,708 atomic site neighbour environments). The
regularising constant ε in Eq. (6) was set to the mean force
magnitude as predicted by the mean parameterisation. Both

Fig. 1 Schematic overview of the HAL framework performing
biased AL controlled by a biasing parameter τ. The softmax
normalised relative force uncertainty s(fi) is used as a stopping
criterion to trigger DFT calculations.
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figures show good correlation between maximum relative force
error and max f i , therefore making it a suitable criterion to be
monitored during (H)AL strategies.
By leveraging the correlation of fi with true relative force error

the existing silicon diamond database can be reduced by
iteratively selecting configurations containing the largest relative
force uncertainty as part of a greedy algorithms strategy. To
demonstrate this, a randomly selected single configuration from
the 489 silicon diamond configurations of the silicon database was
fitted. Next, fi was determined over the remaining configurations
and the configuration containing the largest max f i was added to
the training database. This process was repeated. The train and
test error for both the energies and forces during this silicon
diamond filtering procedure are shown in Fig. 2b. It is
benchmarked against performing random selection whereby,
starting from the same initial configuration, configurations were
chosen at random from the pool of remaining configurations of
the training database. The result indicates that fi accurately
detects configurations with large errors and manages to accel-
erate the learning rate significantly relative to random selection.
Good generalisation between training and test errors is achieved
by using around 5% of the total environment contained in the
original silicon diamond database.
The significant acceleration of the learning rate shown in

Fig. 2b shows that generalisation between train and test error is
rapidly achieved, in turn suggesting that property convergence
is accelerated too. This is investigated by comparing macro-
scopic properties of the DFT reference with predictions of the

ACE models that were fitted as part of the filtering process.
These macroscopic properties include elastic constants, energy
volume curves, phonon spectrum and thermal properties for
bulk silicon diamond. Results are reported for the ACE models
that were fitted to 9 configurations (424 environments), 13
configurations (460 environments) and 17 configurations (608
environments), which, respectively, amount to ~3, 4 and 5% of
silicon diamond environments contained in the original
database.
Figure 3 demonstrates that property convergence for the

energy volume curves, phonon spectrum and thermal properties
are rapidly achieved by fitting to a fraction of the original
database. Most notably the negative thermal expansion is
reproduced, as observed experimentally57 and by DFT. This
property is particularly challenging to get right and many
empirical models fail as shown in the original silicon GAP work35.
Fitting to 5% of the original database reaches sufficient accuracy
to describe all properties with good accuracy with respect to the
DFT reference. This is again confirmed by elastic constants as
predicted by the respective models as shown in Table 1. The
convergence of the phonon spectrum in Fig. 3 is particularly
noteworthy as relative errors on the order of a few percent on
small forces ~0.01 eV/Å are typically required to accurately recover
the phonon spectrum. The fact that such small relative force errors
are achieved while fitting on very few data points is a direct
consequence of the design of the filter criterion or uncertainty
measure fi.

Fig. 2 Benchmarking relative force uncertainty fi for filtering silicon diamond database. a Maximum relative force error estimate max f i vs.
error correlation plots for silicon diamond containing 4 (left) and 10 (right) training configurations. b Learning rate benchmark comparing
filtering and random selection for silicon diamond energy (left) and forces (right).
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AlSi10
This section outlines the general HAL protocol for building training
databases for alloys and demonstrates how an AlSi10 linear ACE
model is built from scratch in an automated fashion. By using the
relative force error estimate fi previously discussed as a stopping

criterion to trigger ab initio evaluations it will be shown how an
ACE model is created for AlSi10 using HAL. The ACE models used
in this section contained basis functions up to correlation order
ν= 2 and polynomial degree 13 as well as an outer cutoff 5.5 Å.
The ACE inner cutoff was set to 1.5 Å during the HAL stage of
collecting data and moved towards the closest interatomic
distance once all training data had been generated. An auxiliary
pair potential V2 added to aid stability also added to the basis
including functions up to polynomial degree 13 and an outer
cutoff of 6.0 Å. The weights for the energy wE, forces wF and virials
wV were set to 15.0, 1.0, 1.0, respectively.
The HAL procedure of building ACE models for alloys starts by

creating set of a random crystal structures manually, from which a
random alloy and liquid alloy training database are built in an
iterative fashion. Once sufficient data for both phases has been
collected, the HAL solid and liquid databases are afterwards
combined in order to create a model that accurately describes
both phases. The first step in the HAL protocol is the creation of a
set of small initial random alloy database, which was formed of 32-
atom FCC lattice configurations populated with 29 Al and 3 Si
atoms, equivalent to 9.7 weight percent Si. This initial random
alloy starting database contained ten configurations with lattice
constants ranging from 3.80 Å to 4.04 Å and was evaluated using
CASTEP58 DFT. The main parameters were as follows: plane-wave
cutoff 300 eV, kpoint spacing 0.04 Å−1, 0.1 eV electronic smearing,
Pulay density mixing scheme and finite basis correction.
An adaptive biasing parameter τr= 0.05 was chosen (for explicit

definition see “Methods” section) and the temperature set to
Tsolid= 800 K in order to build the random solid alloy database
starting from the 10 initial structures previously described. Besides
running biased dynamics, we performed cell volume changes (by
adding Gaussian noise to cell vectors) and atom swapping using
Monte Carlo (MC) steps during the simulation in order to assist
exploration of unseen configurations. These MC steps were accepted
or rejected according to the Metropolis-Hastings algorithm59.
During HAL dynamics the softmax normalised relative force

estimate s(fi) is evaluated and a ground-truth evaluation triggered
once a predefined tolerance of stol= 0.5 on any of the atoms is met.
A total of 42 HAL configurations were sampled as the HAL dynamics
at this stage was stable reliably for 5000 steps. The pressure P,
temperature T and maxi sðf iÞ are shown in Fig. 4 for four exemplary
iterations with the first three being included in the training
database, e.g. below or equal to iteration 42. The strong oscillations
in the pressure P are due to the volume and element swapping MC
steps being accepted. Finally, as demonstrated in the case of the
43th HAL iteration that increasing the biasing strength to τr= 0.10
results in a drastic acceleration (by a factor of 10) in the discovery of
configurations with large relative force error.
Next, HAL was employed to assemble a database of liquid

random alloys. HAL trajectories were initialised at configurations
sampled by cycling through the training database of random solid
alloys obtained in the previous HAL run. HAL trajectories were
simulated using a Langevin thermostat targeting a temperature
regime of Tliquid= 3000 K, and a proportional control barostat
targeting pressure level of 0.1 GPa. No volume or swap MC steps
were performed. After generating 46 liquid alloy configurations

Fig. 3 Property convergence for filtered silicon diamond ACE
potentials. Properties included are energy versus volume (top),
thermal properties (middle) and phonon spectrum (bottom).

Table 1. Convergence of the elastic moduli (GPa) of the filtered ACE
models relative to the CASTEP DFT reference.

B c11 c12 c44

ACE 3% envs 98.2 188.1 53.3 79.7

ACE 4% envs 84.2 159.8 46.4 75.7

ACE 5% envs 82.5 148.7 49.3 73.7

DFT 82.6 147.2 50.3 73.1
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using HAL, the HAL dynamics were reliably stable for 5000 steps
and the database assembly for this temperature regime was
terminated.
Finally, the 42 HAL generated random alloy configurations and

46 HAL generated liquid configurations were combined to form a
training database. This training database was used to fit linear ACE
models for AlSi10 using Automatic relevance determination (ARD);
see section “Automatic relevance determination (ARD)” for details.
We considered various thresholds α0 for the pruning of model
parameters. The performance of the pruned models in terms of
computational speed, training and test errors, are shown in Table

2. The test set used to compute test error consisted of 14 solid and
14 liquid configurations. These configurations were obtained by
sampling from the corresponding temperature and pressure
regimes by continuing the HAL runs. Increasing α0 lowers the
relevance criterion for the linear ACE basis functions in turn
decreasing sparsity. A clear trade-off between sparsity and training
error can be seen in Table 2 which also includes model evaluation
performance and fitting times. Increasing α0 not only decreases
training error but also test error up to α0 ¼ 300k for which the test
error increases, a sign of overfitting. Due to the relatively small
training database size the computing time to fit the models

Fig. 4 HAL dynamics for several iterations for the AlSi10 random alloy showing maximum softmax normalised relative force error
estimate max sðf iÞ, temperature and pressure. DFT calculations are triggered if the tolerance stol= 0.5 in red is reached. Pressure fluctuations
are due to swap/volume MC steps on HAL potential energy surface EHAL.

Table 2. Train/test error splits for HAL generated AlSi10 database for varying ARD tolerance α0.

α0 Nbasis Training error Test error Evaluation time Fit time

Natoms: 32 14,336 32 14,336

E F E F Ncores: 1 32 32 448 1 32 32 448

1k 38 7.693 0.135 8.006 0.147 62 214 72 97 43 403 3 28 2

10k 116 4.199 0.095 6.229 0.104 87 270 100 110 31 319 2 24 3

80k 295 2.401 0.080 5.131 0.089 91 278 105 118 30 310 2 23 17

300k 621 1.869 0.074 5.188 0.095 96 300 115 125 28 287 2 22 63

(meV/at) (eV/Å) (meV/at) (eV/Å) (core-μs/atom) (106 step/day) (s)

Larger ARD tolerance α0 includes more basis functions, increases accuracy but leads to worse performance and fitting time. Performance timings for 32 and
14,336 atom (8,8,7 supercell) sized cells are shown for various core counts. A timestep of 1 fs was used such that 106 step/day is equivalent to ns/day. These
performance timings are for illustrative purposes and do not represent a full computational scaling benchmark, which would need to separately address
strong and weak scaling.
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remains low, around a minute or less using 8 threads on Intel(R)
Xeon(R) Gold 5218 CPU. Performance testing was done using
LAMMPs and the PACE evaluator60 using Intel(R) Xeon(R) Gold
6142F. The performance tests illustrate scaling trends across
different sized cells and cores used for simulation.
Further analysis of the ARD fitted models was done by

examining the absolute value of the coefficients ∣ci∣. Basis
functions whose estimated prior precision is below the predefined
threshold are pruned away as can be seen in Fig. 5. Large
coefficients are given to the pair interactions described by the
auxiliary basis V2 and two-body components of the ACE basis for
all models, which is intuitive as most binding energy is stored in
these pair interactions. Increasing α0 results in more (less relevant)
basis functions being included with relatively smaller coefficients.
For α0 ¼ 300k many of these low relevance coefficients of around
10−4 are included in the fit indicating a degree of overfitting—as
confirmed by the test set error increase in Table 2.
Next, the melting temperature for each of the previously ARD

fitted AlSi10 ACE models is determined. This was done using
Nested Sampling (NS) which approximates the partition function
of an atomic system by exploring the potential energy surface
over decreasing energy (or enthalpy) levels, in turn determining
the cumulative density of states61,62. NS expresses the partition
function in term of enthalpy H for N atoms given inverse
temperature β, momenta p and positions q as follows:

ΔðN; β; PÞ ¼
Z

e�βHðq;pÞdqdp

� βP
N!h3N

P
i
wie�βHi ;

(9)

where the algorithm explores phase space volumes Hi of the PES
using a top-down approach, i.e. ideal gas to ground structure.
From this expression the heat capacity at constant pressure CP can
be determined:

CP ¼ � ∂

∂T
∂ΔðN; P; βÞ

∂β

� �
; (10)

which exhibits a signature peak at a first order phase transition,
such as melting. Extensive previous work has shown that NS is a
highly automated, efficient, accurate and reliable method for
determining the melting temperature without any prior knowl-
edge of the solid phase structure63,64. Because it explores the
entirety of configurational space including gas, liquid and solid
phases, NS also serves a test for model robustness. This robustness

is partly achieved by the addition of the auxiliary repulsive pair
potential, V2, an example of which is shown in Fig. 6. Core
repulsion below spline point rp is ensured by the addition of a
repulsive core shaped r−1e−αr, where α is a tuned such that the
derivatives across the spline point are smooth60.
The NS simulations were carried out using 896 walkers and 32

atom unit cells (29 Al and 3 Si) using the PYMATNEST software65.
The NS walkers were moved using 1024 steps per NS iteration,
each step consisting of MD to move atoms (using a 0.1 fs
timestep) and MC for unit cell volume, shearing, stretching and
atom-swapping steps, in a ratio of 6:6:6:6, respectively. The
pressure was set to 0.1 GPa and the minimum aspect ratio of the
unit cell was set to 0.85.
Three independent NS simulations were performed for each of

the ACE models fitted to the AlSi10 HAL database and the
corresponding heat capacity curves shown in Fig. 7. All models
predicted the expected fcc ground structure, as confirmed using
OVITO’s66 common neighbour analysis, but a difference in the
predicted melting temperature for varying α0 can be seen. Only
the α0 ¼ 300k and α0 ¼ 80k models accurately predict the melting
temperature of 867 K as given by Thermo-Calc with the TCAL4
database67. Comparison with Table 2 suggests that a test accuracy
of at least 5 meV/atom is required to determine the melting
temperature accurately.

Polyethylene glycol (PEG)
This section presents the application of HAL to build databases
for polymers. Polyethylene glycol (PEG) has the formula

Fig. 5 Coefficient magnitude ∣ci∣ for the 723 basis functions grouped per correlation order and element interaction for various ARD
tolerances α0. Large coefficients are assigned to pair interactions, partly captured by the auxiliary pair potential V2, as most of the binding
energy is contained in these interactions.

Fig. 6 Pair interaction energy at close approach. Core repulsion is
used to stabilise the ACE potential for gas-like configurations
explored during NS.
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H[OCH2CH2]nOH, where n is the number of monomer units68.
From a modelling perspective these polymers are challenging to
simulate in vacuum as they form configurations ranging from
tightly coiled up to fully stretched out structures. Due to the OH
group at the end the polymer can also exhibit hydrogen
bonding, which further complicates its description. These
hydrogen bonds typically correspond to low-energy configura-
tions and are frequently formed and broken during long MD
simulations. This section first presents a benchmark of HAL
against AL followed by a demonstration HAL finding configura-
tions exhibiting large errors. Finally, the potential fitted to small
polymer units in vacuum is used to predict the density of a long
PEG(n= 200) polymer in bulk with good accuracy relative to
experiment. All DFT reference calculations in this section are
carried out with the ORCA code69 using the ωB97X DFT exchange
correlation functional70 and 6-31G(d) basis set.
In order to test whether HAL accelerates training database

assembly relative to standard AL, a benchmark test was
performed. An initial database containing 20 PEG(n= 2) polymer
configurations was created by running 500 K NVT molecular
dynamics simulation using the general purpose ANI-2x forcefield11

sampling structures after every 7000 steps (7 ps) to provide
training and test configurations to be used in the following
subsections. These ANI-2x sampled configurations were then
evaluated using the ORCA DFT using the parameters outlined in
the previous paragraph.
This database was fitted using an ACE basis containing basis

functions up to correlation order ν= 3 and polynomial degree 10
with an outer cutoff 4.5 Å and inner cutoff 0.5 Å. The auxiliary pair
potential basis up to polynomial degree 10 and outer cutoff 5.5 Å
and did not have an inner cutoff. The weights for the energy wE,
forces wF were set to 15.0 and 1.0 and remain constant
throughout this section on PEG. AL (non-biasing, or τ= 0.0) and
HAL simulations with varying biasing strengths τr were performed
using a timestep of 0.5 fs at 500 K. Configurations were evaluated
using ORCA DFT once stol= 0.5 was reached.
The linear ACE models generated during the AL/HAL simula-

tions were saved and subsequently used in a regular MD stability
test and ran for 1 million MD steps at 500 K using a 1 fs timestep
for 100 separate runs. A MD simulation was deemed stable if the
CC and CO bonds along the chain where within 1.0–2.0 Å and the

CH and OH bonds within 0.8–2.0 Å during the simulation. The
minimum number of stable MD timesteps out of the 100 different
simulations is shown in Fig. 8 and demonstrates that up to
τr= 0.20 a total of 80 (H)AL iterations are required in order to
achieve a minimum MD stability of 1 million steps. The large
biasing strength of τr= 0.25 results in unstable MD dynamics as
too strong biasing causes the generation of exceedingly high
energy configuration far away from the desired potential energy
surface to be included in the training database. Fitting to these
configurations leads to a poorly performing model as many
unphysical configurations enter the training database resulting.
The HAL run using a biasing strength of τr= 0.20, achieves

minimum 1 million step MD stability after an order of magnitude
fewer exploratory MD timesteps compared to standard AL. This
demonstrates that HAL can be used to significantly reduce
simulation time required to generate a stable potential, even
though a similar amount of training configurations may be
required as in a standard AL approach.
Using PEG(n= 4) polymers this section will investigate the

ability of HAL to generate and detect configurations with large
errors. First a training database was built using the general
purpose ANI-2x forcefield11 at 500 K and 800 K using a timestep of
1 fs. Configurations were sampled every 7000 timesteps (7 ps), and
used to assemble 500 K and 800 K databases. The 500K database
was divided into 750 train configurations and 250 test configura-
tions. The 800 K training and test databases both contained 250
configurations. The linear ACE model was extended to include
basis functions up to 12 for both the ACE and pair potential, while
keeping the cutoffs and correlation order the same (ν= 3) too
compared to the previous section on PEG(n= 2).
Using the 500 K MD sampled training database HAL was started

using τr= 0.10 and a timestep of 0.5 fs. The stopping criterion stol

set to 0.5. A total of 200 HAL configurations were generated and
formed a HAL database used for both a train and test set. Using
the previously described basis three models were created fitted to:
500 K, 500 K+ 800 K and a 500 K+ HAL. Energy scatter plots for
these three models are shown in Fig. 9 demonstrating that the
errors on the HAL-found configurations are large for both the
500 K and 500 K+ 800 K fits, despite the fact that the these HAL-
found configurations are also low in energy. Only by including the
HAL configurations in the training database can the errors on

Fig. 7 NS determined heat capacity CP for ARD fitted linear AlSi10 ACE models (left) and schematic phase diagram for AlSi1075 (right).
Increasing melting temperature accuracy is demonstrated for fits with large α0.
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these configurations be reduced as shown in Table 3. Inspection of
the HAL generated structures exposes a shared characteristic:
most of them contain (double) hydrogen bonding across the
polymer an example of which is shown in Fig. 9. Such hydrogen-
bond formation is a rare event in this system, because only the
two ends of the molecule are capable of hydrogen bonding. It is
difficult to find these configurations using regular MD (even when
using elevated temperatures), whereas HAL finds them easily.
As a final investigation the density of a PEG(n= 200) polymer

containing 1400 atoms is determined using an ACE model fitted to
a HAL generated PEG training database containing polymer sizes
ranging from n= 2 to n= 32 monomer units. This database
contained configurations from the previous PEG sections and
extended using configurations sized n= 8, n= 16 and n= 32. The
training database included standard ANI MD sampled configura-
tions at 500K including 1000 PEG(n= 4) configurations (from the
previous section), as well as 50 PEG(n= 2), 100 PEG(n= 8), 100
PEG(n= 16) and 18 PEG(n= 32) configurations. Starting from this
data HAL was used to generate an extra 64 PEG(n= 16) and 91
PEG(n= 32) HAL configurations until dynamics was deemed
stable. The linear ACE basis used for the regression task was
identical to the ACE in the previous section on PEG(n= 4), and any
force components with greater than 20 eV/Å were excluded from
the fit in order to prevent fitting on forces too far away from
equilibrium.

Using the ACE model a PEG(n= 200) polymer was simulated in
LAMMPS71 with the PACE evaluator pair style with periodic
boundary conditions. Since the training database only contained
small polymers segments in vacuum this periodic simulation
demonstrates a large degree of extrapolation to configurations far
away from the training database. Furthermore, the DFT code used
to evaluate the training energies and forces does not support
periodic boundary conditions making DFT simulation of the 1400

Fig. 9 Energy scatter plots for the 500 K (left), 500 K+ 800 K (middle) and 500 K+HAL (right) ACE models. HAL configuration mostly
exhibit (double) hydrogen bonding, or rare events, not contained in the MD 500 K/800 K decorrelated samples.

Fig. 8 HAL vs. AL benchmark comparing MD stability for one million MD steps over 100 seeds. Turning on biasing (non-zero τr) creates ACE
models achieving stable 100 million MD timestep faster than standard AL by up to an order of magnitude.

Table 3. Train and test errors for energies (E) in meV and forces (F) in
meV/Å for the 500 K, 500 K+ 800 K and 500 K+HAL databases using
ACE.

No. 500 K 500 K+ 800 K 500 K+HAL

configs E F E F E F

500 K train 750 30.2 58.3 32.9 60.8 32.4 59.6

500 K test 250 49.2 79.3 48.8 76.7 41.6 71.0

800 K train 250 – – 40.0 76.4 – –

800 K test 250 72.7 187.2 67.6 107.7 67.9 102.6

HAL 200 310.9a 427.2a 311.9a 404.6a 47.8b 63.4b

ais test error.
bis train error.
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atom PEG(n= 200) simulation box not just computationally
infeasible, but practically impossible in this case.
The resulting linear ACE model was timed at 220 core-μs/atom

per MD step. LAMMPs NPT simulations were performed at 1 bar
using a 1 fs timestep at 300 K, 400 K, 500 K and 600 K. The
recorded density as a function of simulation time is plotted in Fig.
10. Using the last 500 ps from the 300 K simulation the density
was determined to be 1.238 g/cm3. This value is around 3% higher
than the experimental value of 1.2 g/cm372.

METHODS
Hyperactive learning (HAL)
The HAL potential energy EHAL as defined in Eq. (1) biases MD
simulations during the exploration step in AL towards uncertainty
by shifting the potential energy surface and assigning lower
energies to configurations with high uncertainty. Considering ~σ
defined in Eq. (5), its gradient ∇~σ can be computed as:

∇~σ ¼ ∇~σ2

2~σ
(11)

where

∇~σ2 ¼ 2
K

PK
k¼1

Ek � E
� �

∇Ek � ∇E
� �

¼ 2
K

PK
k¼1

Ek � E
� �

F � Fk
� � (12)

and Fk=−∇ Ek, F ¼ �∇E. These predictions are obtained by
parameterisations fckgKk¼1, while c is the analytic mean of the
posterior distribution as specified in Eq. (25). The K-sum runs over
the energy and force predictions from the committee models.
Other architectures such as neural networks ensembles may be
considered in future work. This quantity in essence is a
computationally cheap method of determining the gradient
towards (total) energy uncertainty and may be interpreted as a
conservative biasing force:

F~σ :¼ ∇~σ: (13)

HAL dynamics adds this biasing force to MD in order to accelerate
the generation of configurations with high uncertainty, which sets
HAL apart from AL. Setting τ= 0 recovers standard MD dynamics,
and in this sense, HAL generalises AL. Interestingly, previous work

employed a biasing force using a neural network interatomic
potential73 but biased away from uncertainty in order to stabilise
the MD dynamics.
The biasing strength τ can either be set as a constant or

adapted during the HAL simulation. Controlling the biasing
strength is important as too strong biasing can quickly lead to
unphysical configurations, whereas low biasing generates valuable
configurations at a slow rate. The adaptive biasing works by first
setting τr and performing a burn-in period to record the
magnitudes (or, norms) of F~σ and F. Typically, the burn-in period
is set to the history of the latest 100 timesteps δt to estimate the
degree of uncertainty (or extrapolation) and adjust the biasing
strength accordingly. The biasing strength τ is given by:

τ ¼ τr
P100

m¼1 kFðt �mδtÞkP100
m¼1 kF~σðt �mδtÞk ; (14)

where the relative biasing parameter τr is generally set in the
range 0.05 to 0.20 (see Fig. 8 for a numerical study). It can be
understood as the approximate relative average strength of the
biasing force in comparison to the average force of the fitted
model. Using this adaptive biasing term aids usability and tunes
the biasing strength to ensure that HAL gently drives MD towards
high uncertainty. The value may loosely be interpreted as the
relative magnitude of the biasing force compared to the true
gradient of the potential energy surface. Larger τr increases the
biasing strength and rate at which configurations with high
uncertainty are generated. In order to sample configurations at
desired pressures and temperatures a proportional control
barostat was added as well as a Langevin thermostat.

Atomic cluster expansion (ACE)
The ACE model decomposes the total energy E of a configuration
R as a sum of parameterised atomic energies:

Eðc; RÞ ¼
X
i2R

Eiðc; RÞ: (15)

The atomic energies Ei are linear combinations of ACE basis
functions, i.e., Ei(c; R)= c ⋅ Bi(R). Here, Bi(R) denotes the evaluation
of the ACE basis on the atomic site environment of the ith atom,
fðrij; zjÞgj , which consists of relative positions rij= rj− ri and
associated chemical elements zj, denoted by the atomic number,
of neighbouring atoms j. In this work it is chosen to project the
atomic site environment onto the following single-element basis

Fig. 10 HAL protocol for building linear ACE PEG model accurately determining PEG(n= 200) density within experimental accuracy of
1.2 g/cm3 at 297 K (shaded area)72. Training database only included small polymers ranging from n= 2 to n= 32 in isolation.
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function ϕznlm:

ϕznlmðrij; zjÞ ¼ δzzj RnðrijÞYlmðr̂ijÞ; (16)

followed by a pooling operation resulting in features:

Aiznlm ¼
X
j

ϕznlmðrij; zjÞ; (17)

that are denoted the atomic basis in the context of the ACE model.
Taking a ν order (tensor) product results in many-body correlation
functions incorporating (ν+ 1) body-order interactions:

Aiznlm ¼
Yν
t¼1

Aiztnt ltmt : (18)

The A-basis is a complete basis of permutation-invariant functions
but does not incorporate rotation or reflection symmetry. An
isometry invariant basis B is constructed by averaging over
rotations and reflections. Representation theory of the orthogonal
group O(3) shows that this can be expressed as a sparse linear
operation and results in:

Bi ¼ CAi; (19)

where C contains generalised Clebsch-Gordan coefficients; we
refer to22,23 for further details.
A major benefit of the linear ACE model is that the

computational cost of evaluating a site energy Ei scales only
linearly with the number of neighbouring atoms, as well as with
the body order ν+ 1.

(Bayesian) Linear regression
The parameters of linear ACE models are fitted by solving a linear
regression problem. The associated squared loss function L(c) to
be minimised over configurations R in training set R with
corresponding (DFT) observations for energy ER, forces F R is:

LðcÞ ¼ P
R2R

wE
2jEðc; RÞ � ERj2þ

þwF
2jFðc; RÞ � F Rj2

(20)

where wE and wF are weights specifying the relative importance of
the DFT observations. When fitting materials a third term is added
wV

2jVðc; RÞ � VRj2 referring to the virial stress components of the
configuration R. This minimisation problem can be recast in the
generic form:

argmin
c

ky� Ψck2 þ ηkck2; (21)

where Ψ 2 RNobs ´Nbasis is the design matrix and the observation
vectory 2 RNobs collects the observations to which the
parameters are fitted. Entries in the design matrix and the
observations vector corresponding to force observations and
observations of virials are scaled by a factor of wE/wF and wV/
wF, respectively, to account for the relative weighting of the
penalty terms in (20). Here, we also added a Tychonov
regularisation with regularisation parameter η > 0 which is
commonly determined through a model selection criterion
such as cross-validation.
This linear regression model can be cast in a Bayesian

framework by specifying a prior distribution p(c) over the
regression parameters, and an (additive) probabilistic error models
ϵER; ϵ

F
R which give rise to the generative model:

ER ¼ Eðc; RÞ þ ϵER;

F R ¼ Fðc; RÞ þ ϵFR;
(22)

for R ∈ R. This generative model can be written in short-hand form
as:

y ¼ Ψcþ ϵ; (23)

where ϵ is a linear transformation of the error models ϵER; ϵ
F
R, R ∈ R.

In the context of this work, ϵER; ϵ
F
R model random perturba-

tions of DFT calculations and are assumed to be mainly present
due to the locality assumption and DFT convergence proper-
ties, e.g. k-point sampling. For simplicity we assume in this
work that the entries of the error model ϵ in the generic
representation (21) are statistically independent and Gaussian
distributed with mean 0 and precision (inverse variance) λ. In
terms of the model (22) this assumption implies ϵER � Nð0; λ�1Þ,
ϵFR � Nð0; Iw�2

E w2
Fλ

�1Þ. In principle, extension to other noise
models can be made.
The here assumed noise model gives rise to the likelihood

function:

pðyjR; c; λÞ ¼ λ

2π

� �Nobs=2

exp � λ

2
ky� Ψck2

� �
(24)

By restricting ourselves to a Gaussian error model, and
assuming the prior to be Gaussian as well, i.e.,
pðcÞ ¼ N ðcj0;Σ0Þ, it is ensured that the posterior distribution,
π(c)= p(c∣R, y, λ), is Gaussian with closed form expressions for
both the distribution mean c and variance Σ:

c ¼ λΣΨTy

Σ�1 ¼ Σ�1
0 þλΨTΨ:

(25)

In the context of this work, having closed form expressions for both
these quantities is desirable as it (1) allows for conceptual easy and
fast generation of independent samples fckgKk¼1 from the posterior
distribution, and (2) allows for a parametrisation of the fitted model
with the exact mean, c, of the posterior distribution.
In what follows we briefly describe two Bayesian regression

techniques, Bayesian ridge regression (BRR), which we use to
produce Bayesian fits during the HAL data generation phase, and
the computationally more costly automatic relevance determina-
tion (ARD), which we typically use to obtain a final model fit after
the data generation is complete.

Bayesian ridge regression (BRR)
In Bayesian ridge regression the covariance of the prior is assumed
to be isotropic, i.e.:

pðcjαÞ ¼ Nðcj0; α�1IÞ; (26)

for some hyperparameter α > 0, the precision of the prior
distribution.
Under this choice of prior, the logarithm of the posterior

distribution takes the form:

ln πðcÞ ¼ � λ

2
ky� Ψck2 � α

2
kck2 þ C; (27)

where C is some constant. Thus, maximising the (log-)posterior for
this choice of prior, is equivalent to solving the regularised least
square problem Eq. (27) with ridge penalty η= λ/α. This shows
that the prior naturally gives rise to a regularised solution, keeping
coefficient parameters small.
The determination of the hyperparameters α and λ in BRR is

achieved by optimising the marginal log likelihood also known as
evidence maximisation74. One first defines the evidence function as:

pðyjα; λÞ ¼
Z

pðyjc; λÞpðcjαÞdc (28)

which marginalises out the coefficients c and describes the
likelihood of observing the data given the hyperparameters α and
λ. Using the previously defined definitions the evidence function
can be expressed as:

pðyjα; λÞ ¼ λ
2π

� �Nobs=2 α
2π

� �Nbasis=2

Z
exp � λ

2
ky� Ψck2 � α

2
kck2

� � (29)
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where Nbasis is the dimensionality of c. Completing the square in
the exponent and taking the log gives rise to the marginal log
likelihood:

ln pðyjα; λÞ ¼ Nbasis
2 ln αþ Nobs

2 ln λ

� λ
2 ky� Ψck2 � α

2 kck2
þ 1

2 ln kΣk � Nobs
2 lnð2πÞ

(30)

which can be maximised with respect to α and λ in order maximise
the marginal likelihood and obtain the statistically most probably
likely solution given the basis and data.

Automatic relevance determination (ARD)
Automatic relevance determination (ARD) modifies BRR by
relaxing the isotropy of the prior and assigning a hyperparameter
αi to independently regularise each coefficient ci. The correspond-
ing prior is given by:

pðcjαÞ ¼ Nðcj0;A�1Þ
A ¼ diagðα1; :::; αNbasisÞ:

(31)

This prior determines the relevance of each parameter ci, or
basis function, which effectively results in a feature selection.
Basis functions are ranked based on their relevance and are
pruned if determined irrelevant, in turn producing a sparse
solution. In practice, sparse models obtained through ARD often
yield better generalisation than BRR. Using ARD requires the
specification of a threshold parameter α0 setting the minimum
relevance of basis functions included in the fit. Adjusting this
parameter controls the balance between accuracy and sparsity
of the model.

Posterior predictive distribution
A key property of the Bayesian approach is that it provides a way
to quantify uncertainty of model predictions in terms of the
posterior-predictive distribution, which accounts both for para-
meter uncertainty as given by the posterior distribution as well as
uncertainty due to observation error.
For example, the probabilistic description of the predicted

energy E* at a configuration R* is:

E� ¼ Eðc; R�Þ þ εER� ;

εER� � N ð0; λ�1Þ;
c � πðcÞ:

(32)

Thus, the posterior predictive distribution of energy, i.e., the
conditional distribution p(E*∣R*), can be verified to be normal:

pðE�jR�Þ ¼
Z

pðE�jR�; cÞπðcÞdc
¼ NðE�jc � B; σ2Þ;

(33)

where the variance σ2 is as specified in Eq. (3).
Closed forms of the predictive distribution of other quantities

that are linear transformations of the coefficients c and the noise
model can be similarly derived. For quantities that are non-linear
and potentially only implicitly defined transformations, approx-
imations of their predictive distribution can be obtained by
propagation of the Monte Carlo samples {ck}.

DATA AVAILABILITY
The code, potentials and databases used to generate these potentials can be found
on the ACEHAL github page https://github.com/ACEsuit/ACEHAL.
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