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Ultra-fast interpretable machine-learning potentials
Stephen R. Xie1,2, Matthias Rupp 3,4 and Richard G. Hennig 1,2✉

All-atom dynamics simulations are an indispensable quantitative tool in physics, chemistry, and materials science, but large systems
and long simulation times remain challenging due to the trade-off between computational efficiency and predictive accuracy. To
address this challenge, we combine effective two- and three-body potentials in a cubic B-spline basis with regularized linear
regression to obtain machine-learning potentials that are physically interpretable, sufficiently accurate for applications, as fast as
the fastest traditional empirical potentials, and two to four orders of magnitude faster than state-of-the-art machine-learning
potentials. For data from empirical potentials, we demonstrate the exact retrieval of the potential. For data from density functional
theory, the predicted energies, forces, and derived properties, including phonon spectra, elastic constants, and melting points,
closely match those of the reference method. The introduced potentials might contribute towards accurate all-atom dynamics
simulations of large atomistic systems over long-time scales.
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INTRODUCTION
All-atom dynamics simulations enable the quantitative study of
atomistic systems and their interactions in physics, chemistry,
materials science, pharmaceutical sciences, and related areas. The
simulations’ capabilities and limits depend on the potential used
to calculate the forces acting on the atoms, with an inherent
correlation between the accuracy of the underlying physical
model and the required computational effort: On the one hand,
electronic-structure methods tend to be accurate, slow, applicable
to many systems and require little human parameterization effort.
On the other hand, traditional empirical potentials are fast but
limited in accuracy and applicability, with often high parameter-
ization effort.
Machine-learning potentials (MLPs)1–4 are flexible functions

fitted to reference energy and force data, e.g., from electronic
structure methods. Their computational advantage does not
primarily arise from simplified physical models but from avoiding
redundant calculations through interpolation. Hence, they can
stay close to the accuracy of the reference method while being
orders of magnitude faster (see Fig. 1), with little human
parameterization effort, but are often hard to interpret. However,
current accurate MLPs are still orders of magnitude slower than
traditional empirical potentials, limiting their use for dynamics
simulations of large atomistic systems over long time scales.
In this work, we develop an interpretable linear MLP based on

effective two- and three-body potentials using a flexible cubic
B-spline basis. Figure 1 demonstrates how this ultra-fast (UF)
potential is close in error to state-of-the-art MLPs while being as
fast as the fastest traditional empirical potentials, such as the
Morse and Lennard-Jones potentials.
The many-body expansion5 of an atomistic system’s potential

energy
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1!

X
i

V1ðRi; σiÞ þ 1
2!

X
i;j

V2ðRi; σi;Rj; σjÞ þ 1
3!

X
i;j;k

V3ðRi; σi;Rj ; σj;Rk ; σkÞ þ ¼

(1)

is a sum of N-body potentials VN that depend on atom positions Ri
and element species σi, where the prefactors account for double-

counting and VN= 0 if two indices are the same. Assuming the
transferability of the VN across configurations provides the basis
for empirical and machine-learning potentials.
In this study, we use elemental tungsten as an example and

hence omit the species dependency as well as the reference
energies E0 and 1

1!

P
iV1ðRi; σiÞ, and where appropriate subsume

the factorial prefactors into the potentials V for simplicity. The
extension to multi-component systems is straightforward and
implemented in the accompanying program code.
Traditional empirical potentials often have rigid functional forms

with a small number of tunable parameters. These are optimized
to reproduce experimental quantities, such as lattice parameters
and elastic coefficients, as well as calculated quantities from first
principles, such as energies of crystal structures, defects, and
surfaces6–8. Typically this requires global optimization, e.g., via
simulated annealing, and substantial human effort.
Pair potentials truncate Equation (1) after two-body terms,

E ¼ 1
2

X
i;j

V2ðrijÞ; (2)

where rij is the distance between atoms i and j. These potentials
are limited to systems where higher-order terms such as angular
and dihedral interactions are negligible. The functional forms of
the Lennard–Jones (LJ)9 potential

VLJðrijÞ ¼ 4ϵ
σ
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(3)

and the Morse potential10

VMorseðrijÞ ¼ D0 e�2aðrij�rcÞ � 2e�aðrij�rcÞ
� �

(4)

were originally developed for their numerical efficiency, where
ϵ, σ, and D0, a, rc are model parameters.
Many-body potentials extend the pair formalism by including

additional many-body interactions, either in the form of many-
body functions as in Equation (1), or via environment-dependent
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functionals, such as in the embedded atom method (EAM)11,

EEAM ¼ 1
2

X
i;j

VðrijÞ þ
X
i

F
X
j≠i

ρðrijÞ
 !

: (5)

Here, the embedding energy F is a non-linear function of the
electron density ρ, which is approximated by a pairwise sum.
While traditional empirical potentials have seen success in

applications across decades of research, their rigid functional
forms limit their accuracy. More recently, MLPs with flexible,
functional forms and built-in physics domain knowledge in the
form of engineered features2,12 or deep neural network architec-
tures have emerged as an alternative13–16. State-of-the-art MLPs
can simulate the dynamics of large (“high-dimensional”) atomistic
systems with an accuracy close to the underlying electronic-
structure reference method but orders of magnitude faster17,18.
However, they are still orders of magnitude slower than fast
traditional empirical potentials, limiting their application in system
size and simulation length.
Recent efforts to improve the speed and accuracy of MLPs

include using linear regression models, which can be faster to
train and evaluate than non-linear models19,20. The spectral
neighbor analysis potential (SNAP)21 and its quadratic variant
(qSNAP)22 are linear models based on the bispectrum representa-
tion23. Moment tensor potentials (MTP)24, performant atomic
cluster expansion (PACE) potentials19,25, atomic permutationally-
invariant polynomials (aPIP) potentials26, and Chebyshev interac-
tion model for efficient simulation (ChIMES) potentials27 are linear
models based on polynomial basis sets.

A complementary approach to improve speed is to use basis
functions that are fast to evaluate. In the context of MLPs, non-
linear kernel-based MLPs have been trained and subsequently
projected onto a spline basis, yielding a linear model28. Similar to
this work, the general two- and three-body potential approach
employs a quadratic spline basis set, exceeding MTPs in speed
when trained on the same data29. Polynomial symmetry functions
improve over Behler–Parrinello symmetry functions30 in speed
and accuracy by introducing compact support31. Methods for
fitting spline-based modified EAM potentials were benchmarked
against MLPs, demonstrating comparable accuracy despite the
lower complexity of their functional forms32.
Motivated by these observations, we developed a UF MLP that

combines the speed of the fastest traditional empirical potentials
with an accuracy close to state-of-the-art MLPs by employing
regularized linear regression with spline basis functions with
compact support to learn effective two- and three-body interac-
tions. Figure 1 showcases the relation between prediction errors
and computational costs for three traditional empirical potentials
(LJ, Morse, EAM) and several MLPs benchmarked on a dataset of
elemental tungsten33. While the traditional empirical potentials
are fast but limited by accuracy, the MLPs are accurate but limited
by speed. UF MLPs improve on the Pareto frontier of predictive
accuracy and computational costs. They are available as an open-
source Python implementation (UF3, Ultra-Fast Force Fields)34 with
interfaces to the VASP35 electronic-structure code and the
LAMMPS36,37 molecular dynamics code.

RESULTS AND DISCUSSION
The central idea of UF MLPs is to learn an effective low-order
many-body expansion of the potential energy surface, using basis
functions that are efficient to evaluate. For this, we truncate the
many-body expansion of Eq. (1) at two- or three-body terms and
express each term as a function of pairwise distances (one
distance for the two-body and three distances for the three-body
term). This approach is general and can be extended to higher-
order terms. To minimize the computational cost of predictions,
we represent N-body terms in a set of basis functions with
compact support and sufficiently many derivatives to describe
energies, forces, and vibrational modes, i.e., cubic splines.

Expansion in B-splines
Splines are piecewise polynomial functions with locally simple
forms joined together at knot positions38. They are globally
flexible and smooth but do not suffer from some of the oscillatory
problems of polynomial interpolators (e.g., Runge’s
phenomenon39).
Spline interpolation is well-established in empirical potential

development40,41. The LAMMPS package36, a leading framework
for molecular dynamics simulations, implements cubic spline
interpolation for pair potentials and selected many-body poten-
tials, including EAM. The primary motivations for splines are the
desire for computational efficiency and the opportunity to
improve accuracy systematically42. Their compact support and
simple form make spline-based potentials the fastest choice to
evaluate, and adding more knots increases their resolution.
B-splines constitute a basis for splines of arbitrary order. They are

recursively defined as38

Bn;1ðrÞ ¼ 1; tn � r < tnþ1

0; otherwise

�
Bn;dþ1ðrÞ ¼ r�tn

tnþd�tn
Bn;dðrÞ þ tnþdþ1�r

tnþdþ1�tnþ1
Bnþ1;dðrÞ;

(6)

where tn is the n-th knot position, and d is the degree of the
polynomial. The position and number of knots, a non-decreasing
sequence of support points that uniquely determine the basis set,
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Fig. 1 Trade-off between prediction error and computational cost
of evaluating machine-learning potentials. Prediction errors are
relative to the underlying electronic-structure reference method
(circle). Ultra-fast potentials (this work, crosses) with two-body (UF2)
and three-body (UF2,3) terms are as fast as traditional empirical
potentials (squares) but close in error to state-of-the-art machine-
learning potentials (triangles, diamond). All potentials except EAM4
were refitted to the same tungsten data set. Computational costs
were benchmarked with a 128-atom bcc-tungsten supercell. Trade-
offs between accuracy and cost also arise from the choices of
hyperparameters for each potential. See Sections I and III for
abbreviations and details.
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may be fixed or treated as free parameters. B-Splines are well
suited for interpolation due to their intrinsic smoothness and
differentiability. Their derivatives are also defined recursively:

B0n;dþ1ðrÞ ¼ d
Bn;dðrÞ

tnþd � tn
� Bnþ1;dðrÞ
tnþdþ1 � tnþ1

� �
(7)

The UF potential describes the energy E of an atomistic system
via two- and three-body interactions:

E ¼
X
i;j

V2ðrijÞ þ
X
i;j;k

V3ðrij; rik ; rjkÞ: (8)

For finite systems such as molecules or clusters, indices i, j, k run
over all atoms. For infinite systems modeled via periodic boundary
conditions, i runs over the atoms in the simulation cell, and j, k run
over all neighboring atoms, including those in adjacent copies of
the simulation cell. While these are infinitely many, the sums are
truncated in practice by assuming locality, that is, finite support of
V2 and V3.
Modeling N-body interactions requires

N
2

� �
-dimensional

tensor product splines. The UF potential therefore expresses V2
and V3 as linear combinations of cubic B-splines, Bn= Bn,3+1, and
tensor product splines:

V2ðrijÞ ¼ PK
n¼0

cnBnðrijÞ

V3ðrij; rik ; rjkÞ ¼ PKl

l¼0

PKm

m¼0

PKn

n¼0
clmnBlðrijÞBmðrikÞBnðrjkÞ;

(9)

where K, Kl, Km, and Kn denote the number of basis functions per
spline or tensor spline dimension, and cn and clmn are
corresponding coefficients.
The B-spline basis set spans a finite domain and is bounded by

the end knots [t0, tK]. Figure 2A illustrates the compact support of
the cubic B-spline basis functions. We constrain the coefficients
such that at the upper limit tK, the potential smoothly goes to zero,
and near the lower limit t0 it monotonically increases with shorter
distances to prevent atoms from getting unphysically close. By
construction, each basis function is non-zero across four adjacent
intervals. Therefore, evaluating the two- and three-body potentials
involves evaluating at most 4 and 43= 64 basis functions for any
pair or triplet of distances, respectively, giving rise to the
aforementioned computational efficiency.
The force Fa acting on atom a is given as the negative gradient

�∇Ra E of the energy E with respect to the atom’s Cartesian
coordinate Ra and obtained analytically from the derivatives of the
two- and three-body potentials,

∂V2ðrijÞ
∂Ra;ℓ

¼ PKn

n¼0
cnB0nðrijÞ ∂rij

∂Ra;ℓ

∂V3ðrij ;rik ;rjkÞ
∂Ra;ℓ

¼PKl

l¼0

PKm

m¼0

PKn

n¼0
clmn

B0lðrijÞBmðrikÞBnðrjkÞ ∂rij
∂Ra;ℓ

�
þBlðrijÞB0mðrikÞBnðrjkÞ ∂rik

∂Ra;ℓ

þBlðrijÞBmðrikÞB0nðrjkÞ ∂rjk
∂Ra;ℓ

�

(10)

with

∂rij
∂Ra;ℓ

¼ ðδaj � δaiÞðRj;ℓ � Ri;ℓÞ
rij

; (11)

where l is the Cartesian coordinate.
Figure 2B illustrates, for the two-body potential, that the choice

of the cubic B-spline basis results in a smooth, continuous first
derivative comprised of quadratic B-splines and a continuous
second derivative of linear B-splines.

Regularized least-squares optimization with energies and
forces
During the fitting procedure, we optimize all spline coefficients c
simultaneously with the regularized linear least-squares method.
Given atomic configurations S, energies E, and forces F , we fit the
potential energy function E of Equation (8) by minimizing the loss
function

L ¼ κ
σ2E jEj

P
s2S

ðEðsÞ � EsÞ2 þ 1�κ
σ2F jF j

P
s2S

ð�∇EðsÞ � F sÞ2

þ λ1
PK
n
c2n þ λ2

PK
n
ðcn � 2cnþ1 þ cnþ2Þ2;

(12)

where the second sum is taken over force components. Here,
κ∈ [0, 1] is a weighting parameter that controls the relative
contributions between energy and force-component residuals, jEj
and jF j are the number of energy and force component observations
in the training set, and σE and σF are the sample standard deviations
of energies and force components across the training set. This
normalization yields dimensionless residuals, allowing κ to balance
the relative contributions from energies and forces independently of
the size and variance of the training energies and forces.

Fig. 2 B-spline basis set for pair potentials. A Ten weighted
B-splines after fitting (B�n ¼ cnBnðrÞ, solid curves) and their ranges of
support. Their sum is the fitted pair potential (V(r), blue curve). In this
example, knots tn are selected with uniform spacing and illustrated
as vertical lines. B Using cubic B-spline basis functions, the pair
potential V(r) has a smooth and continuous first derivative V 0ðrÞ
(dotted line), which is essential for reproducing accurate forces. Its
second derivative V″(r) (dashed line), is continuous, which is essential
for reproducing stresses and phonon frequencies. C The optimized
UF2 potential exhibits more inflection points than the optimized LJ
(dotted line) and Morse (dashed line) potentials, highlighting its
increased flexibility.
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The minimization of L with respect to the spline coefficients c is
a linear least-squares problem with Tikhonov regularization and
solution

c ¼ XTXþ λ1Iþ λ2DT
2D2

� ��1
XTy; (13)

where I is the identity matrix, y contains energies and forces, and
each element of X is the sum of B-spline values taken over all
relevant pair distances in each configuration (rows) for each basis
function (columns). Subsets of columns correspond to different
body orders. Similarly, for multi-component systems, subsets of
columns correspond to different chemical interactions. When
forces are included in y, the corresponding rows of X are
generated according to Eqs. (10) and (11). This optimization
problem is strongly convex, allowing for an efficient and
deterministic solution, e.g., with LU decomposition.
The used Tikhonov regularization controls the magnitude of

spline coefficients c through the parameter λ1 via the ridge
penalty and the curvature and local smoothness across adjacent
spline coefficients through λ2 via the difference penalty43,44. For
the two-body case, D2 is given by

D2 ¼
1 �2 1 0

. .
. . .

. . .
.

0 1 �2 1

0
B@

1
CA: (14)

For higher-order potential terms, the difference penalty affects
the spline coefficients that are adjacent in each dimension of a

tensor product spline. This difference penalty is related to a
penalty on the integral of the squared second derivative of the
potential26,45,46. However, the difference penalty is less complex
because the dimensionality of the corresponding regularization
problem is simply the number of basis functions K44.
Figure 2C compares optimized UF2, LJ, and Morse potentials for

tungsten. Although the three curves have similar minima and
behavior for greater pair distances r, the UF2 potential exhibits
additional inflection points. We attribute the ability of the UF2
potential to reproduce the properties of a bcc metal, a traditionally
difficult task for pair potentials, to its flexible, functional form.
The fitting of a UF potential maps energy and force data onto

effective two- and three-body terms, as shown in Fig. 3 for the
tungsten dataset. Both terms can be visualized directly, providing
interpretability by disentangling contributions to the interatomic
interactions. The inspection of minima, repulsive and attractive
contributions and inflection points enables insight into the
chemical bonding characteristics of the material. This straightfor-
ward and visual analysis makes the UF potentials more directly
interpretable than most MLPs.

Convergence of error in energy and force predictions
UF potentials should exactly reproduce any two- and three-body
reference potential by construction, given sufficiently many basis
functions and training data. To establish baseline functionality, we
fit the UF2 potential to energies and forces from the LJ potential
for elemental tungsten and the UF2,3 potential to energies and

Fig. 3 Visualization of two-body and three-body terms of a tungsten UF potential. A Distribution of pair interactions in tungsten training
data and the learned two-body component of the fitted potential. B The learned three-body component V3(rij, rik, rjk) corresponds to the
contribution to the total energy of a central atom i interacting with two neighbors j and k. It is fit simultaneously with the two-body potential.
Here, θjik is substituted for rjk using the law of cosines for ease of visualization. C Volume slices of V3(rij, rik, θjik) reveal favorable (blue) and
unfavorable (red) three-body interactions.
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forces from the Stillinger-Weber potential on elemental silicon,
which they both reproduce with negligible error (see Supplemen-
tary Figs. 2 and 3 for learning curves and details).
To assess the accuracy of UF potentials, we measure their ability

to predict density-functional theory (DFT) energies and forces in
tungsten as a function of the amount of training data. Figure 4
compares learning curves for the two-body UF2, two- and three-
body UF2,3, SNAP, and qSNAP potentials. To quantify prediction
performance, we use the root-mean-squared error (RMSE) on
randomly sampled hold-out test sets. In this, we ensured that each
test set contained all available configuration types (see Section
“Data”). Each learning curve is fit with a soft plus function
lnð1þ enÞ, where n is the number of training data. This function
captures both the initial linear slope in log-log space and the
observed saturation due to the models’ finite complexity.
Of the four models, the UF2 potential, using 28 basis functions,

converges earliest. The SNAP potential, using 56 basis functions
based on hyperspherical harmonics, converges slightly later with
lower errors. The qSNAP potential, using 496 basis functions
including quadratic terms, converges last, with modest improve-
ments in error over SNAP. Finally, the UF2,3 potential, using 915
basis functions, is comparable to SNAP in convergence speed with
lower errors in energies and similar errors in forces. Separate
energy and force learning curves are included in Supplementary
Fig. 5.
The convergence speed is related to both the number of basis

functions and the complexity of the many-body interactions. This
indicates that the simpler UF2 potential may be more suitable than
other MLPs when data is scarce.

Validation with derived quantities
To benchmark performance for applications, we computed several
derived quantities that were not included in the fit, such as the
phonon spectrum and melting temperature, using each potential.
Figure 5 shows the relative errors in 12 quantities: energy, forces,
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Fig. 4 Learning curves for UF and SNAP potentials fit to bcc
tungsten. Shown are out-of-sample normalized prediction errors
(dots) for training sets of increasing size, with five repetitions per
size. Fitted curves (lines) are soft-plus functions that capture both
the initial linear slope in log-log space and the observed saturation.
The normalized error includes energy and force error contributions
weighted by the respective standard deviations of energies and
forces in the training set, respectively. Simpler potentials saturate
earlier but with higher error than more complex potentials (UF2 vs.
SNAP; UF2 vs. UF2,3; SNAP vs. QSNAP), outperforming them when
training data is limited.

Fig. 5 Performance for derived quantities of seven potentials relative to the DFT reference for bcc tungsten. The solid black line in each
spider plot indicates zero error. Energy, force, and phonon spectra error are percent RMSE normalized by the sample standard deviation of the
reference values. Other errors are percentage errors. The UF2 potential achieves an accuracy approaching that of SNAP and qSNAP, while the
UF2,3 potential achieves an accuracy comparable to MTP and GAP.
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phonon frequencies, lattice constant a0, elastic constants C11, C12,
and C14, bulk modulus B, surface energies E100, E110, E111, and
vacancy formation energy EV. Energy, force, and phonon predic-
tions are displayed as percent RMSE, normalized by the sample
standard deviation of the reference values. The remaining scalar
quantities are displayed as percentage errors and tabulated in
Supplementary Table I. The training set includes surface, vacancy,
and strained bcc configurations. Hence C11, C12, C14, E100, E110, E111,
and EV are not measures of extrapolation.
Despite its low computational cost, the UF2 pair potential

exhibits errors comparable to those of more complex potentials,
such as SNAP and qSNAP. In contrast, the LJ and Morse potentials
severely overpredict and underpredict most properties, respec-
tively. One source of error in pair potentials, including the UF2
potential, arises due to deviation from the Cauchy relations in
materials. The Cauchy relations are constraints between elastic
constants that hold if atoms only interact via central forces, e.g.,
pair potentials, and every atom is a center of inversion, such as in
bcc tungsten47. For fcc and bcc lattices, the Cauchy relation is
C12= C44. Noble gas crystals nearly fulfill this condition, but
significant deviations occur for most other crystals. Hence, the
errors in C12 and C44 are larger for pair potentials, where they are
constrained to be equal, than for models with many-body terms.
This limitation in modeling the elastic response may hinder the
prediction of mechanical properties and defect-related
quantities48.
As an example of an empirical potential used in practice, we

selected the EAM4 potential49 for all benchmarks. The EAM4
model, one of four tungsten models developed by Marinica et al.,
accurately reproduces the Peierls energy barrier and dislocation
core energy49. The EAM4 potential was fitted to materials’
properties such as those in Fig. 5 and, hence, exhibits reasonably
low errors.
All potentials in Fig. 1 and Fig. 5, except EAM4, were fitted using

the same training set of 1 939 configurations. While this training
set is realistic in both size and diversity, based on their complexity,
the SNAP, qSNAP, MTP, and GAP models may achieve even lower
errors with a more extensive training set and larger basis set.
In this work, the cut-off radius for inter-atomic interactions was

set to 5.5 Å for all potentials except for EAM4. Additional
hyperparameters for the UF2, UF2,3, SNAP, qSNAP, and GAP basis
sets are tabulated in Supplementary Tables II–V. For UF2,3, a
separate smaller cut-off radius of 4.25 Å was used for three-body
interactions. This choice was motivated in part by precedence in
other two- and three-body potentials, such as the modified
embedded-atom potentials42, and in part by speed: the smaller
cut-off radius results in ten times fewer three-body interactions
and corresponding speed-up.
For the bcc tungsten system, the UF2,3 potential approaches the

accuracy of the MTP and GAP potentials. Adding the three-body
interactions eliminates the error associated with the Cauchy
discrepancy, improving the elastic constant predictions. The UF2,3
potential also achieves lower errors for the surface and vacancy
formation energies than the UF2 pair potential, underscoring the
value of including three-body interactions.
Figure 6 compares the calculated phonon spectra of the various

MLPs with the DFT reference values33. Perhaps surprisingly, the
UF2 pair potential is comparable in error to the potentials with
many-body terms. In contrast, the Morse pair potential is rather
inaccurate, and the LJ pair potential, not shown, yields a phonon
spectrum with imaginary frequency and large frequency oscilla-
tions. Table 1 summarizes the RMSE of the phonon frequencies
computed across the 26 DFT reference values. As in other
calculated properties, the addition of three-body interactions in
the UF2,3 potential significantly improves the agreement with the
DFT reference compared to the UF2 pair potential and even
surpasses the other computationally more expensive MLPs.
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Fig. 6 Phonon dispersion curves for bcc tungsten. A The UF2
potential outperforms empirical potentials (Morse, EAM4) in
reproducing the reference phonon frequencies (pink squares). The
LJ curve, omitted, exhibits large oscillations and negative phonon
frequencies. B SNAP and qSNAP have similar phonon frequency
errors to the UF2 and EAM4 potentials. C The addition of three-body
interactions allows the UF2,3 potential to approach the performance
of the MTP and GAP potentials.

Table 1. Melting temperature predictions alongside energy, force, and
phonon frequency benchmarks for bcc tungsten.

Relative
Comp.
Cost

Melting Temp. Energy
RMSE
(eV/atom)

Force
RMSE
(eV/Å)

Phonon
RMSE
(THz)

DFT50 3465 ± 105

LJ 1 5695 ± 90 0.110 1.400 3.914

Morse 1.55 2681 ± 45 0.040 0.480 1.140

UF2 0.79 3850 ± 68 0.027 0.387 0.230

EAM4 2.92 4573 ± 78 0.088 0.803 0.301

UF2,3 10.51 3651 ± 31 0.005 0.152 0.263

MTP 45.7 3961 ± 82 0.017 0.146 0.376

qSNAP 145 - 0.010 0.167 0.256

SNAP 443 3136 ± 63 0.014 0.189 0.270

GAP 3070 3141 ± 54 0.006 0.169 0.291

Compared to LJ, Morse, and EAM4, the UF2 potential achieves a low error
in the melting temperature for a similar cost. The UF2,3 potential prediction
is even closer to the DFT reference at the cost of one order of magnitude in
speed. MTP, SNAP, qSNAP, and GAP require one to three orders of
magnitude more computational resources for the same large-scale
simulation. See Sections IID and IIID for details.
1See Section IIID.
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As an example of a practical, large-scale calculation, we predict
the melting temperature of tungsten (see Section Calculations for
computational details). Since the training set of the MLPs does not
include liquid configurations, the melting point predictions
measure the models’ extrapolative capacity. Table 1 compares
the predicted melting temperatures of the MLPs to the ab-initio
reference value of 3465 K50. We observe that the other pair
potentials are limited in their predictive capabilities while the UF2
potential is comparable in accuracy to the more complex
potentials, which yield reasonable predictions. The qSNAP melting
calculation failed due to numerical instability at higher tempera-
tures, which is known to occur in high-dimensional potentials51.
Bonds break at higher temperatures, leading to many local atomic
configurations that are underrepresented in the training set. We
expect that training the qSNAP potential on a suitable, more
extensive dataset would remove this instability. The extrapolative
capacity of the UF2 and UF2,3 potentials in melting-temperature
simulations illustrates that the UF potentials can provide an
accurate description with only a moderately sized training dataset,
indicating their usefulness for materials simulations with limited
reference data.

Summary
We developed and implemented an MLP that is fast to train and
evaluate, provides an interpretable form, is extendable to higher-
order interactions, and accurately describes materials even for
comparably sparse training sets. The approach is based on an
effective many-body expansion and utilizes a flexible B-spline
basis. The resulting regularized linear least-squares optimization
problem is strongly convex, enabling efficient training.
For the example of elemental tungsten, the UF2 pair potential

produces energy, force, and property predictions rivaling those of
SNAP and qSNAP while matching the cost of the Morse potential,
corresponding to a reduction in computational cost by two orders
of magnitude. Despite the intrinsic limitations of the pair potential
in capturing physics, we find that the UF2 pair potential yields
reasonable predictions in property benchmarks, such as for elastic
constants, phonons, surface energies, and melting temperature.
The UF2,3 potential, which accounts for three-body interactions,
approaches the accuracy of MTP and GAP while reducing
computational cost by one to three orders of magnitude.
The rapidly increasing number of MLPs, from ultra-fast linear

models to graph neural network potentials, highlights the trade-
offs between computational efficiency, robustness, and model
capacity. Complex, high-dimensional MLPs are expected to yield
higher accuracy for complex systems at the price of greatly
increased computational cost and data requirements. The UF
approach yields potentials that are fast and robust at the price of
reduced flexibility and possibly greater errors for complex
systems. Future work on UF potentials will explore the use of
active learning for increased robustness and data efficiency, as
well as the addition of the four-body term, which is necessary for
modeling dihedral angles that are critical to describing organic
molecules and protein structures. The software for fitting UF
potentials and running them in the LAMMPS36,37 molecular
dynamics code is freely available in our GitHub repository34.

METHODS
Data
To compare the UF potential against existing potentials, we use a
dataset by Szlachta et al.33, which has been used before to
benchmark the GAP33, SNAP52, and aPIP26 potentials. This
dataset of 9 693 tungsten configurations includes body-
centered cubic (bcc) primitive cells, bulk snapshots from
molecular dynamics, surfaces, vacancies, gamma surfaces,
gamma surface vacancies, and dislocation quadrupoles.

Energies, forces, and stresses in the dataset were computed
using DFT with the Perdew–Burke–Ernzerhof53 functional.

B-spline basis
The UF potential uses natural cubic B-splines: Their first derivative
is continuous and smooth, while their second derivative is
continuous. They are natural rather than clamped in that their
second derivative is zero at the boundary conditions. These
properties, which are critical for accurately reproducing forces and
stresses, motivated our choice of basis set. Other B-spline schemes
have been explored for interpolation in empirical potential
development. Wen et al.41 discuss clamped and Hermite splines
as well as quartic and quintic splines. The natural cubic spline is
sufficient except when computing properties that rely on the third
and fourth derivative of the potential, such as thermal expansion
and finite-temperature elastic constants.
Uniform spacing of knots is a reasonable choice in many cases.

However, one may adjust the density of knots to control
resolution in regions of interest. Due to compact support in this
basis, each pair-distance energy requires the evaluation of exactly
four B-splines. Hence, the potential’s speed scales with neither the
number of knots nor the number of basis functions.
On the other hand, the minimum distance between knots limits

the maximum curvature of the function. The optimum density of
knots thus depends on the training set. Underfitting or overfitting
may arise from insufficient or excessive knot density, respectively.
Based on convergence tests (see Supplementary Fig. 1), we fit UF
potentials in this work using 25 uniformly spaced knots.
By construction, each spline coefficient influences the overall

function across five adjacent knots. As a result, one can tune the
shape of the potential further according to additional constraints.
For instance, soft-core and smooth-cutoff requirements may be
satisfied by adjusting spline coefficients at the ends. In this work,
we ensure that the potential and its first derivative smoothly go to
zero when approaching the cutoff at rij= tK by setting the last
three coefficients to 0.

Models
In this work, we partitioned the data using a random split of 20%
training and 80% testing data. The testing set was used to evaluate
the RMSE in energies and forces, as reported in Table 1 and Fig. 1.
The LJ and Morse potentials were optimized using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm as imple-
mented in the SciPy library54. The SNAP and qSNAP potentials
were retrained using the MAterials Machine Learning (MAML)
package55. The GAP potential was retrained using the QUantum
mechanics and Interatomic Potentials (QUIP) package56,57. We used
the EAM4 potential, obtained from the NIST Interatomic Potential
Repository58,59, without modification. The MTP potential was fit
using the MLIP package60.
The size of the training set was selected to represent common,

data-scarce scenarios. With a larger training set, the MTP, SNAP,
qSNAP, and GAP models would likely produce better predictions.
We refer the reader to the original works and existing bench-
marks18,32 for details regarding convergence with training
examples and model complexity.

Calculations
All potentials in Fig. 1 were benchmarked using one thread on an
AMD EPYC 7702 Rome (2.0 GHz) CPU. Computational cost
measurements for each potential are reported as the average
over ten simulations.
We use two methods to estimate the computational cost of the

UF2,3 potential and present both values in Fig. 1 and Table 1. The
lower estimate, 0.76 ms/step, is computed by multiplying the
computational cost of UF2 by the ratio of floating point
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operations used by UF2,3 and UF2. The higher estimate, 2.03 ms/
step, is computed using the ratio of speeds in the Python
implementation multiplied by the reported cost of UF2. We show
performance bounds instead of the current UF2,3 implementa-
tion’s computational cost because it has not been fully
optimized yet.
Elastic constants were evaluated using the Elastic package61.

Phonon spectra were evaluated using the Phonopy package62.
Melting temperatures were calculated in LAMMPS using the two-
phase method and a time step of 1 fs. The initial system, a
16 × 8 × 8 bcc supercell (2048 atoms), was equilibrated at a
selected temperature for 40,000-time steps. Next, the solid-phase
atoms were fixed while the liquid-phase atoms were heated to
5000 K and cooled back to the initial temperature over 80,000
time steps. Finally, the system was equilibrated over 200,000 steps
using the isoenthalpic-isobaric (NPH) ensemble. If the final
configuration did not contain both phases, the procedure was
repeated with a different initial temperature. Reported melting
temperatures were computed by taking the average over the final
100,000 steps.

DATA AVAILABILITY
Example notebooks, LAMMPS input files, and parameters for all potentials fit in this
work are available in the GitHub repository34. The tungsten and silicon datasets are
publicly available63,64.

CODE AVAILABILITY
Code for fitting UF2 and UF3 potentials, as well as exporting LAMMPS-compatible
tables, is freely available in our open-source “Ultra-Fast Force Fields” GitHub
repository34. The UF2 potential is natively supported by LAMMPS, GROMACS, and
other molecular dynamics suites that can construct potentials from interpolation
tables. In LAMMPS, the pair-style “table” is available for execution on both CPU and
GPUs, enabling the UF2 potential to benefit from various computer architectures. A
LAMMPS package for using UF2,3 potentials is also available in the repository.
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