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AI powered, automated discovery of polymer membranes for
carbon capture
Ronaldo Giro 1, Hsianghan Hsu2, Akihiro Kishimoto2, Toshiyuki Hama2, Rodrigo F. Neumann 1, Binquan Luan3, Seiji Takeda2,
Lisa Hamada2 and Mathias B. Steiner1✉

The generation of molecules with artificial intelligence (AI) or, more specifically, machine learning (ML), is poised to revolutionize
materials discovery. Potential applications range from development of potent drugs to efficient carbon capture and separation
technologies. However, existing computational discovery frameworks for polymer membranes lack automated training data
creation, generative design, and physical performance validation at meso-scale where complex properties of amorphous materials
emerge. The methodological gaps are less relevant to the ML design of individual molecules such as the monomers which
constitute the building blocks of polymers. Here, we report automated discovery of complex materials through inverse molecular
design which is informed by meso-scale target features and process figures-of-merit. We have explored the multi-scale discovery
regime by computationally generating and validating hundreds of polymer candidates designed for application in post-combustion
carbon dioxide filtration. Specifically, we have validated each discovery step, from training dataset creation, via graph-based
generative design of optimized monomer units, to molecular dynamics simulation of gas permeation through the polymer
membranes. For the latter, we have devised a representative elementary volume (REV) enabling permeability simulations at about
1000× the volume of an individual, ML-generated monomer, obtaining quantitative agreement. The discovery-to-validation time
per polymer candidate is on the order of 100 h using one CPU and one GPU, offering a computational screening alternative prior to
lab validation.
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INTRODUCTION
So far, the discovery of new materials has been a time consuming
and resource intensive effort. The following trial-and-error
approach is typically employed: identifying known materials with
properties similar to the new material’s target properties and then
modifying or combining them for achieving the desired outcome.
The approach is driven by a specialist’s knowledge, laboratory
experimentation, and it can take years to yield results. The
computer revolution has brought about powerful simulation
techniques, such as the density functional theory (DFT)1,2 method,
that are aiding materials discovery today. High-throughput
computational materials screening and design (HCMSD) methods
have enabled substantial speed-up of the process3–8. However,
one limitation of HCMSD is that it usually relies on time consuming
ab initio calculations, such as DFT simulations4,5,7,8, for modeling
the occurring physical and chemical processes. As a result, the
large number of computations required for probing the phase
space or performing materials screening can render HCMSD
impractical.
The emergence of repositories with large sets of experimental

and simulation data has enabled the application of ML methods as
a data-driven pathway to materials discovery9–12. ML-based
materials design10,13–16 has a potential advantage over HCMSD:
while still relying on materials screening, it is not dependent solely
on ab initio simulations of either classical or quantum mechanical
molecular dynamics occurring in a chemical system. Recently, the
inverse materials design (IMD) method17,18 has shown its
potential: an algorithm creates optimized molecular structures
based on a pre-defined feature vector containing a set of materials

target properties. To complete the discovery process, the IMD
output would have to undergo physical validation. For polymer
membranes, this validation is needed at mesoscale where the
process-relevant properties of amorphous materials emerge. At
that scale, however, automated ab initio simulation methods for
validating complex materials do not yet exist.
To exemplify the issue, let us consider the case of carbon

dioxide separation in post-combustion applications. From a
process perspective, polymer membranes19–21 have certain
advantages, among them high tolerance for the challenging
operating conditions and adaptability to the existing power plant
steam cycle. However, a polymer’s gas filtration performance
cannot be derived from the physical and chemical properties of
the monomer constituents alone. Rather, it is determined by the
heterogeneous internal structure and complex morphology of the
amorphous polymer. Therefore, predicting and validating a
membrane’s gas permeability remains a major challenge22.
Encouragingly, it was recently reported that machine learning

applied to known polymer repeat units can predict gas separation
performance of polymers that were not previously tested for these
properties23. However, the reported method did not offer the IMD
benefits of generating optimized monomer units and, therefore,
could not generate new polymer candidates. Also, it lacked
automated outcome validation of physical performance. In the
following, we report a fully automatized, in silico materials
discovery workflow that overcomes those limitations. For demon-
strating the methodological advancements with regards to the
discovery of small molecules, we have applied the workflow to the
generative design and physical validation of polymers optimized
for carbon dioxide filtration under realistic temperature and
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pressure conditions. We have limited our study to homo-polymers
for which suitable experimental data and error margins are
available. For copolymers, reliable experimental data on the spatial
orientation and arrangement of the polymer chains are needed.
Inclusion of molecular selectivity, such as carbon dioxide versus
nitrogen, is currently limited by nitrogen force fields which
overestimate the nitrogen uptake by at least 50%24, leading to
unsatisfactory results. Novel force fields for nitrogen have been
developed to address the issue in MOFs25, ZIFs26, and zeolites27;
however, they are still lacking for polymers.

RESULTS AND DISCUSSION
In Fig. 1, we show the discovery workflow end-to-end, from
training dataset preparation, via ML generative design to physical
validation by molecular dynamics simulation. Small organic
molecules, or monomer units, that typically qualify as candidate
building blocks for polymer membranes, are often treated as
graphs and can be converted to computer readable SMILES
format28. For training dataset preparation based on SMILES, we
have extended a quantitative structure–property relationships
approach29 and made it available through our polymer property
prediction (PPP) engine. For ML generative modeling, we have
created an IMD engine30 which extracts molecular features with
regression and performs graph-based construction with SMILES
input. Finally, the discovered monomers are physically validated at
meso-scale by means of automated constant pressure difference
molecular dynamics (CPDMD) simulations22, a non-equilibrium
method suited for predicting a polymer membrane’s gas filtration
performance under realistic process conditions. Overall, our
workflow is consistent with the approach outlined in ref. 31.
The training dataset preparation sequence is shown in the left

box of Fig. 1: polymer name collection from existing data sources,
polymer name conversion into the OPSIN SMILES strings32, and
polymer name mapping to suitable target polymer properties and
their respective numerical values. As high-quality lab data is often

sparse or not available at all, we have used PPP for calculating
polymer properties based on topological variables, such as
connectivity indices, combined with geometrical variables and
other structural descriptors29. For polymer properties predicted
with the PPP engine, the underlying QSPR regression models were
trained on experimental data29. Therefore, there is no dependence
of ML predictions on membrane thickness. In Fig. 2, we illustrate
the PPP conception and outline as a representative example the
prediction of the half-decomposition temperature Td,1/2 (see
“Methods” section). In the example of poly(vinyl butyral) shown
in Fig. 2b, we obtain Td,1/2= 646 K which is in agreement with the
experimental value of 645 K29. Similarly, we have used PPP to
predict the glass transition temperature Tg (in K) and CO2

permeability (in Barrer) for all 1169 homo-polymers in our dataset
shown in Fig. 2c. These are suitable target properties for informing
generative design of new monomers to be validated in gas
separation membranes at process level. Although the accuracy of
property predictions by the PPP engine is limited in comparison
with experimental data, see Supplementary Material and Supple-
mentary Fig. 1, the output is useful for obtaining molecular
discovery results.
The ML generative design sequence is shown in the middle box

of Fig. 1: feature extraction and selection, regression model
training, feature optimization, and graph-based structure genera-
tion. For automatically generating new monomers with pre-
defined target properties, we have represented each of the homo-
polymers in the input dataset by its monomer in the form of a
feature vector. Each unique monomer is represented by one
SMILES string and is encoded to a specific feature vector. As
visualized in Fig. 3a, each feature vector contains structural
descriptors such as the numbers of heavy atoms, rings, aromatic
rings, substructures, and fingerprints.
For molecular property prediction, we have trained and cross-

validated regression models with respect to multiple sets of
feature vectors and to each of the pre-defined target properties:
half-decomposition temperature Td,1/2, glass transition

Fig. 1 Automated, end-to-end computational discovery and physical validation of polymer membranes. The workflow consists of training
dataset preparation, ML-based generative monomer design, and physical validation of polymer based gas filtration with molecular dynamics
simulations.
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Fig. 2 Dataset preparation with the polymer property prediction (PPP) engine. a Example of half-decomposition temperature Td,1/2 which
is calculated according to Eq. (1) (see “Methods” section). For Td,1/2, structure–property correlations were established with the first-order (bond)
connectivity index 1χV, the number of hydrogen atoms NH and the number of vertices Nvertices in the hydrogen-suppressed graph
representation of a polymer’s monomer29. b Example of a hydrogen-suppressed graph representation for poly(vinyl butyral) built from the
polymer name and the corresponding OPSIN SMILES string32. (i) Schematic representation of poly(vinyl butyral); (ii) alternative representation
with brackets not intersecting the bonds; (iii) hydrogen-suppressed version of (ii) with the valence connectivity indices δV in the vertices and
(iv) with the bond indices βV in the edges, respectively (see Eqs. (2) and (3) in the “Methods” section). cMulti-dimensional property distribution
of the input dataset containing 1169 homo-polymers.

Fig. 3 ML-generative modeling with the inverse materials design (IMD) engine. a The structure of each monomer in the input dataset is
encoded as a feature vector. Here, the aring feature label stands for aromatic ring and the numbers below each label indicate their respective
occurrences. b Regression results for each of the pre-defined target properties: PCO2, Tg, and Td,1/2. Blue circles: training data, red line: data fit.
c Feature vector representation with encoded molecular building blocks: atoms, rings, aromatic rings, sub-structures, and fingerprints.
Decoding the feature vector reveals a pyridine molecule for which the SMILES representation is also shown. d Multi-dimensional property
distribution of the generated dataset. e ML-generated monomers selected for physical validation in polymer representations via molecular
dynamics simulation. The SMILES representation of each monomer is shown below the respective unit.
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temperature Tg, and CO2-permeability PCO2 as shown in Fig. 3b.
The cross-validation (CV) process is performed by using the
random data split method for training and testing purposes.
Specifically, we have trained six regression models: Lasso

Regression, Ridge Regression, Elastic Net Regression, Random
Forest Regression, Kernel Ridge Regression, and Support Vector
Regression (SVR). For training each model, we have applied both
hyperparameter optimization and feature selection. For the Kernel
Ridge and SVR models, respectively, we have developed a new
method that efficiently performs hyperparameter optimization
and feature selection simultaneously (see the “Methods” section).
For the other models, we have performed grid search for
optimizing hyperparameters while selecting features using the
SelectFromModel class in Scikit-learn33. In Supplementary Table 2,
we show a statistics summary of CV scores for four regression
models with respect to selected feature vector sets (see
Supplementary Material for discussion). To maximize accuracy,
we have selected the SVR model yielding the best crossvalidated
R2 score. The parity plots in Fig. 3b represent the model with the
best CV score, which is quantified in Supplementary Fig. 2. This
demonstrates the effectiveness of both hyperparameter optimiza-
tion and feature selection processes. The idea is to find newly
created feature vectors which fit the capability of the optimized
models. We show a baseline example with and without
hyperparameter optimization in Supplementary Fig. 2, and the
improvement of the R2 score is impressive. Note, that we have
obtained both parity plots and CV scores from runs that were also
used for hyperparameter optimization.
For generative design, we have then optimized the feature vectors

through inversion of the prediction model within the pre-defined
target property ranges which were set to: 550 K < Td,1/2 < 700 K;
400 K < Tg < 600 K and 630 barrer < PCO2 < 4000 barrer. We have
expanded the optimized feature vectors to molecular structures
through an advanced version of the Molecular-Customized McKay’s
Canonical Construction Path Algorithm30,34,35. The algorithm repeats
cycles of connecting structural fragments such as atoms, rings, and
substructures, and cycles of feature screening. Our methodological
advancements (see “Methods” section and Supplementary
Information) enable the application of graph-based generative
design to complex molecular structures. In addition, the IMD allows
for defining design rules with regards to structural constraints, the
range of the number of substructures, as well as fragment patterns.
As a result, chemical subject matter expertise can inform the
generative design process. In Fig. 3c, we have visualized an example
of how the generative algorithm transforms a feature vector into a
molecular structure. A feature vector encodes structure-specific
information for each molecular building block. The algorithm
generates a specific molecular expression of the feature vector
based on a library of building blocks created during the feature
vector encoding process. Note, that this decoding process is not
bijective, and a feature vector can be decoded into various
monomers.
After completing the ML-generative design sequence and

screening our initial discovery results for target property range
and discrepancies between predicted and calculated polymer
property values, we have obtained a set of 784 new monomer
candidates shown in Fig. 3d. We have suppressed duplication of
the same monomer in the generation algorithm by applying the
canonical construction path algorithm using a special assignment
of head and tail atoms (based on * character in SMILES strings). As
an improvement with regards to the initial data set, we
demonstrate that about 50% of the generated monomers exhibit
optimized properties that simultaneously fit the predefined target
ranges. Specifically, in our input dataset, only two out of 1169
homo-polymers fulfill all requirements for Td,1/2, Tg, and PCO2 . In the
output data set, 390 generated polymers simultaneously fulfill the
above requirements. The efficiency of the process, i.e., the number
of newly generated homo-polymers that fulfill all target

requirements divided by the total number of generated species,
depends on how narrowly we define the range of the predefined
target properties. As a rule-of-thumb, we can say that “the wider
the target property range, the higher the generation efficiency.” In
the present case, the overall generation process efficiency is
around 50%. While 394 out of 784 newly generated species do not
fulfill all requirements simultaneously, we find that those
structures are nevertheless very close to the pre-defined target
property ranges. Figure 3d shows a 2D plot with three parameters
and the same data are shown in a 3D representation in
Supplementary Fig. 5. For demonstrating the effectiveness of
our inverse design approach, we show for comparison in
Supplementary Fig. 6 the predicted properties of polymers
generated through random recombination of building blocks in
the training set by shuffling their feature vectors. In the following,
we will physically validate the most promising of the discovered
monomers, visualized in Fig. 3e, in a polymer membrane
configuration by means of automated molecular dynamics
simulation.
The automated molecular dynamics simulation sequence is

shown in the right box of Fig. 1: creation of SMILES representation
of the discovered monomer, creation of a polymer membrane
representation with the discovered monomer, and physical
simulation of the gas filtration process through the membrane.
Prior to applying the above sequence to the newly generated
monomers, we have confirmed the suitability of the CPDMD
method for physical validation of membrane performance
through extensive benchmark analyses with known polymers,
(see “Methods” section and Supplementary Information). A
fundamental question occurs with regards to the minimum
volume that adequately represents the properties of complex
materials at mesoscopic scales. In the present case of gas
separation with polymer membranes, we have adopted the
concept of representative elementary volume (REV), which is
routinely used for characterizing porous media36. REV can be
understood as the smallest material volume for which a physical
property can be determined such that it yields a value that is
representative of the bulk. To illustrate this concept, we show in
Fig. 4a cross sections through computational membrane repre-
sentations exhibiting porosity variations. Depending on the region
sampled, a material’s porosity can be smaller or larger than the
bulk average. If probed at or above REV level, the porosity value
matches the bulk average.
To probe REV with regards to our polymer permeability

simulations, we have investigated three representative polymers
with relatively high permeability values: TDA1-DMN, PIM-PI-EA and
IBPA shown in Fig. 4b—bottom of figure from left to right. For
each of the three polymers, we have performed five independent
CPDMD simulations using the simulation box set up shown in
Fig. 1. By doubling the number of atoms in the simulation and
keeping the membrane thickness fixed at 6nm, the cross-sectional
area also doubled, from around 50 to 100 nm2. By probing larger
areas and randomly sampling the amorphous polymeric chains
making up the membrane, we observe a trend in Fig. 4b that the
simulations with larger volume tend to approach the experimental
values.
After establishing both the automated CPDMD simulation

protocol and the REV determination (see “Methods” section and
Supplementary Information), we have proceeded with the
validation of the three shortlisted new polymer candidates
generated by IMD. Two similar monomers were selected for
investigating how head and tail positions influence the simulation
results. For each of the three polymers, we have performed five
independent CPDMD simulations using the simulation box in
Fig. 1. As a key result of our investigation, we show in Fig. 4c the
simulated CO2 permeability values obtained for the polymer
membrane representations of ML-designed monomers.
We observe quantitative agreement, within the error bars, of
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ML-predicted permeability values and the CPDMD-based physical
validation results. To our knowledge, this is the first computational
performance validation of an ML discovered, amorphous poly-
meric membrane material.
For analyzing the filtration dynamics, we show as a representa-

tive example for one of the polymers in Fig. 4d the simulated CO2

permeability along with the number of CO2 molecules permeated
and sorbed, respectively, as function of simulation time. The
corresponding CO2 density profile evolution is shown in
Supplementary Fig. 13. Initially, the CO2 molecules are located at
the left-hand side of the membrane, see simulation box in Fig. 1,
which is connected to the gas feed chamber. As shown in Fig. 4d,
CO2 molecules are penetrating the membrane at 1 ns. The
membrane saturation level of roughly 100 CO2 molecules on

average, corresponding to an average density of 0.06–0.07 g/cm3,
is reached at about 5 ns. At 10 ns, the CO2 permeability has
converged towards the saturation value of 5000 barrer. After
30 ns, the permeability fluctuations have disappeared and the
membrane filtration has reached a steady state. The steady-state
filtration regime is characterized by the constant slope of
permeated CO2 molecules as function of time from which the
permeability value can be extracted using Eq. (6) (see “Methods”
section).
The main transport characteristics captured by the CPDMD

simulations are (i) the interaction between gas molecules and
polymer membrane which determines solubility and, conse-
quently, the selectivity with regards to a specific gas molecule
and (ii) the diffusion of gas molecules through the void spaces
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Fig. 4 Physical validation of ML-discovered polymers with automatized constant pressure difference molecular dynamics (CPDMD)
simulations. a Cross-sectional view of a meso-scopic polymer membrane representation. The volumes rendered in green color are void
spaces visualized using 3V56,57. The solid frame visualizes the representative elementary volume (REV) concept; the dashed frame does not
adequately capture the membrane’s average porosity. b Representative monomers for determining the polymer REV. The asterisks indicate the
head and tail atoms, respectively. c CO2 permeability of representative, ML-designed polymers. d CPDMD simulation of CO2 filtration
dynamics. The shaded area indicates the transient regime.
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between packaged polymer chains which determines the
membrane’s permeability. We note that while the thickness of
manufactured polymer membranes are typically on the order of
micrometers, the much thinner simulated membrane predicts
experimental permeability values reasonably well, within the same
order of magnitude. As expected, the accurate and repeatable
determination of gas permeability is limited experimentally as well
as theoretically and large error margins are an intrinsic
characteristic associated with the properties of amorphous
materials22.
Using a standard computational framework (one Intel Xeon E5-

2667 CPU, one NVIDIA Tesla K80 GPU), the overall computation
time, from dataset preparation to ML generation to physical
validation, is of the order of 100 h for polymeric membranes with
higher permeabilities (above 1000 barrer). A computational
bottleneck currently exists for reaching gas saturation and steady
state filtration in lower-permeability membranes as shown in
Supplementary Fig. 12.
Future extensions of this work would benefit from advanced

representations of a membrane’s morphology. One example
would be to pack the monomers randomly in a virtual cubic
box and connect their head and tail atoms according to
predefined probabilities—instead of packing the polymer chains
randomly. This would more closely resemble the actual polymer
formation process. In generative modeling, the extension to
molecular structures with higher complexity and the introduction
of a user-defined objective function could open the pathway to
the generation of polymers with higher complexity, such as block
co-polymers. We expect that adding target properties for
molecular selectivity to the optimization workflow and extending
the generative algorithms to the design of co-polymers will further
improve discovery outcomes.
In summary, we have reported fully automated, end-to-end

computational discovery of polymer membranes for carbon
dioxide separation. We have demonstrated each discovery step,
from automated training data and feature vector creation via
generative inverse design of new monomers to non-equilibrium
molecular dynamics simulation of gas filtration by the polymer
membrane. Molecular dynamics simulations successfully predict a
polymer’s filtration dynamics and permeability if performed with a
minimum representative volume of the complex material. For
computationally designed polymers, we have obtained quantita-
tive agreement between the CO2 permeability predictions by
means of the ML models and the molecular dynamics-based,
physical process simulations. Our work opens a pathway for
advancing ML-generative design beyond small-molecule applica-
tions and will substantially accelerate the discovery of complex
materials for scaled applications.

METHODS
Polymer property calculation for automated training dataset
generation
For creating the training dataset, we have collected representative
homo-polymers names in IUPAC nomenclature standard, from
multiple polymer classes as provided by the PolyInfo database37.
We have then converted their individual monomer unit names to
SMILES format (with their head and tail units tagged) using the
Open Parser for Systematic IUPAC nomenclature (OPSIN)32. Based
on our analysis of the gas separation process, we have selected
three suitable figures-of-merits or target properties for polymer
membranes: glass transition temperature (Tg in K), half-
decomposition temperature (Td,1/2 in K), and permeability (P) for
CO2 (in Barrer). Tg is the temperature above which segmental
motions of polymer chains occur such that they negatively affect a
polymer membrane’s mechanical stability. Tg also defines the
transition limit between glassy and rubbery polymers

(temperature below and above Tg, respectively). Glassy polymers
dominate the Roberson upper bound38,39 due to higher solubility
coefficient39, or, in other words, better selectivity. However,
rubbery polymers have lower solubility and higher diffusion
coefficients39, i.e higher permeability and lower selectivity.
Similarly, Td,1/2 defined as the temperature at which the loss of
weight during pyrolysis (at a constant rate of temperature rise)
reaches 50% of its final value should be reasonably high as it is a
measure for chemical stability. A high permeability for CO2 is
desirable as a measure of the gas flux through the membrane.
However, it is limited by a trade-off with the membrane’s
selectivity PCO2=PN2 . For creating the training dataset, we have
calculated PCO2 , Td,1/2, and Tg data using the PPP engine.
Calculation of Td,1/2:
Best structure–property correlations were established with first-

order (bond) connectivity index 1χV; number of hydrogen atoms
NH and number of vertices Nvertices in the hydrogen-suppressed
graph representation of a polymer’s monomer29. The functional
relation for Td,1/2 was obtained through a linear regression against
the best correlation descriptors:

Td;1=2 ¼ 1000ðð7:17Nvertices � 2:31NH þ 12:521χVÞ=MmÞ (1)

Figure 2b displays the calculation steps performed by the PPP
engine for poly(vinyl butyral). Starting with the (i) hydrogen-
suppressed graph representation of poly(vinyl butyral) monomer
and its (ii) alternative representation with the square brackets not
intersecting the bonds, the (iii) valence connectivity indices δV in
the vertices and the (iv) bond indices βV in the edges are
calculated according to Eqs. (2) and (3), respectively:

δV ¼ ZV � NH

Z � ZV � 1
(2)

βVij ¼ δVi δ
V
j (3)

where ZV is the number of valence electrons of an atom, NH is the
number of hydrogen atoms bonded to it, and Z is its atomic
number. βVij is the product of δV at the two vertices (i and j), which
define a given edge or bond.
The first-order (bond) connectivity index 1χV of the entire

molecule is defined through the summation over the edges of the
hydrogen-suppressed graph:

1χV ¼
X
edges

1ffiffiffiffiffi
βV

q (4)

By combining Eqs. (1) and (4), counting the number of vertices
and the hydrogen atoms and calculating the molar mass of
poly(vinyl butyral), we obtain Td,1/2= 646 K which is in agreement
with the experimental value of 645 K29.

Hyperparameter optimization and limited discrepancy search
The procedure referred to as feature selection identifies a subset
of features for achieving accurate predictions, rather than using
the entire set of the original features40. In other words, feature
selection allows a machine learning algorithm to learn a model in
a lower-dimensional space. The dimensionality reduction typically
leads to computational performance enhancements.
Hyperparameter optimization (HPO) is also key for enhancing

the model performance. There are many HPO algorithms available
in the literature, including grid search and Bayesian optimization,
see for example, reference41. In theory, hyperparameter config-
urations are specific to a feature set used to train a machine
learning model. One set of hyperparameter configurations that
works well for one feature set might not be the best for another
feature set. On the other hand, both feature selection and HPO
typically require intensive computation. For example, given N
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features, finding an optimal feature requires (2N) possible feature
sets. For M hyperparameters, each of which has b configurations
after its possible values are discretized, there are (bM) possible
choices for the hyperparameter configurations. An optimal feature
set and hyperparameter configurations need to be found out of
(2NbM) combinations. In practice, feature selection and HPO are
performed separately to reduce the computational overhead, e.g.,
perform HPO after feature selection selects an optimized feature
set with default hyperparameter configurations. However, this
approach might not represent a good combination of the feature
set and hyperparameter configurations.
For validating our model and tuning hyperparameters, we

have optimized the average (R2) score of the threefold cross-
validation (CV) with 10 repeats. To that end, we have developed
a systematic local search algorithm that simultaneously per-
forms feature selection and HPO for a non-linear machine
learning model. This approach leads to an optimized hyperpara-
meter configuration specific to a selected feature set. To reduce
the computational overhead, our approach focuses only on
small, promising search spaces where optimized solutions are
likely to occur. We discretize possible values for each hyper-
parameter and formulate feature selection and HPO as a
variable-value assignment task. This means that each variable
corresponds to another variable to which one value needs to be
assigned. The variable for a feature is set to either true or false,
while the variable for each hyperparameter is set to one of the
discretized hyperparameter-values.
Our approach is based on limited discrepancy search (LDS)42,43.

The idea behind LDS has been studied in the artificial intelligence
community and has a variety of applications such as in
reference30,35. LDS starts with an initial solution, i.e., initial
variable-value assignment, and keeps refining it until a satisfactory
solution is obtained.
Our current implementation calculates the initial solution

passed to LDS as follows: It first calculates optimized hyperpara-
meter configurations based on grid search with the whole feature
set. With these hyperparameter configurations, it then computes
the initial feature set based on so-called sequential backward
selection (SBS)40. Our SBS implementation starts with the whole
feature set. It repeats a greedy elimination of one feature (without
which a score is improved) until no further improvement is
obtained.
The solution refinement step of LDS consists of a series of

local search controlled by the notion of discrepancy. Given the
current best solution bs, LDS assumes that a better solution
exists in a search space whose solutions are similar to bs. In our
implementation, the discrepancy for a solution s is defined as
the number of variables whose assigned values have differences
between bs and s. A smaller discrepancy indicates that s is more
similar to bs.
LDS introduces a discrepancy threshold d and performs local

search in an iterative manner. After setting bs to the initial solution
calculated by SBS, LDS performs depth-first search with d=1 and
attempts to find a better solution than bs in a search space where
solutions are located that have a different value than bs only for
one variable. If no better solution is found, LDS increments d and
performs local search with d=2. If no better solution is found
again, LDS performs search with d=3, and so on. If a better
solution is found, LDS resets d=1 and bs to the better solution and
restarts a local search with d=1. LDS repeats these steps until the
allocated time is used up or d reaches a preset, maximum value.
There are several implementation choices for LDS to select a

next variable for updating its value. Before performing a new
iteration of local search, our current implementation orders
variables in ascending order of the following formula: w1v(x) +
w2u(x), where w1 and w2 are constants, v(x) is the number of times
variable x is selected in local search, and u(x) is the number of
times variable x fails to improve bs. This formula attempts to

remain the values of the variables unchanged that have
contributed to improving a score as well as to prioritize the
variables that have not been explored sufficiently.For the purpose
of this study, we have chosen w1=2 and w2=1.
In Supplementary Fig. 2, we show a comparison of regression

results obtained with and without the application of hyperpara-
meter optimization.
Because linear models and their variants tend to perform poorly

in our application, we have tested an approach for performing
feature selection (FS) + HPO based on LDS for obtaining a non-
linear model with acceptable performance. As described in the
Methods Section, the approach includes training and validation
for each combination of feature sets and hyperparameters
selected by LDS—without distinguishing the feature selection.
Introducing nested CV to our LDS-based approach creates
excessive computational costs. Therefore, we have chosen the
approach presented in our manuscript.
For analyzing how data leakage affects model performance, we

have performed a comparison between the original algorithm and
an improved version. The results are summarized in Supplemen-
tary Table 3.
In summary, in our approach the regression models are

designed to find relationships between feature vectors (FV) and
target property values. Some of the holdout feature vectors will
not be included during the training process. As a result, the
prediction values for holdout data fit poorly. In Supplementary Fig.
3 and Supplementary Table 4, we show a comparison between
regression models in which 25% of the dataset is randomly
selected to be holdout data. Even if there is a model that fits both
training and holdout data well, it does not necessarily lead to
superior discovery results - as the FVs have hundreds of
dimensions. For reducing the complexity of the generation
process, it is more efficient to use models which include all the
FVs of the dataset and then fine tune the molecular generation
process.

Feature vector optimization
Based on graph theory and atomic configurations, there exist
multiple feature types which can be combined for application of
machine learning models, among them the number of heavy
atoms, number of rings, substructures, fingerprints, Coulomb
matrix, dipole moment, potential energy, and experimental
conditions30.
We obtain suitable feature vectors by minimizing the distance

to the target property value using a particle swarm optimization
(PSO) algorithm, which optimizes a population of feature vectors
starting from a set of randomly generated ones. By using Eq. (5),
we estimate feature vector values fv based on a target property
value vp and a regression model fp by minimizing the score of
each feature vector v. More specifically, the minimization is
performed over the square error of the estimated value which is
normalized by the prediction variance σ2

p to which a penalty
function is added to account for violations of structural
constraints. The violation of structural constraints is evaluated
by means of the realizability of a molecular structure connected
by sub-structures in the corresponding feature vector. The
evaluation of the violation of structural constraints is a required
but not sufficient step for successfully decoding molecular
structures. Although most feature vectors obtained by PSO may
not be decoded, they are instructive for navigating the huge
search space for the generative algorithm. The reason is that
new feature vectors calculated by PSO may include sub-
structures which differentiate them from the initial feature
vector set. These new feature vectors might then enable the
generation of new structures. The enhanced version of our
generative algorithm allows for bypassing the PSO-assisted
feature estimation. New molecular structures are evaluated by a
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regression function and will be kept as solutions if the estimated
property values are within the pre-defined range.

fv ¼ argmin
v2In

vp � f pðvÞ
�� ��2

σ2
p

þ violationðvÞ
( )

(5)

Generative molecular design
The McKay’s Canonical Construction Path Algorithm generates
molecular structures efficiently, exhaustively, and without iso-
morphic duplication. Starting from a single vertex, a molecular
graph is augmented by adding a new vertex to extendable
vertices of the graph. Generation of isomorphic molecular graphs
is suppressed by pruning the search tree at the following steps in
the generation:

1. In generating a child search node, only one extendable
vertex is chosen among a set of symmetric vertices in a
molecular graph.

2. After generating a child search node, the search node
survives only when the generation step is a canonical
augmentation.

We show in Supplementary Fig. 4a an example of a search tree
for generating a molecular graph of 5 carbon atoms with single
bonds from “CC(C)C.” The vertices are indexed by order of
addition to the graph. A set of symmetric vertices are obtained as
an orbit of automorphism of a graph by applying a canonical
labeling algorithm. Orbits at the root node “CC(C)C” are 0 and 1, 2,
3, and vertices of 0 and 1 (a vertex of the smallest number in an
orbit) are chosen for adding a new vertex (pruning 1). At the
bottom of the search tree, isomorphic molecular graphs “CCC(C)
(C)C” are generated, but only one of them should survive. A
canonical labeling algorithm assigns labels of sequential numbers
to vertices of a molecular graph, and “0” is assigned to one of the
vertices of degree 1. We define that a graph augmentation is
canonical if ‘0’ is assigned to the lastly added vertex by a canonical
labeling algorithm. Therefore, the search node of an isomorphic
molecular graph at the right branch is pruned in this example
(pruning 2). When a search node survives, orbits of automorphism
of the graph obtained from the canonical labeling algorithm can
be used for choosing extendable vertices in the next
generation step.
Since in our implementation of McKay’s generation algorithm

only tree structures are generated with graph augmentation by
adding an atom as a vertex, the graph augmentation is extended
to use fragment structures, such as ring structures and user
defined structures, as vertices to add44. A fragment structure is
regarded as a huge atom, whose symbol is the SMILES of the
structure, with valency in the graph augmentation. Only when
vertices of a fragment structure are chosen for adding a new
vertex, the fragment structure is expanded to the actual molecular
graph. Since the canonical labeling is time consuming and its
complexity depends on the size of a graph, treating fragment
structures as vertices can improve the performance of the
generation algorithm.
The advanced version of the generative algorithm35,44 inherits

user-customized design constrains such as, for example, expected
or unexpected sub-structures in SMILES format, and the inverse
designed feature vectors such as, for example, the number of
heavy atoms, rings, and occurrences of fragment structures, and
then converts them into molecular structures. Constraint functions
capture design rules such as, for example, disallowing triple bonds
between carbon atoms, limiting the number of molecular rings in
the structure to between 4 and 9, or including preferential
molecular substructures. For the purpose of this study, all
constraints have been merged with the extracted feature vectors

and best regression models for subsequent iterations of optimized
structure generation.
An example with a ring of six atoms is shown in Supplementary

Fig. 4b. In a first step, the orbits of the automorphism group are
obtained from the SMILES representation of a given sub-structure.
We then create the isomorphic equivalent graph by replacing the
atom name with the SMILES name and the minimum index
number (indices 1 and 3). In this step, those vertices without “free
hand” are eliminated which helps identifying the symmetry of the
graph. For better handling, the isomorphic equivalent graph is
further simplified to a single vertex representation by selecting
vertices with minimum index number in each orbit, whereas other
vertices are replaced by dummy atoms. Finally, we obtain the
orbits of the automorphism group and the minimum index
number of each orbit is selected to be an extending vertex of the
sub-structure.
Supplementary Fig. 4c shows a construction example. During

the generation of a molecular structure as a colored graph (graph
of various atoms) and by adding a vertex with a connecting edge
one by one, the algorithm minimizes the number of vertices in
order to improve the performance of the canonical labeling which
is a bottleneck routine of the process. In the root graph, an
extending vertex which has a minimum label in an orbit of an
automorphism is considered to be a single vertex graph. In order
to extend the vertices, it is replaced by an isomorphic equivalent
representation. The new vertex is extended and canonical labeling
of the entire graph is performed. Once the canonical construction
path is validated, the original representation will be recovered.
The new structure will be tested against the pre-defined design
constraints. The cycle repeats until it fulfills pre-set requirements
such as number of generated results with pre-defined target
property values.
Note, that the generative model (GM) algorithm we have

developed is based on training feature vectors (FVs) against target
property values. Some advantages in comparison to widely used
DNN (deep neural network) based methodologies are discussed in
ref. 30. In short, DNN based GMs require large amounts of data and
long training times, but they are capable of efficiently generating
large quantities of new candidate molecules from a trained
hyperspace.
In FV-based GMs, the training time is typically much shorter

than in DNN based GMs. However, the generation process has
more flexibility and uncertainty. For example, if the generation
results lack variety, we could increase the depth of search tree and
the beam search size. In return, this choice would make the
generation time harder to predict as single molecules or sub-
structures are randomly selected from inversely calculated FVs. We
conclude that a straightforward comparison between the two
concepts (FV-based versus DNN-based GMs) is complicated and
the best suited approach should be chosen in view of a specific
application. Particularly in cases of data scarcity, we believe the
FV-based method provides a good balance between model
precision and generative design flexibility.

Computational representation of the polymer membrane
For the physical validation of ML predicted CO2 permeability, we
have created a method to automatically design a polymer
membrane representation which is suitable for molecular
dynamics simulation, see right box in Fig. 1. In a first step, the
SMILES strings of ML designed monomers are indexed to indicate
the position of head and tail atoms so they can be used as input
for PySIMM45,46. We have then used the Force Field Assisted Linear
Self-Avoiding Random Walk application in PySIMM45 to build a
linear polymer chain with a maximum number of about 800 heavy
atoms which are defined as atoms other than hydrogen. This way,
we have kept the length of the polymer chain rather constant,
independent of the monomer size. For describing the interactions
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between intra-chain and inter-chain atoms, we have used the
DREIDING force field47.
Once the chain building step is completed, PySIMM saves the

LAMMPS48 topology file with the associated force field para-
meters. Then, the polymer chains are packaged in a 3D box using
Packmol49. The 3D simulation box is periodic in x, y, z directions.
We are aware of the limited accuracy of applying force-field
parameters generated automatically by PySIMM for polymer
modeling, and opls-aa parameters50 can be adopted for an
improved accuracy. For defining the membrane thickness, the z
dimension of the box is set to 6 nm (see Supplementary Material
for more details). The dimensions of the box in x and y are defined
by a multiplication factor of the polymer chain size. The number of
polymer chains is defined by the total number of atoms in the
polymer membrane—20,000 in the present case. To keep the
membrane thickness in z-direction fixed at 6nm, rigid walls are
placed in the x, y membrane planes. To avoid interactions
between periodic images in z-direction, a vacuum layer with a
thickness of 5 nm is placed at each side of the polymer
membrane.
The system then undergoes an equilibration process that

consists of a nine-step compression-relaxation sequence, similar to
the approach in ref. 22: (1) energy minimization with isothermal
and isochoric (NVT) MD simulation at 1 K for 100 ps, (2) NVT MD
simulation at 300 K for 100 ps, (3) isothermal and isobaric (NPT)
MD simulation at 300 K and 1 atm for 100 ps, (4) NPT MD
simulation at 300 K and from 1 atm to 3000 atm for 100 ps, (5) NPT
MD simulation at 300 K and 3000 atm for 300 ps, (6) NVT MD
simulation at 800 K for 100 ps, (7) NVT MD simulation at 300 K for
100 ps, (8) NPT MD simulation at 300 K and 1000 atm for 300 ps,
the steps (6)-(8) repeats 30 times, and (9) NPT MD simulation at
300 K and 1 atm for 10,000 ps.
To account for long-range electrostatic interactions, we have

adopted the reciprocal space Particle-Particle Particle-Mesh
(PPPM) method. For all calculations, we have used 1 fs time steps
and a cutoff radius of 1.4 nm for van der Waals and Coulomb
interactions, respectively. To control temperature and pressure, we
have used Nose–Hoover thermostats and barostats with a
relaxation time of 0.1 and 1 ps, respectively.
All MD simulations were carried out with the LAMMPS

package48,51–53. For further information regarding the effects of
chosen force fields, chain lengths, membrane thicknesses and the
equilibration process protocol, see Supplementary Information
and Supplementary Figs. 8–10.

Automated membrane validation with molecular dynamics
simulation
Two types of molecular dynamics (MD) simulations methods
have been used to investigate transport through membranes:
equilibrium MD (EMD) and non-equilibrium MD (NEMD). NEMD
is ideally suited to represent an experimental membrane system
in which an external driving force, such as a chemical potential
or pressure gradient, is applied to the membrane. Specifically,
we have chosen CPDMD to evaluate membrane based gas
filtration22.
For benchmarking purpose, as shown in Supplementary Fig. 7,

we have chosen representative homo-polymers covering a broad
CO2 permeability range. For six of these homo-polymers, we have
performed five independent CPDMD simulations each using the
simulation box set up in Fig. 1. The results are shown in
Supplementary Fig. 11. Overall, we obtain reasonable agreement
with literature values for BZ-CF3, IBPA, PIM-PI-EA and PEO, despite
the large error bars for BZ-CF3 and PEO. The simulated CO2

permeabilities of TDA1-DM and PI-5 are higher than the literature
values, however, one of the PI-5 samples is close to the
experimental value. We note that due to the amorphous nature

of polymers, both experimental and simulations results typically
exhibit large error bars22.
To set up a CPDMD simulation, we have placed the

membrane at the center of the simulation box with a fixed,
rigid wall at each side of the membrane, 10 nm away from its
surface, as shown in Fig. 1. To avoid interactions with periodic
images in z-direction, we have placed a 5 nm vacuum layer
beyond each rigid wall. The carbon atoms in the 5 Å surface
layer of the membrane were fixed in z-direction by a harmonic
potential with a force constant of 5.0 Kcal/mol Å2. Following
ref. 22, we have estimated the number of CO2 molecules in the
feed chamber using the ideal gas law NCO2= NApV/RT, where NA

is the Avogadro’s constant, R is the gas constant, p is the
pressure set to 10 atm, T is the temperature set to 300 K, and V
is the feed chamber volume, see Fig. 1. We have then
performed NVT MD simulations at 300 K. Due to the pressure
gradient, CO2 molecules are absorbed within the membrane
and, subsequently, transported to the permeate side. To
maintain the same initial pressure gradient of 10 atm, we have
added CO2 molecules into the feed chamber while removing
the molecules at the permeate side to produce a pseudo
vacuum. We have run the addition/removal processes in cycles
with a time interval of 200 ps following ref. 54. We have used the
DREIDING force field47 for describing the interactions between
intra-chains and inter-chains atoms. For CO2 molecules, we
have used the rigid model TraPPE force field55. For the CO2/
polymer LJ interactions, we have applied the Lorentz–Berthelot
mixing rules. All MD simulations were performed with the
LAMMPS package48,51–53 using the same parameters described
in the previous “Methods” subsection.
From the NCO2− t slope, the permeability PCO2 can be estimated

following

PCO2 ¼ ðΔNCO2=NAÞl
AΔtp

(6)

where ΔNCO2 is the number of CO2 molecules permeated within
time duration Δt, NA is Avogadro’s constant, l and A are the
membrane thickness and area, respectively, and p is the partial
pressure—10 atm in this case—in the feed chamber.
The termination criterion for CPDMD simulations is discussed in

detail in the Supplementary Information and shown in Supple-
mentary Fig. 12. The evolution of the simulated CO2 density profile
across a polymer membrane is shown in Supplementary Fig. 13,
complementing the simulation results shown in Fig. 4d for the
same polymer.

DATA AVAILABILITY
The training dataset containing polymer candidates in SMILES format is available—under
https://doi.org/10.24435/materialscloud:64-c8—at https://archive.materialscloud.org/record/
2023.20. The input data for calculating PCO2; Td,1/2 and Tg with the PPP engine can be found
in the second and third column, respectively, and the output data in the remaining columns of
the file PCO2-Tg-Thd-data-all-simulated.csv. This file is available—under https://doi.org/
10.24435/materialscloud:64-c8—at https://archive.materialscloud.org/record/2023.20. The data-
set containing AI discovered polymer candidates in SMILES format is available—under https://
doi.org/10.24435/materialscloud:64-c8—at https://archive.materialscloud.org/record/2023.20.

CODE AVAILABILITY
The Polymer Property Prediction (PPP) Engine is available at https://github.com/IBM/
polymer_property_prediction. The jupyter notebook for polymer property predic-
tions based on SMILES input is available—under https://doi.org/10.24435/
materialscloud:64-c8—at https://archive.materialscloud.org/record/2023.20. The
open-source version of Inverse Materials Design engine is available at https://
github.com/GT4SD/molgx-core/. The jupyter notebook for the training and regres-
sion models with the open-source version of IMD is available—under https://doi.org/
10.24435/materialscloud:64-c8—at https://archive.materialscloud.org/record/2023.20.

R. Giro et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   133 

https://doi.org/10.24435/materialscloud:64-c8
https://archive.materialscloud.org/record/2023.20
https://archive.materialscloud.org/record/2023.20
https://doi.org/10.24435/materialscloud:64-c8
https://doi.org/10.24435/materialscloud:64-c8
https://archive.materialscloud.org/record/2023.20
https://doi.org/10.24435/materialscloud:64-c8
https://doi.org/10.24435/materialscloud:64-c8
https://archive.materialscloud.org/record/2023.20
https://github.com/IBM/polymer_property_prediction
https://github.com/IBM/polymer_property_prediction
https://doi.org/10.24435/materialscloud:64-c8
https://doi.org/10.24435/materialscloud:64-c8
https://archive.materialscloud.org/record/2023.20
https://github.com/GT4SD/molgx-core/
https://github.com/GT4SD/molgx-core/
https://doi.org/10.24435/materialscloud:64-c8
https://doi.org/10.24435/materialscloud:64-c8
https://archive.materialscloud.org/record/2023.20


Received: 11 August 2022; Accepted: 19 July 2023;

REFERENCES
1. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136,

B864–B871 (1964).
2. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and corre-

lation effects. Phys. Rev. 140, A1133–A1138 (1965).
3. Zhang, L., d’Avezac, M., Luo, J.-W. & Zunger, A. Genomic design of strong direct-

gap optical transition in Si/Ge core/multishell nanowires. Nano Lett. 12, 984–991
(2012).

4. Jain, A. et al. A high-throughput infrastructure for density functional theory cal-
culations. Comput. Mater. Sci. 50, 2295–2310 (2011).

5. Zhang, W., Sun, P. & Sun, S. A precise theoretical method for high-throughput
screening of novel organic electrode materials for Li-ion batteries. J. Materiomics
3, 184–190 (2017).

6. Mounet, N. et al. Two-dimensional materials from high-throughput computa-
tional exfoliation of experimentally known compounds. Nat. Nanotechnol. 13,
246–252 (2018).

7. Horton, M. K., Montoya, J. H., Liu, M. & Persson, K. A. High-throughput prediction
of the ground-state collinear magnetic order of inorganic materials using density
functional theory. npj Comput. Mater. https://doi.org/10.1038/s41524-019-0199-7
(2019).

8. Brunin, G., Ricci, F., Ha, V.-A., Rignanese, G.-M. & Hautier, G. Transparent con-
ducting materials discovery using high-throughput computing. npj Comput.
Mater. https://doi.org/10.1038/s41524-019-0200-5 (2019).

9. Curtarolo, S. et al. The high-throughput highway to computational materials
design. Nat. Mater. 12, 191–201 (2013).

10. Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine
learning in materials informatics: recent applications and prospects. npj Comput.
Mater. https://doi.org/10.1038/s41524-017-0056-5 (2017).

11. Hafiz, H. et al. A high-throughput data analysis and materials discovery tool for
strongly correlated materials. npj Comput. Mater. https://doi.org/10.1038/s41524-
018-0120-9 (2018).

12. Cai, J., Chu, X., Xu, K., Li, H. & Wei, J. Machine learning-driven new material
discovery. Nanoscale Adv. 2, 3115–3130 (2020).

13. Liu, Y., Zhao, T., Ju, W. & Shi, S. Materials discovery and design using machine
learning. J. Materiomics 3, 159–177 (2017).

14. Lu, W., Xiao, R., Yang, J., Li, H. & Zhang, W. Data mining-aided materials discovery
and optimization. J. Materiomics 3, 191–201 (2017).

15. Mannodi-Kanakkithodi, A. et al. Scoping the polymer genome: a roadmap for
rational polymer dielectrics design and beyond. Mater. Today 21, 785–796 (2018).

16. Kim, C., Chandrasekaran, A., Huan, T. D., Das, D. & Ramprasad, R. Polymer genome:
a data-powered polymer informatics platform for property predictions. J. Phys.
Chem. C 122, 17575–17585 (2018).

17. Kim, K. et al. Deep-learning-based inverse design model for intelligent discovery
of organic molecules. npj Comput. Mater. https://doi.org/10.1038/s41524-018-
0128-1 (2018).

18. Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal
conductivity using a molecular design algorithm. npj Comput. Mater. https://
doi.org/10.1038/s41524-019-0203-2 (2019).

19. ichiro Noro, S. et al. Porous coordination polymers with ubiquitous and bio-
compatible metals and a neutral bridging ligand. Nat. Commun. https://doi.org/
10.1038/ncomms6851 (2015).

20. Firpo, G. et al. The role of surfaces in gas transport through polymer membranes.
Polymers 11, 910 (2019).

21. Powell, C. E. & Qiao, G. G. Polymeric CO2/N2 gas separation membranes for the
capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 279, 1–49
(2006).

22. Kong, X. & Liu, J. An atomistic simulation study on POC/PIM mixed-matrix
membranes for gas separation. J. Phys. Chem. C 123, 15113–15121 (2019).

23. Barnett, J. W. et al. Designing exceptional gas-separation polymer membranes
using machine learning. Sci. Adv. 6, eaaz4301 (2020).

24. Provost, B. An Improved N2 Model for Predicting Gas Adsorption in MOFs and Using
Molecular Simulation to Aid in the Interpretation of SSNMR Spectra of MOFs.
Master’s thesis, Université d’Ottawa/University of Ottawa (2015).

25. Dzubak, A. L. et al. Ab initio carbon capture in open-site metal–organic frame-
works. Nat. Chem. 4, 810–816 (2012).

26. McDaniel, J. G. & Schmidt, J. R. Robust, transferable, and physically motivated
force fields for gas adsorption in functionalized zeolitic imidazolate frameworks.
J. Phys. Chem. C 116, 14031–14039 (2012).

27. Wang, S., Hou, K. & Heinz, H. Accurate and compatible force fields for
molecular oxygen, nitrogen, and hydrogen to simulate gases, electrolytes,
and heterogeneous interfaces. J. Chem. Theory Comput. 17, 5198–5213
(2021).

28. Weininger, D. Smiles, a chemical language and information system. 1. Introduc-
tion to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 31–36
(1988).

29. Bicerano, J. Prediction of Polymer Properties - Third Edition (Marcel Dekker Inc.,
2002).

30. Takeda, S. et al. Molecular inverse-design platform for material industries. In Proc.
26th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (ACM, 2020).

31. Pyzer-Knapp, E. O. et al. Accelerating materials discovery using artificial intelli-
gence, high performance computing and robotics. npj Comput. Mater. https://
doi.org/10.1038/s41524-022-00765-z (2022).

32. OPSIN. Open parser for systematic IUPAC nomenclature. https://
opsin.ch.cam.ac.uk (2021).

33. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res.
12, 2825–2830 (2011).

34. Takeda, S. et al. AI-driven inverse design system for organic molecules. Preprint at
arXiv https://arxiv.org/abs/2001.09038 (2020).

35. Takeda, S. et al. Molecule generation experience: an open platform of material
design for public users. Preprint at arXiv https://arxiv.org/abs/2108.03044
(2021).

36. Costanza-Robinson, M. S., Estabrook, B. D. & Fouhey, D. F. Representative ele-
mentary volume estimation for porosity, moisture saturation, and air-water
interfacial areas in unsaturated porous media: data quality implications. Water
Resourc. Res. https://doi.org/10.1029/2010wr009655 (2011).

37. Polymer Database (PoLyInfo). https://polymer.nims.go.jp/en/ (2020).
38. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).
39. Robeson, L. M., Liu, Q., Freeman, B. D. & Paul, D. R. Comparison of transport

properties of rubbery and glassy polymers and the relevance to the upper bound
relationship. J. Membr. Sci. 476, 421–431 (2015).

40. Chandrashekar, G. & Sahin, F. A survey on feature selection methods. Comput.
Electric. Eng. 40, 16–28 (2014).

41. Yang, L. & Shami, A. On hyperparameter optimization of machine learning
algorithms: theory and practice. Neurocomputing 415, 295–316 (2020).

42. Harvey, W. D. & Ginsberg, M. L. Limited discrepancy search. In Proc. 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI), Vol. 1. 607–615 (IJCAI,
1995).

43. Korf, R. E. Improved limited discrepancy search. In Proc. 13th National Conference
on Artificial Intelligence (AAAI), Vol. 1. 286–291 (AAAI, 1996).

44. Hama, T. Molecular struture generation with substructure representations. U.S.
Patent Application Publication US2020/0226804A1 (2020).

45. Fortunato, M. E. & Colina, C. M. pysimm: A python package for simulation of
molecular systems. SoftwareX 6, 7–12 (2017).

46. Fortunato, M. E. & Colina, C. M. Pysimm. https://github.com/polysimtools/pysimm
(2021).

47. Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for
molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

48. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J.
Comput. Phys. 117, 1–19 (1995).

49. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for
building initial configurations for molecular dynamics simulations. J. Comput.
Chem. 30, 2157–2164 (2009).

50. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the
OPLS all-atom force field on conformational energetics and properties of organic
liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

51. Brown, W. M., Wang, P., Plimpton, S. J. & Tharrington, A. N. Implementing
molecular dynamics on hybrid high performance computers - short range forces.
Comp. Phys. Commun. 182, 898–911 (2011).

52. Brown, W. M., Kohlmeyer, A., Plimpton, S. J. & Tharrington, A. N. Implementing
molecular dynamics on hybrid high performance computers - particle-particle
particle-mesh. Comp. Phys. Commun. 183, 449–459 (2012).

53. W. M. Brown, Y. M. Implementing molecular dynamics on hybrid high perfor-
mance computers: three-body potentials. Comp. Phys. Commun. 184, 2785–2793
(2013).

54. Liu, J. & Jiang, J. Molecular design of microporous polymer membranes for the
upgrading of natural gas. J. Phys. Chem. C 123, 6607–6615 (2019).

55. Potoff, J. J. & Siepmann, J. I. Vapor–liquid equilibria of mixtures containing
alkanes, carbon dioxide, and nitrogen. AIChE J. 47, 1676–1682 (2001).

56. Voss, N. R. & Gerstein, M. 3v: Cavity, channel and cleft volume calculator and
extractor. Nucleic Acids Res. 38, W555–W562 (2010).

57. 3V: Voss Volume Voxelation. http://3vee.molmovdb.org/ (2020).

R. Giro et al.

10

npj Computational Materials (2023)   133 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-019-0199-7
https://doi.org/10.1038/s41524-019-0200-5
https://doi.org/10.1038/s41524-017-0056-5
https://doi.org/10.1038/s41524-018-0120-9
https://doi.org/10.1038/s41524-018-0120-9
https://doi.org/10.1038/s41524-018-0128-1
https://doi.org/10.1038/s41524-018-0128-1
https://doi.org/10.1038/s41524-019-0203-2
https://doi.org/10.1038/s41524-019-0203-2
https://doi.org/10.1038/ncomms6851
https://doi.org/10.1038/ncomms6851
https://doi.org/10.1038/s41524-022-00765-z
https://doi.org/10.1038/s41524-022-00765-z
https://opsin.ch.cam.ac.uk
https://opsin.ch.cam.ac.uk
https://arxiv.org/abs/2001.09038
https://arxiv.org/abs/2108.03044
https://doi.org/10.1029/2010wr009655
https://polymer.nims.go.jp/en/
https://github.com/polysimtools/pysimm
http://3vee.molmovdb.org/


ACKNOWLEDGEMENTS
We acknowledge discussion with and support by Manuela F. B. Rodriguez, Rong
Chang, Daiju Nakano, and Bruno Flach (all IBM Research).

AUTHOR CONTRIBUTIONS
R.G. co-developed the PPP engine, developed the computational process of physical
validation with molecular dynamics simulations, provided figures, and co-wrote the
paper. H.H. developed the computational process from dataset preparation to ML
Generative Design, performed ML Generative Design, and provided figures. A.K.
developed algorithms for molecular design and co-wrote the paper. T.H. developed
the advanced version of the generative molecular design algorithm. R.F.N. co-
developed and open-sourced the PPP engine. B.L. improved the automatic force field
parameter assignment. S.T. co-wrote the paper. L.H. performed data analysis. M.B.S.
conceived and co-wrote the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-023-01088-3.

Correspondence and requests for materials should be addressed to Mathias B.
Steiner.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

R. Giro et al.

11

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   133 

https://doi.org/10.1038/s41524-023-01088-3
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	AI powered, automated discovery of polymer membranes for carbon capture
	Introduction
	Results and discussion
	Methods
	Polymer property calculation for automated training dataset generation
	Hyperparameter optimization and limited discrepancy search
	Feature vector optimization
	Generative molecular design
	Computational representation of the polymer membrane
	Automated membrane validation with molecular dynamics simulation

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




