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Deep material network via a quilting strategy: visualization for
explainability and recursive training for improved accuracy
Dongil Shin 1, Ryan Alberdi2, Ricardo A. Lebensohn 3 and Rémi Dingreville 1✉

Recent developments integrating micromechanics and neural networks offer promising paths for rapid predictions of the response
of heterogeneous materials with similar accuracy as direct numerical simulations. The deep material network is one such
approaches, featuring a multi-layer network and micromechanics building blocks trained on anisotropic linear elastic properties.
Once trained, the network acts as a reduced-order model, which can extrapolate the material’s behavior to more general
constitutive laws, including nonlinear behaviors, without the need to be retrained. However, current training methods initialize
network parameters randomly, incurring inevitable training and calibration errors. Here, we introduce a way to visualize the
network parameters as an analogous unit cell and use this visualization to “quilt” patches of shallower networks to initialize deeper
networks for a recursive training strategy. The result is an improvement in the accuracy and calibration performance of the network
and an intuitive visual representation of the network for better explainability.
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INTRODUCTION
Data-driven approaches and advances in machine-learning algo-
rithms are emerging techniques sought out to speed up the
computational modeling and time-to-solution predictions of
microstructure and materials behavior1–7. In computational
mechanics, these techniques bypass computationally expensive
direct numerical simulation (DNS) solvers, such as the finite
element method8, fast Fourier transform (FFT)9–11, or mesh-free
solvers12, by approximating the effective constitutive response of
materials microstructures with surrogate models trained on stress-
strain datasets. For example, recent studies have put forward such
surrogate models capable of discovering unknown constitutive
laws13 or rapidly predicting the effective nonlinear material’s
behavior14 as well as path-dependent behavior15–17 of micro-
structures. These surrogate models are based on a variety of
methods, including artificial neural networks18–20, two-dimensional
(2D) and three-dimensional (3D) image-based convolutional neural
networks21,22, cluster-based reduced-order models23–25, and Gaus-
sian process regression models26,27. Alternatively, other efforts
focus on accelerating DNS simulations bypassing DNS with
machine-learning solvers4,6,7,19,28,29. However, all of these methods
rely heavily on computationally expensive microstructure-level
simulations for a given and fixed material constitutive relation. In
other words, these machine-learning models need to be retrained
whenever the constitutive relation changes, limiting their extra-
polation performance.
Compared to these methods, recent works on the so-called

deep material network30–34 (DMN) circumvent this reliability on
retraining the network to predict the nonlinear and inelastic
responses of microstructures by using a microstructure-aware
binary tree-type network with connected mechanistic building
blocks (Fig. 1a). These building blocks use analytical homogeniza-
tion solutions to describe the overall material response of a fixed
microstructure. In the training mode, also referred to as the offline
training mode in machine-learning parlance, the network is
trained on linear elastic data for a given microstructure that are

generated by DNS (top two panels of Fig. 1a). During this training
procedure, the DMN learns the homogenization pathway and
mechanical local interactions in that given microstructure, along
with the microstructure-informed/physics-informed network struc-
ture. Once trained, the network does not need to be retrained and
acts as a reduced-order model that can extrapolate the material’s
behavior to a variety of material constitutive laws (bottom panel of
Fig. 1a). Specifically, in that configuration, the network parameters
are pre-determined and fixed from the offline training mode, and
the network instead iteratively solves the (nonlinear) stress-strain
response given a (nonlinear) constitutive relationship defined for
the base nodes. This application of the network as a reduced-
order surrogate model is referred to as the online prediction
mode. More complete descriptions of DMN are provided in the
original paper by Liu and Koishi30, the micromechanics perspec-
tive of DMN by ref. 33, and in the Methods section of this paper.
This approach has been successfully applied to a wide range of
problems, including multi-phase composites32,34,35, woven struc-
tures36, or porous materials37, and expanded to predict the
thermomechanical behavior of composites38 or interfacial failure39

by considering cohesive layers. Yet, even for this successful
approach, two outstanding challenges have been to (i) improve
the network calibration (i.e., reducing model uncertainty for the
online prediction) without compromising predictive accuracy (i.e.,
model error from cost function during the offline training mode),
especially if one wants to keep a network with a small number of
layers and (ii) address explainability of the network (i.e., the ability
to understand and interpret the network parameters and their role
regarding the network’s function, in the present case predicting
the material’s mechanical response). Reducing the calibration
error is important because it improves the accuracy and reliability
of the network’s predictions. Explainability is important for the
trustworthiness, debugging, and performance improvement of
the network. On the topic of accuracy and calibration, the efficacy
of random initialization of the network cannot guarantee reliable
solutions with low uncertainty without a sufficiently deep network,
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substantial training optimization, and ensemble averaging of
multiple trained networks40 (i.e., combining the predictions of
multiple models to produce a more accurate prediction) to strike a
good balance between accuracy and calibration. Training net-
works via classical gradient-based optimization for back-
propagation forces the network to depend on the initial network
parameters41, a fundamental limitation of randomly initializing
parameters. Indeed, even though the network potentially
possesses a global solution with good performance, a gradient-
based optimization approach will find one of the local optima in
the vicinity of the initial parameters. When the network becomes
deeper, the variance between local optimum points may become
smaller; however, some studies suggest a tendency for larger,
more accurate models to be worse calibrated42–44, emphasizing
the importance of reducing the risk of being trapped in a bad local
optimum. The explainability of the network parameters (weights
and normal vectors at nodes for the DMN, see Methods for further
details) is usually challenging45 and non-intuitive, since DMN is
primarily used as a “black-box” surrogate alternative to DNS
solvers. The network is mathematically complex, causing difficul-
ties in describing the meaning and values of the nodes directly
and interpreting what happens during the network’s parameter
optimization.
Inspired by the success of recursive optimization in other

scientific domains46–48, we present a strategy for improving the
accuracy and explainability of the DMN. Figure 1 illustrates the
various elements of our approach. We call this approach recursive
training via a quilting strategy since the network architecture is
trained by “quilting” an array of unit-cell analogs patches (i.e., the
visualization of previously trained shallower networks represented
as analogous unit cells) to initialize the architectures of deeper
networks with more layers and recursively train deeper and
deeper networks. We visualize the network by constructing an

analogous unit cell based on the physical interpretation of the
network parameters (activation weights and normal vectors) at
each layer: the activation weights are used for selecting the phase
fraction of material domains, and the normal vectors are used for
defining the associated orientations of those domains (Fig. 1b).
Based on this visualization, we quilt together shallow optimized
networks as patches of analogous unit cells representing the
network as the base building blocks for constructing and
initializing deeper networks (Fig. 1b, c). This process is repeated
to recursively train increasingly deeper networks with optimized
initial parameters. This recursive training process is applicable to
both 2D and 3D DMNs. We show that this recursive quilting
strategy outperforms the results obtained by randomizing the
initial network parameters. The performance results from the
network trained recursively illustrate that not only the network
acts as a high-fidelity reduced-order model of the macroscopic,
homogenized response of the original periodic cell, but that it also
improves the predictions of the local behavior in terms of
distribution of local stresses and strains as compared to a network
trained via random initialization. We, therefore, obtain improved
accuracy and calibration performance for a diverse set of 2D and
3D DNS periodic unit cells, demonstrating the applicability and
generalization of this strategy. The visualization of the network as
a unit cell not only serves as the key ingredient for the purpose of
recursive training but also enables us to comprehend the network
behavior more intuitively. Indeed, we show that this visualization
can be used to track the training progress by visually providing
additional insights on the convergence of the training procedure.
Additionally, by comparing the DNS results on an original periodic
unit cell with the DNS results performed on the network unit-cell
analog, we show that this visualization not only serves as an
intuitive method to explain the network, but it also correctly
captures how the network constructs the interactions between

Fig. 1 Deep material network (DMN) via a quilting and recursive strategy. a A database of elastic properties is generated via direct
numerical simulations (DNS). This database is used for (offline) training of the network. The trained network does not need retraining for the
(online) prediction and is able to extrapolate the material’s behavior to unknown materials and to various local material constitutive laws, such
as plasticity or fatigue. b The network is visualized as an analogous unit cell constructed directly from the network parameters. Patches of
these unit cells are quilted together as an array using this representation to form the initial architecture of deeper DMNs. c The network
visualization and quilting strategy are used to recursively train increasingly deeper networks, resulting in improved performance of the
network as compared to when it is randomly initialized.
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material phases, to the point where, under certain circumstances,
it can reproduce both the macroscopic, homogenized response
and the statistical local behavior of the original periodic unit cell.

RESULTS
In what follows, we start by highlighting the deficiencies of
randomly initializing a DMN in terms of inconsistencies of the
training accuracy and variability for the online predictions. We
then illustrate how the network parameters can be visualized as
an analogous unit cell by taking advantage of the network’s
mechanistic building blocks. We finally show how to use this
visualization recursively to initialize an increasingly deeper
network in order to train the network and reduce the
calibration error.
For all these results, as detailed in Methods, the training data

were obtained from a homogenized material property calculated
by DNS FFT simulations on periodic unit cells for which each of the
material phases were considered to be orthotropic. For the online
predictions, in which the network acts as a reduced-order model,
we used an elasto-viscoplastic constitutive relation with visco-
plastic behavior given by Norton’s law49,50. Implementation of the
network for both the offline training and online predictions are
based on the DMN architecture proposed by ref. 32 and ref. 34 and
also described in Methods.

Accuracy and calibration with random initialization
We first start by illustrating the performance of the DMN when it is
randomly initialized (see details of the network architecture in
Methods). We compare the accuracy and calibration errors of
networks with different depths both in the offline and online
inference modes to reveal areas of improvement in the network
performance. Here, for a given network of depth N (N= 3, 5, or 7),
we trained 30 different randomly initialized networks using the
DNS periodic unit cell and protocol shown in Fig. 1a. This
microstructure corresponds to a binary composite containing five
spherical inclusions.
Figure 2a shows the training history for randomly initialized

networks of different depths. We show the mean value of the
training loss for networks with N layers averaged over 30 different
randomly initialized networks. These training results primarily
measure the difference between the effective elastic stiffness
matrix obtained by DNS and that predicted by the network (see
definition of the training cost function in Eq. (21) and details of the
training procedure in Methods). We observe that, after a rapid
decrease of the cost function during the early stage of training
(first 200 epochs), the network performance keeps improving its
accuracy until it converges after at most 2000 epochs to reach a
steady-state minimum error (cost = ~2.5 × 10−3, ~ 3.2 × 10−4,
~ 1.8 × 10−4 for N= 3, 5, 7). Even for the shallow three-layer-
deep network (i.e., N= 3), we achieve an error of less than one
percent upon completion of the training. The inset in panel a
shows two examples of the distribution of weights in the base
layer (the size of the nodes is commensurate to the activation

Fig. 2 Deep material network performance when randomly initialized. These results correspond to the DNS periodic unit cell presented in
panel a of Fig. 1. a Training errors as a function of the number of epochs for networks with various depths (N= 3, 5, and 7). Deeper networks
have improved accuracy. Inset in this panel illustrates two 3-layer-deep DMNs with different initial parameters (left). The resulting optimized
parameters are displayed on the right. The size of the nodes scales with the values of the weights, and white arrows show the orientations of
the normal vectors. b Online prediction results for the Norton viscoplastic constitutive relationship under shear loading conditions for the
DMN trained in a (top panel). The distribution of the stresses at a shear strain of 2ϵ12= 0.005 (obtained by randomly initializing 30 different
networks for N= 3, 5, and 7) illustrates the calibration error (bottom panel). Deeper DMN predicts the stress behavior more precisely with
lower uncertainty. These results illustrate the calibration performance of the extrapolated predictions in the nonlinear regime. Accuracy (x-
axis) vs. calibration (y-axis) error in the case of shear loading (c) and tensile loading (d) for networks with various depths. Cross symbols
indicate performance for randomly initialized networks.
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weights) and orientation vectors in the other layers before and
after training for two 3-layer-deep networks initialized with
different random seeds. We notice that, even though these two
networks have comparable training accuracies, the distribution of
optimized network parameters is substantially different depend-
ing on how the network was initialized. Such difference is a direct
consequence of using a gradient-based optimizer to train the
network and points to the fact that the trained networks settled in
separate local optima, conditioned by their initial network
parameters.
Based on these training results on elastic properties data, one

would expect good extrapolation performance for the online
prediction when using the DMN for nonlinear analyses. We show a
comparison of the online predictions for a Norton viscoplastic
constitutive relation under shear loading (see description in Eq. (1)
and implementation in Methods) for networks with different
depths in Fig. 2b. The top panel shows the predicted average
stress-strain responses and the bottom panel shows the distribu-
tion of stresses at a shear strain 2ϵ12= 0.005 across the 30
networks, for each different depths. While the average strain-
stress response compares relatively well with that of the DNS
(especially for deeper networks with many layers), we note that
the distribution of predicted stresses amongst the 30 different
randomly initialized networks, even at a relatively small shear
strain (2ϵ12= 0.005), varies substantially depending on the depth
of the network. This assertion is especially true for the 3- and 5-
layer-deep networks (i.e., N= 3 and N= 5), indicating a poor
calibration of the model, while the seven-layer-deep network (i.e.,
N= 7) has a narrower distribution indicating a better calibration of
the model. For the shallower networks, in some cases, the 3-layer-
deep network can have better-extrapolated results than the five-
layer-deep network, as indicated by the overlap of distributions,
but these results again are highly dependent on how the network
has been initialized. By plotting the training accuracy error (x-axis)
against the calibration error (y-axis) in Fig. 2c (shear loading to
2ϵ12= 0.005) and in Fig. 2d (tensile loading ϵ11= 0.02), we further
illustrate the point that, while increasing the number of layers
reduces both the accuracy and calibration errors, shallow
networks still do present relatively high calibration errors, even
in the present case for a simple constitutive relation such as the
Norton viscoplastic relation and for small plastic strains. It is
reasonable to assume from these results that such error would be
even more pronounced for larger deformations, for more
complicated nonlinear constitutive relationships, or for complex

loading paths for which the calibration error would accumulate
and drift.

Network visualization as an analogous unit cell
The results above illustrate the difficulty of balancing an
accurate model during the training procedure with a well-
calibrated model determined for online predictions. Part of this
issue stems from the lack of explainability during training, if one
tries to interpret the nodes of the network directly through the
lens of weights and biases in order to improve the network
performance. As a solution, we can exploit the DMN architecture
directly as a feature for explainability since it is based on
micromechanics building blocks. As described in Methods, the
DMN is a binary tree-type network for which, at a given layer
i− 1, nodal weights (ωn

i�1) are inherited from activated nodes in
layer i. The weights in that layer are directly related to the phase
fractions of materials (f 2ni�1 ¼ ω2n

i�1=ðω2n
i�1 þ ω2n�1

i�1 Þ). Additionally,
nodes and layers also carry normal vectors n!n

i�1 as part of the
network parameters. These two elements (ωi�1; n

!
i�1), defined at

each layer, provide us with the means to visualize the network
as a unit cell from the network perspective. We define this
visualization as the DMN unit-cell analog. It should be noted that
this analogous unit cell is not periodic in contrast to the one
used in DNS.
Figure 3a illustrates the DMN visualization process for a 2-layer-

deep network (i.e., N= 2). The output layer, Layer 0, represents
the homogenized material with the predicted homogenized
materials properties obtained through DMN. As such, a visualiza-
tion of the network, as seen from this layer, can be simply
represented as a single homogenized material block with weight
ω1
0 (and thereby phase fraction f 10 ¼ 1). The next layer, Layer 1,

contains three pieces of information: two weights, ω1
1 and ω2

1, and

a normal vector, n!1
0 from Layer 0. Note that the subscript

indicates the layer number, and the superscript denotes the node
number. The weights can be used to define two blocks of
materials of size f 11 ¼ ω1

1=ðω1
1 þ ω2

1Þ (pink) and f 21 ¼ ω2
1=ðω1

1 þ ω2
1Þ

(green) respectively. The normal vector can be used to define the
plane’s orientation separating these two blocks of materials.
Finally, the base layer, Layer 2, can be thought as describing the

two separate blocks in Layer 1 with information (ω1
2;ω

2
2; n
!1

1)
for one of the block (green block in Fig. 3a) and information

(ω3
2;ω

4
2; n
!2

1) for the other block (pink block in Fig. 3a). Following

Fig. 3 Network visualization. a Visualization for a 2-layer-deep network (i.e., N= 2). Layer 0 represents the homogenized material. Layer 1
illustrates the preceding layer with two nodes with activated weight ω1

1 and ω2
1, and a normal vector direction n!0

1. Layer 2 splits the pink and
green domains present in Layer 1 into sub-domains based on the weights and normal vectors. By assigning material C1 (e.g., phase colored in
red) and C2 (e.g., phase colored in blue) to odd and even nodes, respectively, the visual representation learned by the network becomes
apparent. b, c Training history for the two 3-layer-deep architectures presented in Fig. 2a. As the number of epochs increases, the DMN unit-
cell analog representation keeps evolving toward an optimized representation. The final representations are different between the two
architectures depending on the initial parameterization of the DMN unit-cell analog prior to the training.
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the same procedure, we can define four materials blocks based on
the activation weights to select the phase fraction of each block,
and the normal vectors to define the associated orientations of
those blocks. Finally, by assigning materials 1 (C1 in blue) and 2 (C2

in red), respectively, to the odd and even nodes in Layer 2, we
obtain a visualization of the network as a unit-cell analog as seen
through the lens of the DMN. This visualization process can be
generalized for any depth of the DMN by repeating it for each
layer in the network before assigning two materials in the final
layer. This approach can be applied to DMNs trained on 3D DNS
periodic unit cells, updating the blocks of materials to be volume
and the normal vectors to cut the volumes with a normal plane.
Note that the above description of the visualization of the DMN is
not unique since there is no intrinsic ordering between the
phases, and as such, other visual constructs could be proposed.
The analogous unit cell representation of the network is not
meant to reconstruct a realization of the microstructure of the
original DNS unit cell. Rather, this visual approach offers a
straightforward and intuitive visualization, which is easy to follow
and based on the mechanistic kinematic and kinetic relationships
built into the logic of the network itself.

This construct allows us to visualize the neural network as a
unit cell at any time during the training history, offering a
deeper understanding of the convergence of the optimized
network parameters. For instance, in Fig. 3b, c, we show the
evolution of the DMN unit-cell analog during training for the
two 3-layer-deep network architectures discussed in the
previous Results section in Fig. 2. This visual comparison
illustrates our previous conclusion directly and visually: the set
of initial parameters is the dominant factor leading to the set of
converged and optimized network parameters. Alternatively,
this conclusion can be reframed from a different perspective
based on our visualization process: the initial random DMN
unit-cell analog is the dominant factor leading to an optimized
DMN unit cell. Indeed, for both architectures, the final
optimized DMN unit cell presents reminiscent features of the

initial random DMN unit cell. We can easily observe that the
features of the optimized DMN unit cell are rapidly found
during the training history, correlating with the rapid drop in
the cost function. After this initial step, as the number of
epochs increases, the DMN unit-cell analog converges towards
a final representation that remains close to the initial DMN unit
cell. The final representations are different between the two
architectures depending on the initial parameterization of the
network.

Recursive training by quilting analogous DMN unit cells
The visualization process described above constitutes the primary
ingredient for constructing and initializing deeper networks in our
quilting strategy for recursive training. As illustrated in the bottom
panel of Fig. 1b, generating deeper networks trained from
shallower DMNs could be visually represented as quilting patches
of DMN unit-cell analogs as an array. In other words, we consider
the updated initial deeper networks as a DMN unit cell assembled
from pre-optimized and pre-homogenized smaller DMN unit-cell
analogs.

As depicted in Fig. 4a, we “quilted” an array of patches of DMN
unit-cell analogs obtained from previously trained and optimized
shallower networks to initialize the architecture of a deeper
network with more layers. The illustration in Fig. 4a shows an
example of how to construct a four-layer-deep network from a
two-layer-deep network. In the 2D case, the initialization process
goes as follows. The previously trained DMN is replicated four
times, updating each weight to be a quarter of the original weight
in order to have a consistent total weight ω1

0 (see DMN
architecture in Methods). Hereafter, by adding two layers at the
top of the network, we form a 2 × 2 array network of the
previously trained DMN. We set the angle for the normal vector
for the array network to be π/2 for layer 0 and zero for layer 1
(zero for layer 0 and π/2 for layer 1 is also an option). Once this
deeper network has been initiated, it can be trained in a regular

Algorithm 1. Recursive DMN training strategy via quilting for a 2D problem.
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fashion in offline training as described in Methods. This process is
repeated to achieve deeper and deeper networks. The pseudo-
code formalizing and detailing of this process is provided in
Algorithm 1.
Figure 4b illustrates this recursive training as a function of the

training history via the visualization of the DMN. Here, we started
from a single-layer-deep network (i.e., N= 1) at epoch 1, setting
the weights of the only two nodes in the network to be the same
with a normal vector set to π/2. After training this single-layer
network for 4000 epochs, we constructed a three-layer-deep
network by quilting a 2 × 2 array from the learned N= 1 DMN
unit-cell analog. This sequential training/quilting process was
repeated until we successfully trained and optimized our deepest
network. To avoid perfect symmetry after the quilting step, we
added a small perturbation (10−6) on top of the normal vector
values before starting the offline training. A video of the entire
recursive training sequence is provided in the Supplementary
Information. A deeper DMN has an additional number of network
parameters which increase the network’s ability to fit the training
data. However, at the same time, additional degrees of freedom in
the base layer increase the computational cost of the model, and
has, therefore, more chance to fall into local solutions. One of the
advantages of this training strategy is that the initial optimization
of a network of depth N starts from a locally optimized set of
network parameters from shallower networks. By recursively
increasing the number of layers via quilting, we gradually expand
the solution space for parameter optimization from already well-
defined local optima, reducing the chances for the network to be

trapped in a local optima and de facto improving the quality of
training and associated accuracy of the model.
This last point is demonstrated in Fig. 4c by comparing the

training history between the recursive training approach and that
when the network is instead randomly initialized. For a given
network of depth N (N= 1, 3, 5, and 7), we trained and optimized
the N-layer-deep network for 4000 epochs, resulting in a total of
16 000 epochs to train a seven-layer-deep network via our
recursive approach. The solid red line indicates the training error
for the recursive approach, and the thin black lines show the
training errors for 30 different randomly initialized networks
following the same procedure as in Fig. 2. We observe that the
recursive training converges more slowly than the random
initialization training, but this slower convergence is insignificant.
Despite this slower convergence, the recursive training consis-
tently outperforms most training errors when the network is
randomly initialized. In other words, the recursive training strategy
consistently finds a better local solution to optimize the network
parameters amongst the wide range of multiple local solutions
obtained by randomly initializing the network. This improvement
is especially noticeable for shallow networks. Indeed, when N= 3,
we note a lot of spread in the training error for the networks
which have been randomly initialized. Also, while the results with
random initialization training for N= 5 and 7 converge to similar
training errors, the improved training error obtained via recursive
training indicates that this strategy can achieve errors around the
mean value of the random initialization training results. Such
performance highlights that the recursive approach enables us to
filter out and avoid bad local training results.

Fig. 4 Recursive training performance via a quilting strategy. a Example of DMN recursive training showing how to construct and initialize
a N= 4 DMN from a N= 2 DMN in 2D-microstructure training. After training the shallower network, the optimized network is used for quilting
an array network. The array network is initialized with a quarter of each weight of the shallow optimized DMN unit cells and the known normal
vectors. b Recursively training of deeper and deeper networks (N= 1, 3, 5, and 7) for 4000 epochs by quilting patches of optimized DMN unit
cells to initialize deeper networks at 4001, 8001, and 12,001 epochs. Orange arrows indicate the recursive training steps, and blue arrows the
quilting steps. c Evolution of the training error achieved via recursive training compared to the error obtained from random initialization of
the DMN parameters. Insets show the online predictions using Norton viscoplastic constitutive relationship for networks with different depths.
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We also looked at the calibration performance of the network
for online prediction. The insets in Fig. 4c show comparisons of the
predictions of the plastic response for the DNS periodic unit cell
shown in Fig. 1 under shear loading when the network is trained
recursively (red line) or via random initialization (green). Results for
the random initialization are presented as the 95th-percentile
confidence over the 30 trained networks. The prediction from the
DNS is provided as a reference stress-strain curve (blue line). We
make two observations. First, we note that deeper networks have
better agreement with the DNS results. Indeed, by increasing the
number of interactions between the nodes in deeper networks,
regardless of how the network is initialized, our results show that
we can achieve a smaller calibration error. This is visually
illustrated by the increasing number of inclusions in the optimized
analogous DMN unit cell via recursive training shown in Fig. 4b.
Second, we also observe that, while the uncertainty (and therefore
calibration error of the network) decreases with an increasing
number of layers, our recursive training DMN strategy provides
outperforming predictions compared to the results via random
initialization, regardless of the depth of the network. This is a
noteworthy improvement in the calibration of the network,
especially for the shallow network.
Finally, by comparing the local stress distribution as predicted

by the DNS simulations with those extracted from nodes of the
network, we emphasize the advantage of the recursive training.
We tabulated this comparison in Table 1. We separated the
predicted distribution of local stresses for the matrix and the

inclusion, respectively. Distributions obtained from the recursive
training show better agreement with the DNS ground-truth results
as compared to those obtained when the network was randomly
initialized. This assertion is true not only for the predicted mean
value, but also for the standard deviation and for both the matrix
and inclusion phases. When we validate all the DMN online
predictions, selecting the best random initial parameter DMN
could potentially perform better than that trained via our recursive
training strategy. However, this feat obviously is not guaranteed,
as it requires multiple trial and error attempts to identify such a
potentially best-performing network. This also proves to be a
challenging task for validating that it is indeed the best-
performing network in the absence of a reference, highlighting
the ability of recursive training to reduce the risk of selecting
poorly trained networks.
Figure 5 visually illustrates the distribution of local shear

stresses presented in Table 1 for the original periodic cell and the
corresponding distribution at each base node of the network
represented as an analogous unit cell obtained by recursive
training. While this spatial distribution of stresses in the DMN
visualization is not meant to reproduce the spatial distribution in
the original DNS unit cell, it serves to show how the stresses are
distributed throughout the network via a reduced number of
degrees of freedom and extend our understanding of the network
performance (explainability). However, as shown in Table 1 and in
the histograms below the DMN visualizations in Fig. 5, while not
spatially arranged the same way, distributions of the local stresses

Fig. 5 Local stress distribution comparison. Illustration of the local stress σ12 within the original periodic unit cell and within the DMN as
visualized using the analogous unit cell when 2ϵ12= 0.005. The visualization of the network as unit cells corresponds to the recursive training
results discussed in Fig. 4. DMN results represent the shear stress corresponding to each base node in the network. A quantitative comparison
can be found in Table 1. Histograms represent the distributions of local stresses in the matrix and inclusion within the network and are
compared to the same distributions from the DNS results on the original periodic unit cell.

Table 1. Comparison of local stress distributions.

Matrix - mean Matrix - std. Inclusion - mean Inclusion - std. Vol. frac. Macro

[MPa] [MPa] [MPa] [MPa] [%] [MPa]

DNS (FFT) 56.69 7.80 82.32 15.90 0.29 64.18

N= 3 Random 50.97 ± 7.65 13.98 ± 10.65 179.54 ± 70.99 183.17 ± 172.83 0.29 ± 0.00 88.48 ± 19.38

N= 5 Random 55.42 ± 1.30 10.28 ± 2.14 96.98 ± 10.93 64.83 ± 58.21 0.29 ± 0.00 67.57 ± 2.77

N= 7 Random 54.70 ± 0.63 11.08 ± 0.93 93.37 ± 4.07 48.13 ± 17.55 0.29 ± 0.00 66.00 ± 0.91

N= 3 Recursive 58.71 1.84 81.24 40.60 0.29 65.29

N= 5 Recursive 58.47 4.65 87.93 57.24 0.29 67.06

N= 7 Recursive 58.58 4.57 79.90 31.50 0.29 64.83

DNS results show the mean and standard deviation of the stress local distribution for the matrix and inclusion, respectively. Distribution of local stresses
obtained directly from the nodes of the networks are listed for DMN randomly initialized (Random) or via the recursive training strategy (Recursive). In the case
of randomly initialized networks, results are averaged over 30 different networks which were initialized differently.
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from the original DNS unit cell and from the DMN visualization
appear to be statistically similar. This is a useful feature since one
could directly derive the macroscopic stress from this statistical
distribution of local stresses by considering the mean local stress
value of each phase weighted by the volume fraction at each
node in the spirit of the homogenization process described in
Eq. (9) (note that the DMN results and DNS results have the same
volume fraction of phases).

Generalization of recursive training for different
microstructures
We now turn to extensions and generalizations of the approach
described above for different periodic unit cells problems, which
have more complicated microstructural topologies and can
potentially prove to be harder to train. These different DNS
periodic unit cells are presented in Fig. 6a: the first three periodic
units cells from the left correspond to binary microstructures
composed of a matrix with inclusion, while the other two
microstructures correspond to binary mixtures of co-existing
phases obtained by spinodal decomposition. For the periodic
units cells composed of a matrix with inclusions, the first unit cell
contains one inclusion with a 10% volume fraction, the second
unit cell contains ten inclusions of the same size with a 50%
volume fraction, and the last unit cell (same with Fig. 1a) contains
five inclusions of different sizes with 29% of volume fraction. This
last configuration actually corresponds to a cross-section of the 3D
periodic units cell with spherical inclusions presented later. The
spinodal microstructures were generated using the phase-field
method51,52, with a 50% volume fraction for each phase. In Fig. 6,
we present results for the accuracy vs. calibration error for those
five 2D unit cells for two different types of loading configurations
(tensile, ϵ11= 0.02 in Fig. 6b and shear, 2ϵ12= 0.005 in Fig. 6c). As
done in the previous section, we compare the results between
random initialization training and recursive training. First, we note

that the recursive training strategy consistently yields better
accuracy (lower cost function) than that obtained with random
initialization for most periodic unit cells (note that the axes are in
log scale). This tendency is more prevalent for shallow networks,
when the offline training performance accuracy is more spread for
networks randomly initialized. In the case of the composite
microstructures with spherical inclusions, we note that, as the
networks get deeper, the recursive training strategy yields better
trade-offs between accuracy and calibration errors than that
obtained with random initialization, as indicated by the spread of
calibration errors from random initialization even for deep
networks. However, for the spinodal decomposition microstruc-
tures, the difference in performance between the recursive
training strategy and random initialization is marginal, while the
calibration error converges slower. These results point to an
interesting observation. For topologically complex microstruc-
tures, as in the case of the spinodal microstructures, these results
suggest that the homogenization pathway learned by the network
does not fully capture the topological interactions emerging from
the microstructure, even though the accuracy during the offline
training is similar to composite microstructures with spherical
inclusions. In this case, a solution to improve the network
calibration without compromising its predictive accuracy is most
likely to construct deeper networks (i.e., N > 7), with more degrees
of freedom to describe the microstructural topology.
We also obtained improved performance in the case of a 3D

microstructure, as shown in Fig. 7. The 3D DNS microstructure is
composed of a matrix with four spherical inclusions with 20% of
volume fraction, as shown in Fig. 7a inset. In this case, however,
the construct for the array network needed to be updated from a
2 × 2 array in 2D to a 2 × 2 × 2 cube in 3D to account for the
additional dimensional in the DNS periodic unit cell. The
previously trained network is quilted via eight DMN unit cells,
updating each activated weight as 1/8 of the original weights.
Additionally, we set the angle for the normal vectors for the initial

Fig. 6 Performance of the recursive DMN training on different types of 2D periodic unit cells. a Five periodic unit cells topologies with
various levels of complexity. The first three periodic unit cells correspond to microstructures composed of a matrix with inclusions. The last
two periodic unit cells correspond to spinodal decomposition microstructures. b, c Accuracy (x-axis) vs. calibration (y-axis) in the case of
tensile loading (ϵ11= 0.02) and shear loading (2ϵ12= 0.005) for the five periodic unit cells represented above. Cross symbols indicate
performance for randomly initialized networks, and the circle marker indicates performance for networks trained via our recursive training and
quilting strategy.

D. Shin et al.

8

npj Computational Materials (2023)   128 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



array cube to be (0,0) in Layer 0, (π/2, π/2) in Layer 1, and (0, π/2) in
Layer 2 (note that angles are defined in spherical coordinates). As
a result, each recursive iteration increases the depth of the
network with three additional layers. This process is illustrated in
Fig. 7a. The resulting training history (red line) is shown in Fig. 7b
and compared with that of randomly initializing 30 different
networks (green shade representing the 95th-percentile con-
fidence range). We observe an even better performance than in
2D from the recursive training as compared to the random
initialization strategy, including for deeper networks. This perfor-
mance improvement is expected since there are a lot more
network parameters to optimize in 3D. In this context, the random
initialization strategy is even more subject to being trapped in a
bad local optimum. In contrast, the recursive training strategy
consistently finds good local optima. Additionally, the visualization
of the 3D DMN unit-cell analogs (see inset in Fig. 7b, colors are
used to indicate the inclusions generated from separate nodes)
reveals the level of topological complexity learned by the network
as a function of the number of layers. A video of the 3D recursive
training sequence is provided in the Supplementary Information.
Finally, results in the online prediction demonstrate the difficulty
of achieving a well-calibrated model when using random
initialization, an issue not as pronounced when using recursive
training. In Fig. 7c, we contrast the online predictions between a 4-
and 7-layer-deep network for a microstructure subjected to a
shear loading (2ϵ13= 0.005). Clearly, the shallower network (N= 4)
shows a lot of variability in the online prediction when randomly
initialized, while the network trained through recursive training
shows more robust predictions. This point is further clarified by
plotting the accuracy error vs. the calibration error in Fig. 7d for
tensile (ϵ11= 0.02) and shear loadings (2ϵ13= 0.005) on the 3D
periodic unit cell. We observe that, regardless of the loading
condition, the recursive training offers a good balance between

accuracy (x-axis) and calibration (y-axis). For both the shallow
(N= 4) and deep (N= 7) networks, the recursive training strategy
with quilting initialization robustly yields smaller accuracy and
calibration errors. This is not necessarily the case for networks
randomly initialized since the ‘bad’ performing networks can yield
up to 40% calibration error for the shear loading case.

DISCUSSION
We have demonstrated above that employing a recursive training
strategy based on the visualization and interpretation of the
network as a unit-cell analog is a robust approach to improve the
accuracy and calibration of the DMN both in the offline training
and online prediction modes. Specifically, the network visualiza-
tion component not only serves as the baseline for constructing
deeper networks, but also provides a way to intuitively and
physically interpret the convergence and optimization of the
network. The recursive component enables us to gradually expand
the optimization search space as we train deeper and deeper
networks to find the best locally optimized model. Taken together,
these two components relax the need to train multiple randomly
initialized networks in order to achieve good accuracy (in the
offline training and online prediction modes) and a well-calibrated
model (in the online prediction). Such improvement allows us
instead to reliably use shallower, more compact networks with
similar accuracy and calibration performance as deeper networks,
especially when a reference model to validate does not exist.
While the primary intent of visualizing the network as a unit-cell

analog focuses on the explainability of the network, it opens up an
interesting aspect for comparison with the original periodic unit
cell used for generating the training data. When comparing the
DNS results between the original periodic cell and that of the DMN
unit-cell analog, we can gauge how this visualization would

Fig. 7 Performance and visualization for 3D periodic unit cells. a Illustration of the array network for the 3D DMN along with the base 3D
periodic unit cell used for training. b Comparison of the training history of the recursive DMN with that of random parameter initialization.
Insets illustrate the optimized DMN unit cell analogs optimized for N= 1, 4, and 7. c Comparison of the online predictions between a 4- and 7-
layer-deep network for a 3D microstructure subjected to a shear loading (2ϵ13= 0.005). d Accuracy (x-axis) vs. calibration (y-axis) error for 4-
and 7-layer-deep network for a 3D periodic unit cell subjected to a tensile (left panel) and shear (right panel) loading. Cross symbols indicate
performance for randomly initialized networks, and circle symbol indicates performance for networks trained via quilting strategy.
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perform when analyzed as a DNS microstructural realization. In
Fig. 8, we show a comparison of the macroscopic stress-strain
relationship, the distribution of local stress fields, and the
distribution of effective elastic properties when the original
periodic unit cell and the DMN unit-cell analog are used as unit-
cell inputs directly in DNS and calculated by FFT. Both
microstructures have the same phase fraction of inclusions;
however, the DMN analogous unit cell contains more inclusions
that are smaller and irregular in shape by construction as
compared to the original unit cell. Even though these micro-
structural topologies are different, we observe in Fig. 8a, b that the
macroscopic and microscopic responses of both unit cells for two
loading configurations yield almost the same results. The
distribution of local stresses between the two unit cells is in good
agreement except at the tails of the distributions. The distribution
of local stresses for the unit-cell analog has longer tails than the
one obtained with the original periodic unit cell. This trend is to be
expected since the unit-cell representation of the network is, by
construction, composed of sharp inclusions leading to stress
concentrations at these points. As noted before, the visual
representation of the network as a unit cell is not unique. Moving
forward, it is possible to consider other visual constructs that
would yield even better comparisons. Additionally, we show in
Fig. 8c the difference in predicted homogenized elastic stiffness
constants when using the original periodic unit cell or the
optimized DMN unit-cell analog across the same training dataset
used initially to train the model. This difference is calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjjCFFT

n � CDMN
n jj2Þ=jjCFFT

n jj2
q

for all of the n data in our dataset,

with ∣∣ ⋅ ∣∣2 as the 2-norm value of all matrix components. CFFT
n

refers to the effective stiffness tensor for data n using the original
periodic unit cell as the microstructure for the FFT analysis, and
CDMN
n refers to the effective stiffness tensor for data n using the

optimized DMN unit-cell analog instead. The result shows a
difference following a lognormal distribution with a mean value of
less than 0.01, emphasizing here again the good agreement
between the two microstructures. These results further illustrate
that the visualization of the network as an analogous unit cell not
only offers a robust methodology to construct and explain the
performance of the network, but it also captures how the network
constructs the interactions between material phases, to the point
where it can reproduce the macroscopic and local responses of
the original periodic unit cell, at least for simplistic DNS
microstructures (e.g., spherical inclusions).
In this study, we demonstrated our training and visualization

approach on binary composite microstructures based on the DMN
architecture proposed by Gajek and workers32 and Nguyen and
Noels34. Moving forward, we expect that this visualization and
recursive training strategy could be extended to other DMN
architectures, such as the one by Liu and coworkers30,31, which
allows for the material orientation at the nodes to vary. In this
case, this approach could be used for other classes of
microstructures, notably polycrystalline materials. After training
the DMN, the resulting optimized DMN unit-cell analog could be
visualized as a polycrystalline analog (as an example, see Layer 2
in Fig. 3a). It can then be quilted similarly to the protocol
presented above to construct a recursive training. Other exten-
sions to non-local constitutive models53–55 would require not only
a modification of the network building blocks themselves, but also
additional features to appropriately capture and reflect the
intrinsic length scale associated with such models in our
visualization and recursive training. Although the approach used
in this study could be improved with a better refinement of the
visualization of the network, such as the consideration of multiple
microstructural length scales or the representation of the network
as an actual microstructural representation of the DNS periodic

Fig. 8 Interpretation of network visualization when used as unit-cell input in DNS. a Comparison of the macroscopic Norton viscoplastic
predictions between the original periodic unit cell and the DMN unit-cell analog. b Comparison of the microscopic Norton viscoplastic
predictions between the original periodic unit cell and the DMN unit-cell analog. c Probability distribution of the difference between FFT-
based homogenized elastic constants from the original periodic unit cell and the DMN unit-cell analog.
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unit cell, this work is a step towards better strategies for
developing explainable DMN with improved accuracy.

METHODS
FFT direct numerical simulations
The training dataset for the offline training mode (elastic
homogenization of two-phase composites) and the validation
dataset for the online learning mode (elasto-viscoplastic homo-
genization of two-phase composites with viscoplastic behavior
given by Norton’s law) were obtained via FFT-based full-field
simulations9–11. This DNS computational method evaluates the
strain and stress fields in periodic media and calculates the
effective properties based on averages of those field variables. In
this method, the microstructure is discretized into a regular set of
materials points or voxels. The micromechanical problem, which
consists of simultaneously satisfying the constitutive law (elastic or
elasto-viscoplastic) at each voxel, the stress field equilibrium, and
strain field compatibility, is solved using FFT. The local problem is
reformulated by introducing a homogeneous linear elastic
reference medium and a corresponding polarization field, which
is a function of the reference medium’s stiffness and the a priori
unknown stress and strain fields, solutions of the problem. In this
way, the solution of the governing equation—a PDE where the
unknown is the displacement field—is given by the convolution
integral between the Green’s function of the displacement field
and a body-force derived from the polarization field. With this
reformulation, the problem can be advantageously solved,
performing the convolution in Fourier space as mere product,
and anti-transforming it. The FFT approach yields improved
guesses of the unknown stress and strain fields, and thus of the
polarization field for the next iteration, and so on and so forth,
until convergence is achieved when the input and output stress
and strain fields coincide within a small tolerance. The rate of
convergence of the method depends on the choice of the
reference medium, but the final converged solution does not. In
our case, for the two-phase microstructures, we chose our
reference medium to have the volumetric average elastic stiffness
of the two phases (Voigt average). For the offline training, the
constitutive law is based on the linear anisotropic elasticity
relation: σ= Cϵ. During the linear homogenization process, the
results are obtained based on augmented Lagrangian iterative
procedure56 and the global symmetry of the effective stiffness is
not explicitly enforced, yet the FFT analysis basically predicts the
correct symmetry of the elastic tensors11. For the online prediction
results, we adopted an elasto-viscoplastic constitutive relation
with viscoplastic behavior given by Norton’s law49,50 such that,

_ϵ ¼ _ϵe þ _ϵp ¼ C�1 _σ þ 3
2σ0

σeq

σ0

� �q�1
σ; (1)

where _ϵ is the total strain rate, _ϵe is the elastic strain rate, _ϵp is the
plastic strain rate, q is a stress exponent, σeq ¼

ffiffiffiffiffiffiffiffi
3=2

p � jjσ0jj is the
equivalent stress (σ0 being the deviatoric stress), and σ0 is the flow
stress. For this constitutive model, we considered the 2D
(256 × 256 voxels) and 3D (64 × 64 × 64 voxels) periodic unit cells
illustrated in Figs. 6, 7. Some of the microstructures presented in
Fig. 6 (the last two microstructures from the left) were generated
using the phase-field method51,52. The following materials proper-
ties were used for the elasto-viscoplastic two-phase composite.
The matrix and inclusions phases were assumed to be elastically
isotropic, with Young’s moduli 100 and 500 GPa and Poisson’s
ratios 0.3 and 0.19, respectively, while the flow stress of the matrix
was selected to be σ0= 100 MPa, with a stress exponent q= 10.
The inclusions were assumed to remain linear and elastic. We
considered loadings corresponding to uniaxial tension ϵ11 and
simple shear ϵ12 in 2D, and ϵ13 in 3D, with an applied strain rate of
1 s−1 along those components.

Training dataset
For a given microstructure (2D or 3D), we generated a training
dataset composed of approximately 1000 effective elastic stiffness
tensors calculated via FFT-based homogenization. The elastic
stiffness tensor (Ci with i= 1 or 2) of each constituent phase was
considered to be orthotropic. In 2D, the matrix form for the elastic
stiffness tensor is given by,

Ci ¼
C11
i C12

i 0

C21
i C22

i 0

0 0 C66
i

2
64

3
75; i ¼ 1; 2: (2)

In 3D, it is more convenient to express the inverse of the elastic
stiffness tensor as a function of the directional Young’s moduli Eij,
shear moduli Gij, and Poisson’s ratios νij, such that,

C�1i ¼

1=E11i �v21i =E22i �v31i =E33i 0 0 0

�v12=E11i 1=E22i �v32i =E33i 0 0 0

�v13=E11i �v23i =E22i 1=E33i 0 0 0

0 0 0 1=G23
i 0 0

0 0 0 0 1=G31
i 0

0 0 0 0 0 1=G12
i

2
666666664

3
777777775
; i ¼ 1; 2:

(3)

The stiffness tensor of each individual phase was sampled
separately via a Latin Hypercube Sampling (LHS) scheme57.
Following the approach by Nguyen and Noel34, when sampling
the elastic constants individually, we imposed bounding condi-
tions on the range of elastic constants being sampled in order to
satisfy the positive definiteness of the elastic stiffness tensors. In
2D, these conditions read:

C11
1 ¼ 1; lnðC11

2 Þ 2 Uð�1; 1Þ; (4)

lnðC22
i =C11

i Þ 2 Uð�1; 1Þ; C12
i =ðC11

i C22
i Þ 2 Uð0; 0:9Þ;

C66
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11
i C22

i

q
2 Uð�1; 1Þ; i ¼ 1; 2;

(5)

where U(a, b) corresponds to a uniform distribution in the range
[a, b]. This 2D-microstructure scheme resulted in sampling 7
parameters for both phases combined.
In 3D, we imposed the positive definiteness conditions by

carefully sampling Young’s modulus E, shear modulus G, and
Poisson’s ratio ν directly, following the approach by ref. 31. We
started by sampling Young’s moduli from a uniform distribution
such that, ðE11i ; E22i ; E33i Þ 2 Uð0:1; 10Þ, with i= 1, 2. We then
normalized and scaled Young’s moduli such that,

E111 ; E221 ; E331
� � 1

E111 �E221 �E331
E111 ; E221 ; E331
� �

;

E112 ; E222 ; E332
� � ζ

E112 �E222 �E332
E112 ; E222 ; E332
� �

;
(6)

where ζ ∈ U(10−3, 103) is a random scaling factor. The shear
modulus and Poisson’s ratio were then sampled within bounds
derived from Young’s elastic moduli such that,

G12
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11i E22i

q
2 Uð0:25; 0:5Þ; G23

i =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E22i E33i

q
2 Uð0:25; 0:5Þ;

G13
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E33i E11i

q
2 Uð0:25; 0:5Þ;

(7)

v12i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E22i =E11i

q
2 Uð0; 0:5Þ; v23i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E33i =E22i

q
2 Uð0; 0:5Þ;

v31i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E11i =E33i

q
2 Uð0; 0:5Þ; i ¼ 1; 2:

(8)

This 3D-microstructure scheme resulted in sampling 19 para-
meters for both constituents combined. The wall-clock time to
generate all the training data for a given microstructure required
around 800 min for 2D and around 13,000 min for 3D on an Apple
M1 Max chip.
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Kinematic and kinetic relationships for the deep material
network building blocks
The building blocks for the deep material network are based on
classical continuum homogenization theories33,34. This generic
homogenization process rests on several kinematic and kinetic
relationships between the macroscopic strains and stresses and
their microscopic counterparts to derive the homogenized
material behavior. The operations at the network nodes use these
relations to learn the homogenization pathway, making the deep
material network a microstructure-informed/physics-informed
network satisfying these relations at each node.
The first of these relationships relate the macroscopic homo-

genized strains and stresses (in Voigt notation), ϵh and σh, to the
microscopic strains and stresses, ϵi and σi, of phases i such that,

ϵh ¼
Z

ϵdV ¼
X
i

ϵi f i ; σh ¼
Z

σdV ¼ Σσi f i ; and
X
i

f i ¼ 1:

(9)

The second relationship pertains to the Hill–Mandel condition58

for energy conservation. This relationship reads,

ϵThσh ¼
Z

ϵTσdV ¼
X
i

ϵTi σi f i : (10)

When only two phases are considered for each building block, the
third relation accounts for the continuity of traction across the
interface between the two phases such that,

HTðσ2 � σ1Þ ¼ 0; (11)

where the H matrix is an orientation matrix defined for a given
normal vector, n!2D = [cos 2πθ; sin 2πθ] in 2D, and n!3D =

[cos 2πθ sin πϕ; sin 2πθ sin πϕ; cos πϕ] in 3D, such that,

Hð n!2DÞ ¼
n!ð1Þ 0

0 n!ð2Þ
n!ð2Þ n!ð1Þ

2
64

3
75; Hð n!3DÞ ¼

n!ð1Þ 0 0

0 n!ð2Þ 0

0 0 n!ð3Þ
0 n!ð3Þ n!ð2Þ

n!ð3Þ 0 n!ð1Þ
n!ð2Þ n!ð1Þ 0

2
666666664

3
777777775
:

(12)

Note that the traction continuity condition in Eq. (11) can be
extended to the more general case for multi-phase compo-
sites32,34. Combining Eq. (9) with the Hill–Mandel Eq. (10) yields,

ϵT1 � ϵT2
� �ðσ1 � σ2Þ ¼ 0; (13)

which provides an additional condition on the strain when
considering the traction condition in Eq. (11) such that,

ðϵ1 � ϵ2ÞT ¼ 1
f 1f 2
ðHbÞT; (14)

for an arbitrary vector b. The relationship derived in Eq. (14)
articulates a correlation between the microscopic strains via the
normal vector. Taking advantage of Eq. (9), we can finally express
the local strains as a function of the homogenized strain such that,

ϵ1 ¼ ϵh þ 1
f 1
Hb; ϵ2 ¼ ϵh � 1

f 2
Hb: (15)

Relationships in Eqs. (9)–(15) serve as the basis for the architecture of
the deep material network and are used both during offline training
and online prediction. The illustration of this homogenization process
for a given building block with layer notations can be found in Fig. 9a.

Fig. 9 Schematic description of the deep material network. a Homogenization process in a building block. The parent node at a given layer
i− 1 receives the stress (σ)/strain (ϵ) information from the child layer i. Weights (ω) and normal vectors ( n!) are used to predict the
homogenized stress/strain. b Offline training procedure. The network is trained on elastic training data only, considering the linear elastic
constitutive relationship in the homogenization process (elastic stiffness tensor C). The trained network provides the optimized network
parameters. c Online prediction procedure. The network uses the optimized parameters (in matrix form A and W) from the offline training. By
finding a jumping vector (a) satisfying the kinetic/kinematic relation on the homogenized nodes, the network predicts the nonlinear behavior.
During the online prediction, the nonlinear constitutive relationship is only considered for nodes in the base layer N.
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Deep material network architecture
As shown in Fig. 9a, the deep material network architecture
consists of a binary tree-type network. In this architecture, at a
given layer, pairs of (child) nodes are merged via the homo-
genization process into one (parent) node in the next layer. For a
network of depth N (Fig. 9a illustrates a rudimentary network with
N= 3), the last N-th layer is composed of 2N nodes with 2N

activation weights (ω1
N; ¼ ;ω2N

N ). The other N− 1 layers are
composed of inherited weights from the previous layers
(ωn

i ¼ ω2n�1
iþ1 þ ω2n

iþ1) and also of normal vectors n!n
i . Here the

indices i and n refer to the i-th layer and the n-th node within that
layer, respectively.
In 2D, this construct results in 2N+1− 1 network parameters (2N

base-layer weights in the base layer and 2N− 1 parameters for the
normal vectors in the remaining N− 1 layers) to be optimized
during the offline training mode. In 3D, there are 3 ⋅ 2N− 2
network parameters (2N base-layer weights in the base layer and
2N+1− 2 parameters (spherical coordinates) for the normal vectors
in the remaining N− 1 layers). We used a rectified linear activation
function59, or ReLU, for the base-layer weights, since negative
weights do not have a physical meaning. As a result, all the
activation weights have non-negative values. For the parameter
initialization, all network components were set between 0 and 1,
and the weights were normalized, to sum up to one. We used
PyTorch60 libraries for the network’s forward and back propaga-
tion implementation.
This architecture provides a natural connection between the

nodal information contained in the base layer N and the final
output node in Layer 0. This assertion is especially true and
useful for expressing the nodal strains as a function of the strain
in node 0 based on the kinematic homogenization condition
expressed in Eq. (15). Indeed, the nodal strain information in the
base layer N (ϵnodes ¼ ϵ1N; ¼ ; ϵ2

N

N ) can be linearly correlated to
the final microstructure’s homogenized macroscopic strain
ϵmacro ¼ ϵ10, where 0 denotes the output layer and 1 the only
node contained in that layer. If we know the b vector satisfying
the kinetic relation in Eq. (11), this linear correlation can be
expressed in terms of the weights, the rotation matrix H, and the
b vector such that,

ϵnN ¼ ϵmacro þ
XN
i¼1

Hð n!1þαnN�iþ1
i�1 Þ

ω
1þαnN�i
i

ð�1ÞβnN�i
 !

ω
1þαnN�iþ1
i�1 b

1þαnN�iþ1
i�1

� �
;

with αni ; β
n
i

� � ¼ divmod ðn� 1; 2iÞ:
(16)

By defining ϵlocal as the vector containing the local strain
perturbation in the base layer, we can express it as,

ϵlocal ¼

ϵ1N
ϵ2N

..

.

ϵ2
N

N

2
66664

3
77775�

ϵmacro

ϵmacro

..

.

ϵmacro

2
66664

3
77775 ¼

A1;1 A1;2 ¼ A1;2N�1
A2;1 A2;2 ¼ A2;2N�1

..

. ..
. ..

. ..
.

A2N ;1 Â2N ;2 ¼ A2N ;2N�1

2
666664

3
777775

a1
a2

..

.

a2N�1

2
66664

3
77775 ¼ Aa;

(17)

where i= 1, …, N, n= 1, …, 2N, and

a2i�1þ j�1 ¼ ωj
i�1b

j
i�1 for j ¼ 1; ¼ ; 2i�1;

An;2i�1þ j�1 ¼ Hð n!1þαn
N�iþ1

i�1 Þ
ω
1þαn

N�i
i

 !
ð�1ÞβnN�i for j ¼ 1þ αnN�iþ1;

An;2i�1þ j�1 ¼ 06 ´ 3 for j ≠ 1þ αnN�iþ1:

(18)

The vector a corresponds to a jumping (displacement) vector, and
A is a weighted rotation matrix representing the DMN architecture
in matrix form. The expression in Eq. (17) is especially useful in the
online prediction to relate the nodal strain information to the pre-
trained network parameters and the microstructure’s homoge-
nized macroscopic strain information.

Offline training mode
As shown in Fig. 9b, in the offline training mode, the network is
trained only on elastic properties to optimize the network’s
parameters. In this case, the network takes in as inputs the
elastic stiffness tensors of the individual phases composing the
microstructure and outputs the effective elastic stiffness tensor
of that microstructure. The training is based on a limited
database of effective elastic stiffness tensors calculated by FFT
to train and optimize the network parameters, composed of the
base-layer weights in the base layer N and the normal vectors in
the remaining N− 1 layers. At a given layer i− 1, each node
receives the elastic properties (C2n�1

i , C2n
i ) and activation weights

(ω2n�1
i ;ω2n

i ) from the nodes in layer i. Along with the normal
vector in the node at the current layer i− 1 ( n!n

i�1), the network
can be used to derive the homogenized elastic properties in the
node (Cn

i�1). Making use of the simple relationship between
phase fractions and weights (f 2n�1i ¼ ω2n�1

i =ðω2n�1
i þ ω2n

i Þ) and
by considering the linear constitutive relation of the child nodes
(σ2n�1

i ¼ C2n�1
i ϵ2n�1i and σ2n

i ¼ C2n
i ϵ2ni ) combined with the con-

tinuity of traction across the interface in Eq. (11) and the
relations between the local strains and the homogenized strain
in Eq. (15), we obtain a linear relation between the b vector and
the homogenized strain such that,

bn
i�1 ¼ Bn

i�1ϵ
n
i�1

¼ �f 2n�1i f 2ni H n!n
i�1

� �T
f 2n�1i C2n

i þ f 2ni C2n�1
i

� �
H n!n

i�1
� �� ��1

H n!n
i�1

� �T
C2n�1
i � C2n

i

� �
ϵni�1:

(19)

Using the B matrix in Eq. (19) and the stress homogenization in
Eq. (9) with the linear constitutive relation of the parent node
(σn

i�1 ¼ Cn
i�1ϵ

n
i�1), we can relate the stress and strain at a given

layer i− 1 as a function of the phase fraction and elastic stiffness
tensors from the child nodes and the normal vector at that node:

σn
i�1 ¼ Cn

i�1ϵ
n
i�1 ¼ f 2n�1i C2n�1

i 1þ 1
f 2n�1i

H n!n
i�1

� �
Bn
i�1

� �h
þf 2ni C2n

i 1� 1
f 2ni

H n!n
i�1

� �
Bn
i�1

� �i
ϵni�1:

(20)

In the offline training mode, the node information is propagated
forward from every pair of nodes in the child layer to nodes in the
parent layer. This forward propagation allows us to train the network
by optimizing the weights in the base layer N and the normal vector
at each node for all the remaining N− 1 layers. Activation weights in
layer 0 to layer N− 1 are inherited from weights in the base layer N
by adding the weight of the child nodes. To train the network, we
minimize the cost function defined as:

Cost func. ¼ 1000 �
X2N
n¼1

ReLUðωn
NÞ � 1

" #2
þ 1
Nbatch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNbatch

n¼1

jjCFFT
n � CDMN

n jj2
jjCFFT

n jj2

vuut ;

(21)

where CFFT
n and CDMN

n are the effective stiffness matrices obtained
by FFT and predicted by the network, respectively, ∣∣ ⋅ ∣∣2 refers to
the 2-norm value of all matrix components, and Nbatch is the batch
size. The first term in Eq. (21) represents a constraint on the
weights of a given layer summing up to 1, while the second term
compares the predicted elastic stiffness tensor from the network
to that of the training data.
To train the network, we used a batch size of Nbatch= 20 with the

ADAM optimizer61 and the AMSGrad method62 for the cost function
in Eq. (21), using an adaptive learning rate set to
0:5 � 10�4 � ð1þ cosð10πm=MÞÞ, where m is the current epoch
number and M is the total number of epochs63. To be consistent in
our comparison between random initialization and recursive training,
we fixed M to be 4 000. We trained our network on 80% of the elastic
stiffness data calculated via FFT, and the remaining 20% was used as a
validation set. In terms of computational cost, training the DMN for
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N= 3, 5, and 7 in 2D took approximately 12, 16, and 27 minutes, N= 4
and 7 in 3D took approximately 20 and 25min, respectively on an
Apple M1 Max chip. Subsequent evaluation of the network to predict
the homogenized stiffness matrix for a given composite took
approximately a few milliseconds, showing a dramatic performance
in computational cost.

Online prediction mode
The online prediction mode does not need to be trained on pre-
existing data as it is based on the weights and normal vectors
determined from the offline training mode. Instead, as illustrated
in Fig. 9c, the network takes in the macroscopic strain as an input
and makes use of the network architecture linking the macro-
scopic strain to the nodal strain in Eq. (17). By using the kinetic
and energetic constraints in Eqs. (11) and (15) for all the nodes, the
network iteratively solves the (nonlinear) stress-strain response
given a (nonlinear) constitutive relationship for the base nodes at
layer N. In this study, we used the elasto-viscoplastic constitutive
relation with viscoplastic behavior given by Norton’s law given by
Eq. (1). Materials properties and loading conditions were identical
to those used in our FFT-based simulations.

The pseudo-code detailing the iterative implementation is listed
in Algorithm 2 using the Newton–Raphson method64. For a given
macroscopic strain ϵmacro(t) at time t, the algorithm computes the
corresponding macroscopic stress σmacro(t) by minimizing a
residual R. As the constitutive relation changes, the jumping
vector in Eq. (17) is unknown, such that the kinetic conditions (Eq.
(11)) in N− 1 layers should be satisfied by obtaining the jumping
vector, a, numerically. This procedure calculates stress and
tangent stiffness at each base node following the elasto-
viscoplastic constitutive relation with Norton’s viscoplastic beha-
vior. Once the macroscopic stress is calculated at a given time t,
the macroscopic strain is incremented until it reaches the final,
preset macroscopic strain. The nodes with a null weight are not

considered as degrees of freedom since the A matrix in Eq. (18)
cannot be set, since it physically means the strain difference and
residual force cannot be defined in this case.
The residual vector R represents the residual forces acting at

each homogenized node and can be written as,

R ¼

R1

R2

..

.

R2N�1

2
66664

3
77775 ¼

H n!1
0

� �T
σ1
1 � σ2

1

� �
H n!1

1

� �T
σ1
2 � σ2

2

� �
..
.

H n!2N�1

N�1
� �T

σ2N�1
N � σ2N

N

� �

2
6666666664

3
7777777775
: (22)

Note that all the components of the R vector can be expressed as
a function of the stress at layer N following Eq. (9). For example, R1
can be expressed as

R1 ¼ Hð n!1
0Þ

T X2N�1
n¼1

f nNσ
n
N �

X2N
n¼2N�1þ1

f nNσ
n
N

 !
: (23)

Hence, the residual vector can be expressed as,

R ¼ ATW

σ1
N

σ2
N

..

.

σ2N
N

2
66664

3
77775 ¼ ATWσnodes;

with W ¼

W1 06 ´ 6 ¼ 06 ´ 6
06 ´ 6 W2 ¼ 06 ´ 6

..

. ..
. ..

. ..
.

06 ´ 3 06 ´ 6 ¼ W2N

2
66664

3
77775; and Wj ¼ ωj

NI6 ´ 6:

(24)

Algorithm 2. DMN online implementation for the Norton viscoplastic analysis
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Finally, when we define the tangent stiffness of each of the nodes
(Kn ¼ ∂σn

N=∂ϵ
n
N) using Eq. (1), and construct a global tangent

stiffness matrix K that we use to evaluate the Jacobian matrix
J= ATWKA to update jumping vector. The matrix K is simply given
by,

K ¼

K1 06 ´ 6 ¼ 06 ´ 6
06 ´ 6 K2 ¼ 06 ´ 6

..

. ..
. ..

. ..
.

06 ´ 3 06 ´ 6 ¼ K2N

2
66664

3
77775: (25)

Regarding the computational cost of the online prediction, N= 3,
5, and 7 recursive DMN in Fig. 4 take about 1.4, 5.2, and 7.2 s for a
calculation, respectively, as compared to approximately 1600 s by
FFT for 100 time steps on an Apple M1 Max chip. Similar
derivations of the DMN and related equations can be found in
ref. 33 and in ref. 34.
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