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Dynamical downfolding for localized quantum states
Mariya Romanova 1, Guorong Weng 1, Arsineh Apelian2 and Vojtěch Vlček 1,2✉

We introduce an approach to treat localized correlated electronic states in the otherwise weakly correlated host medium. Here, the
environment is dynamically downfolded on the correlated subspace. It is captured via renormalization of one and two quasiparticle
interaction terms which are evaluated using many-body perturbation theory. We outline the strategy on how to take the dynamical
effects into account by going beyond the static limit approximation. Further, we introduce an efficient stochastic implementation
that enables treating the host environment with a large number of electrons at a minimal computational cost. For a small explicitly
correlated subspace, the dynamical effects are critical. We demonstrate the methodology by reproducing optical excitations in the
negatively charged NV center defect in diamond, that agree with experimental results.
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INTRODUCTION
The ability to predict and computationally tackle electronic
excitations is key for guiding the development of new materials
in many areas ranging from quantum technologies to ultrafast
electronics. In this context, materials hosting strongly coupled
electronic states are particularly interesting, but they pose a
significant challenge to theory. Despite the great progress in
making explicitly correlated computational approaches more
affordable1–8, calculations are still limited to problems with a
small number of quantum particles. Fortunately, the most
important contribution is, in many cases, limited to only a small
range of electronic states, i.e., a subspace of the system. A
common approach to alleviate the computational cost is to invoke
theoretical treatment9–17 in which a small explicitly correlated
problem (solvable computationally) is embedded in the remaining
portion of the system, which is treated at a more approximate
level.
In practice, the calculations have to deal with a number of

methodological bottlenecks that can compromise the accuracy of
the model. Determining the correlated subspace is not always
straightforward and often based on chemical or physical intuition.
Further, the strongly interacting states are coupled to the rest of
the system6, i.e., the remaining (weakly interacting) electrons are
influenced by the electronic configuration of the subspace and
self-consistent treatment is thus required18,19. Moreover, the extent
of the dynamical coupling depends on the size of the explicitly
correlated region; in other words: the larger the correlated region
is, the more dynamical interactions are treated explicitly and the
simpler the coupling to the rest of the system is. The importance of
the dynamical renormalization has been recognized20–24 and the
constrained random phase approximation (cRPA) has become a de
facto standard in accounting for the dynamics of the environment
outside of the correlated subspace14,15,25–27. For technical reasons,
a static limit approximation is ubiquitously applied, instead of the
fully dynamical description16,17,28, and cRPA calculations are
computationally prohibitive for large systems29.
Here, we combine an efficient stochastic cRPA (s-cRPA)29

approach and describe a complementary strategy in which the
weakly interacting environment is downfolded on the correlated
subspace and the dynamical interactions are fully taken into

account. In analogy to the approaches considering individual
quasiparticles (QPs), the majority of the system (i.e., the
environment) is captured via effective single- and two-QP
interactions within the subspace. The dynamical response of
the weakly correlated electrons is captured by renormalized
interaction terms, whose dynamics compensate for the reduced
subspace dimensionality. We extend the previously developed
stochastic cRPA29 to arbitrary two-body couplings. More funda-
mentally, we provide a tractable construction of the downfolded
(and therefore frequency dependent) Hamiltonian treating
strongly correlated subspace of interacting QPs. The frequency-
dependence of the one and two-body terms is circumvented by
solving a set of auxiliary QP propagator problems, which
determine at which frequencies the dynamical interactions enter
the many-body Hamiltonian. We suggest a practical (approx-
imate) choice for the propagators and discuss avenues to
generalize this methodology further (e.g., in cases when
particle-particle scattering or electron-phonon couplings are
important).
We exemplify the approach by reproducing the experimen-

tally measured optical excitations in a single NV− defect center
in diamond. The defect consists of a small number of correlated
states (requiring an explicitly correlated method), formed by
dangling bonds pointing toward the vacancy. This subspace
definition is physically and chemically motivated. The remaining
host environment is weakly correlated: diamond’s fundamental
and optical band gaps are well reproduced within many-body
perturbation theory (MBPT) already at the level of G0W0

30–32 and
BSE33,34, suggesting that MBPT is sufficient for the electronic
dynamics and the related downfolding. Further, we employ
stochastic formalism that is applicable to large scale systems.
The optical excitations obtained by the stochastic dynamical
downfolding approach agree with experimental measurements.
While beyond the scope of this work, the proposed method
serves as a starting point to compute other quantities and
observables. For instance, the spectral function for the
correlated subspace is obtained from the one-QP Green’s
function (GF) using the correlated Hamiltonian, as detailed
e.g., in ref. 35.
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RESULTS AND DISCUSSION
Stochastic GW in weakly correlated host material
We first analyze the QP band gap of pristine diamond and
compare it to one of the defect supercells. Details about the
convergence of the band gap with respect to the system size are
available in Section “Implementation”. Our stochastic G0W0

calculations of a 4096-atom diamond supercell provide a QP
band gap of the 5.6 eV. This is consistent with our previous
calculations30. Further, for the defect center, the subset of
localized defect states have been extensively tested in our earlier
work36 and showed that 511-atom cell provides converged results.
The G0W0 calculations of a 511-atom diamond supercell contain-
ing the NV−1 defect provide a band gap of 5.3 eV. While the
relaxed supercells hosting NV−1 center are distinct from the
pristine (ideally periodic) diamond structure, we found that the
511-atom cell has a gap less than 0.1 eV away from the ideal 512-
atom diamond cell30. Both results are in good agreement with the
experimental value of 5.5 eV37. Note that the G0W0 results are
generally in good agreement with experimental band gaps. This is
true even though the electron-phonon band gap renormalization
is neglected (and has a profound effect as shown independently
by several authors38,39, and others). In the same vein, it is
reasonable to assume that a similar error cancellation will occur
for dynamical downfolding based on G0W0 and RPA, and that it
will also perform well and match experimental zero-phonon
optical transitions. However, in general, when electron-phonon
interactions are important, Σenv needs to account for these
scattering mechanisms, e.g., as alluded to in Section “Methods”.

Dynamically downfolded effective Hamiltonian
We now turn to the analysis of the QP energies of the defect
defined by the maximally localized states. Treating the defect
states at the G0W0 level leads to a small difference between the
individual sites (Fig. 1), i.e., they are energetically similar with a
difference of merely 0.51 eV for the orbitals located on nitrogen
and carbon atoms. Note that at this point all electrons, including
those in the correlated subspace, are described by the G0W0 self-
energy.

The first step in solving the correlated problem is to project the
electronic structure onto a selected subspace of states treated by
an explicitly correlated effective Hamiltonian:

Ĥ ¼ �
X
i;j;σ

tij ĉ
y
iσ ĉjσ þ

1
2

X
ijklσσ0

Wijkl ĉ
y
iσ ĉ

y
jσ0 ĉlσ0 ĉkσ; (1)

where ĉyiσ and ĉi;σ are creation and annihilation operators in site i
with spin σ. tij represents the one-body term capturing individual
QPs within the subspace. The term is conventionally separated
into the on-site, i= j, and hopping, i ≠ j, amplitudes. The t terms
are computed as tij ¼ hijHenv

qp jji using a single-QP Hamiltonian,
Henv
qp , containing the downfolded interactions from the environ-

ment. The second term, Wijkl, describes two-body (i.e., explicit QP-
QP) interactions within the subspace renormalized by the
environment (i.e., the electronic states outside of the correlated
problem). Details about the calculations of one- and two-body
terms are provided in Methods. In this formulation, the GW
treatment corresponds to “downfolding” on individual indepen-
dent QPs, whose energies are determined by Hqp containing
interactions from the entire system, i.e., there is no distinct
treatment of the environment and the subspace. In this limit, the
QPs in the subspace are computed by the same approach as the
environment, corresponding to a “GW in GW” calculation that
enables formal decomposition of Hqp to the “environment” and
“defect” contributions as illustrated already in ref. 40. For
completeness, this decomposition is also shown in Supplementary
Fig. 7.
Here, we analyze the individual one-body (single QP) t terms

entering the Eq. (1) and computed with Eq. (8). In contrast to the
G0W0 QP energies discussed above, calculations of t terms are
based on screened interactions and also contain only a portion of
the exchange-correlation self-energy. The difference between
the tii terms for the N and C sites becomes significantly larger
(12.7 eV). This is because the response of the environment to the
localized QPs is not balanced by the induced fluctuation of the
particles in the localized states (i.e., only the response of the
environment is included in the t terms). This value should be
contrasted with the estimate of the t terms neglecting the Σenv

term of Eq. (8) (19.9 eV), which represents a simplified version of
the onsite energy (that contains only kinetic and ionic potential)
applied in previous studies41,42. In this case, it thus seems that the
environmental contributions are significantly renormalizing the
trivial contribution to the differences between the subspace sites.
In the effective Hamiltonian, the differences between the onsite t
terms are critical to determining the triplet-triplet transition (c.f.,
Supplementary Note 1). Here, we analyze the individual one-body
(single QP) t terms entering the Eq. (1) and computed with Eq. (8).
In contrast to the G0W0 QP energies discussed above, calculations
of t terms are based on screened interactions and also contain
only a portion of the exchange-correlation self-energy. The
difference between the tii terms for the N and C sites becomes
significantly larger (12.7 eV). This is because the response of the
environment to the localized QPs is not balanced by the induced
fluctuation of the particles in the localized states (i.e., only the
response of the environment is included in the t terms). This value
should be contrasted with the estimate of the t terms neglecting
the Σenv term of Eq. (8) (19.9 eV), which represents a simplified
version of the onsite energy (that contains only kinetic and ionic
potential) applied in previous studies41,42. In this case, it thus
seems that the environmental contributions are significantly
renormalizing the trivial contribution to the differences between
the subspace sites. In the effective Hamiltonian, the differences
between the onsite t terms are critical to determining the triplet-
triplet transition (c.f., Supplementary Note 1). When inspecting the
matrix of t elements, including the intersite hopping (tij), we notice
that the maximally localized basis is strongly diagonally dominant
and the tij are on average just 6% of the tii terms (0.74 eV on

Fig. 1 Model representation of the NV−. Three carbon sites are on
top and nitrogen site at the bottom. Maximally localized single
particle states are shown by isosurface plots: red and blue colors
represent positive and negative value of a real valued orbitals.
Examples of one- and two-body terms are depicted diagrammati-
cally. The one-body terms (t) are obtained from single QP
propagators renormalized by the self-energy of the environment.
The two-body terms (W) contain screened Coulomb interactions.

M. Romanova et al.

2

npj Computational Materials (2023)   126 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



average). Further, the dependence of the t terms on ω is relatively
weak and slowly varying. If the dynamical effects are neglected in
the Hartree term (i.e., taking the static limit of ΣenvH ), we recover the
difference of 15.2 eV between the onsite single-QP terms for N
and C orbitals. Here, the renormalization decreases by roughly
35%, while much of the remaining difference stems from the
dynamical contribution of Σenvxc .
Next we analyze the results for the two-body interactions, Wijkl,

defined in this work in a following notation:
Wijkl ¼

R
φ�
i ðrÞφjðrÞWðr; r0Þφ�

kðr0Þφlðr0Þdrdr0. Figure 2a shows the
values of interaction parameters at the static limit Wp(ω= 0) on a
color map. By ordering the (i, j) and (k, l) indices, we group
together the dominant on-site and inter-site density-density
interactions that appear in the left top corner, i.e., Wp

iiii and Wp
iijj .

The remaining terms do not exceed 70 meV (both bare and
screened); this is true for all frequencies as we show in Fig. 2b
(black curves). The convergence of the four dominant parameters
with samplings as a function of supercell size is provided in
Supplementary Fig. 4. In the rest of this work, we exclude all the
terms with a magnitude of <70 meV.
Note that the minimal model preserves the C3v symmetry,

which is also satisfied by the underlying mean-field Hamiltonian.
However, the statistical sampling is associated with finite
stochastic errors and the corresponding interaction symmetry is
restored a posteriori. In particular, the bare component, Wb

ijkl ,
naturally preserves symmetry under the permutation of indices
ijkl↔ klij. In general, this is not satisfied for stochastically sampled
polarization part, Wp

ijkl , (cf. Supplementary Fig. 5) which would
translate to level splitting (of otherwise degenerate excitations) in
the optical spectrum of the NV−.
To recover the expected behavior we enforce the individual

symmetries; in practice, this is analogous to the Hermitization of
the QP Hamiltonian as in refs. 29,43,44:

Wp
ijklðωÞ ¼

1
4
½Wp

ijklðωÞ þWp�
klijðωÞ þWp

klijðωÞ þWp�
ijklðωÞ� (2)

Figure 2d demonstrates the converged result of Wijkl(ω) with
3200 samplings. There however remains a finite difference within
each group of elements on the order of 20 meV, attributed to
numerical artifacts. This small symmetry breaking leads to errors
much lower than the practical resolution determined by the
sampling error for individual QP levels which is at most ~54 meV.
In the following, we use 3,200 samplings as they lead to a
reasonable balance between the computational cost and accu-
racy. The statistical error is at least 30% smaller than the
magnitude of the smallest values of Wijkl(ω) (shown by the black

line in Fig. 2b) that contribute negligibly to the results reported
here. We report the splitting in Supplementary Table I for each
supercell size. In the rest of this work, we average the screened
counterpart of the interaction parameters within each symmetry
group (depicted in Fig. 2d for the four cases considered).
Figure 2b depicts the frequency dependence of Wijkl(ω) terms.

The magnitude of the response depends on the localization of a
perturbation, e.g. the more delocalized the perturbing state is (i.e.
if the canonical Kohn Sham defect state is used instead of more
localized wannier), the weaker the response (test performed in this
work, shown in the Supplementary Fig. 6). In contrast to the slowly
varying frequency dependence of t terms, the frequency
dependence of the two-body interactions is more pronounced.
The renormalization is caused by the response due to the charge
dipole fluctuations. Therefore, the values of Wijkl are determined at
excitation energies ω2qp obtained from the fixed point solution for
the particle-hole propagator in the environment. Specifically, we
solve a two-QP Hamiltonian H2qp associated with the poles of the
two-QP propagator satisfying the Bethe-Salpeter equation (BSE),
see details in Section “Methods” Eq. (10); The frequency ω2qp

represents an auxiliary BSE solution for a particular pair of QPs. The
corresponding renormalized two-body interactions are evaluated
at ω2qp. Note that these excitations only define the energy scales
of the W terms and do not directly translate to excitations of the
explicitly correlated many-body states in the subspace, i.e. to the
optical spectrum we seek. For further details and the approxima-
tions employed see Section “Methods”. For the optical transition
between two C sites, we obtain a value of 2.3 eV while between N
and C site a value of 2.6 eV. The energy significantly increases, if
excitation is confined to be in between two states on a single site
(6.3 and 7.7 eV on the C and N sites). Compared to the bare
interactions, the dynamically screened Wiiii(ω2qp) are decreased by
as much as 52% for N and 50% for the C sites. The intersite
density-density is lower by 38% between two C sites, and by 29%
for those between N and C sites. This significant change can be
deduced from the steep dependence of W(ω) curves in Fig. 2b. As
mentioned above, the remaining terms have small magnitudes
and are neglected. Taking the static limit of W(ω) leads to a much
weaker screening, especially for the “on-site” (Wiiii) terms, which
are reduced by 23% and 20% for N and C sites. In contrast, the
intersite terms (Wiijj) are reduced by 22% between N and C and by
18% between two C sites. Regardless of the approach, considering
the dynamical effects away from the static limit leads to a
reduction of the two-body interaction strength compared to
considering the limit ω→ 0 (see Supplementary Note 1). This does
not necessarily mean that the system becomes more weakly

Fig. 2 Parameters of the downfolded Hamiltonian. a Color map of absolute values of the screening part of all 256 interaction parameters
estimated at the static limit Wp

ijklðω ¼ 0Þ. b Frequency dependence of the total bare plus screened interaction for 3200 stochastic samples.
Interaction terms are highlighted by color according to the physical meaning. Red represents the on-site Coulomb interaction terms, blue -
inter-site, black - all remaining interaction terms. Stochastic errors are smaller than the line thickness. c Bare Coulomb on-site and inter-site
parameters Wb

iiii;iijj . d Screening part of the Coulomb parameters after retaining the hermitian part of the interactions Wp
iiii;iijjðω ¼ 0Þ. Computed

with 3200 stochastic samples in the 511-atom cell. In c and d parameters obeying the same symmetry operations are highlighted with the
same color.
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interacting. In fact, the degree of electronic correlation can be
paralleled with the presence of multiple excitation channels
competing at similar energy scales35 and, indeed, it was shown in
the context of DMFT that the inclusion of dynamical effects tends
to increase the apparent strength of electronic correlations23,24.

Excitation energies of the dynamically downfolded model
In the final step, we study the excitation energies obtained by
exact diagonalization of Eq. (1) within the minimal subspace
defined by the localized orbitals with the parameters t andW fixed
at ωqp and ω2qp correspondingly. We consider the fully
dynamically renormalized case and compare it to the correspond-
ing static limits. In the latter, the one-body terms contain the
contribution of Σenvxc computed at the single-QP excitation energy
(in analogy to the G0W0 approximation), but the dynamics of the
Hartree term is neglected as we take lim

ω!0
ΣenvH ðωÞ. Similarly, the

two-body interaction in the static limit is lim
ω!0

WijklðωÞ. Figure 3

shows the comparison of the two sets of results. Note, since the
hermicity is imposed on the many-body Hamiltonian (as an
additional approximation), both t and W parameters are also
required to be symmetric (see Eqs. (2) and (9)). Therefore the
current approximation does not provide life-times of the excited
states, in general, however, the downfolding provides information
on life-times.
The triplet-triplet vertical transition, 3E↔ 3A2, is not substantially

different for the two limiting cases. Based on the analysis of the
simple effective Hamiltonian for the NV− center (see Supplemen-
tary Note 1), we expect that the triplet transitions are largely
determined by the differences between the onsite one-body
terms t. While the dynamical effects change them by roughly 20%,
the resulting optical excitation spacing is insensitive to such a
change. The static and the dynamically screened limits yield
values of 1.98 and 1.92 eV which agree with the experimental
zero-phonon excitation of 1.95 eV45.
Our result compares well to previous theoretical works that

employed embedding methods despite major differences in the
theory. For instance, values of 2.02 eV and 2.05 eV of the triplet-
triplet transition were obtained in refs. 25,27 using the quantum

defect embedding theory. These approaches employ a hopping
term described at the DFT level and the two-body interaction
parameters computed with cRPA in the static limit. A double
counting error, i.e., a spurious inclusion of (a portion of) the
correlated subspace in the calculation for the environment, arises
in embedding approaches15,25,27. (It is circumvented in this work
by separation of the self-energy). This is especially problematic for
embedding within DFT; in refs. 25,27 an approximate Hartree-Fock
double counting correction scheme was employed. More recent
work15 formulated an exact double counting correction for G0W0,
combined with cRPA treatment of the two-body interactions at
the static limit. We surmise that this ω→ 0 formulation translates
into a much larger subspace size requirement (indeed, the
converged subspace required 12 orbitals, 22 electrons). Ultimately,
the converged value for the triplet-triplet transition in ref. 15 was
estimated to be 2.15 eV.
The dynamical effects turn out more critical for the singlet-

singlet 1A1↔ 1E excitations, which are more sensitive to the
relative magnitude of the W terms. As mentioned above, the
screening significantly decreases the magnitude of Wijkl. This is
illustrated in the Supplementary Note 1 and also discussed in
more detail below. We see that in the static case, the singlet-
singlet transition is 0.7 eV, which is lower than 1.19 eV the zero-
phonon line observed experimentally46. These results are in good
agreement with other published cRPA results in the static limit.
Specifically, a value of 0.8 eV was obtained in refs. 15,27, though
this can be improved if beyond cRPA response is used14.
In contrast, our result for the fully dynamical renormalization of

single-singlet transition is 1.18 eV (at s-cRPA level) agrees with the
experiment. This is largely due to the reduction of the two-body
terms when the dynamics of the density fluctuations is fully taken
into account. As noted above, we made a particular choice of H2qp

while a different formulation may change the results as the QP-QP
interactions would be evaluated at distinct values of ω2qp.
Nevertheless, the interaction term is reduced at a finite frequency
compared to the static limit, and this leads to improved singlet-
singlet transition energy (See Supplementary Fig. 2). This step
clearly illustrates that going beyond the typical static limit
improves the results appreciably.
A prototypical embedding method applied to periodic corre-

lated systems is the dynamical mean field theory (DMFT). Here, the
correlated subspace is coupled to the bath of the bosonic degrees
of freedom which represents the interaction with the rest of the
system. In contrast, the downfolding captures the problem via a
chosen correlated subspace while the host material is represented
via the dynamical effect entering each interaction term. This can
be paralleled with a lossless compression: the information about
the entire system is fully reconstructed through the dynamical one
and two-body terms. For weakly correlated host systems (which
are accurately treated via MBPT) our strategy offers a great
computational advantage. The downfolding approach mitigates a
need for a self-consistent solution, represented by a matching
condition between the correlated subspace and the bath degrees
of freedom in DMFT. While the dynamical downfolding method is
general and widely applicable, it also has some limitations, such as
the intractability of exact diagonalization for large-scale subspaces
and the approximations involved in the MBPT treatment of the
environment. In the latter case, it is possible to employ the
renormalization group (RG) approach8, offering a complementary
route to extract the response of the system to the QPs in the
subspace (via “lossy” compression). This direction will be explored
in the future. Yet, the efficiency of the stochastic dynamical
downfolding approach suggests that it is a practical and reliable
methodology for treating localized correlated phenomena (such
as quantum defects and beyond).
Indeed, the results for the negatively charged NV center in bulk

diamond practically demonstrate that the dynamically down-
folded representation agrees with the experimental excited

Fig. 3 Excited states on the NV−. Comparison of the excited states
of the NV− center in 511 atom supercell where the electron-electron
interaction parameters were computed in this work with a t and W
screened within stochastic s-cRPA at static limit ω= 0 b both t and W
are dynamically renormalized; Number of stochastic samples
N ~ηj i ¼ 3200. (*) Note, experimental values of zero phonon lines are
presented on the plot, while our results are computed for vertical
excitations.
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energies of the defect. We believe that this is a jumping-off point
for future practical simulations of electronic excitations in localized
quantum states.

METHODS
The t and W terms of Eq. (1) critically depend on the definition of
the correlated space and the projection onto it effectively lowers
the problem dimensionality. It is exact provided that both one-
and two-body terms downfold all the interactions with the
remainder of the system28. Further, it requires solving a non-linear
eigenvalue problem of the frequency-dependent Hamiltonian.
Here, we provide a route to bypass the problem by solving a set of
auxiliary QP propagator equations, which determine the frequen-
cies at which the one- and two-QP terms enter the many-body
Hamiltonian. We consider only electronic degrees of freedom; the
downfolded representation thus captures the coupling with the
electronic states (i.e., the charge and configuration fluctuations)
outside of the subspace treated by Eq. (1). In particular, we
consider the charge density and exchange-correlation interac-
tions. Both contributions include dynamical induced effects (e.g.,
polarization) and higher order terms described e.g., in Ref. 47 and
hence renormalize the t and W terms28. To the lowest order, the
induced interactions include induced charge density fluctuations.
In general, they also contain an induced density matrix47,48. Note
that if the dynamics of the subspace problem is artificially
decoupled from the environment (i.e., only static interactions are
considered), the exact solution requires a self-consistent re-
evaluation of the one- and two-body terms to reflect the induced
effects. Such a self-consistency is circumvented in the (dynamical)
downfolding approach shown here.
Clearly, the size of the explicitly correlated region and its

coupling to the remainder of the system determines the degree of
dynamical effects that needs to be captured by t and W. In this
work, we seek only the minimal configuration space, obtained by
localizing the electronic states on the atoms neighboring the
defect (Fig. 1), and explore the role of dynamical renormalization
of individual terms entering Eq. (1). This leads to only four,
physically motivated, orbitals in which the QPs are renormalized
by the environment of weakly correlated electrons in diamond.
The practical calculations thus need to address how to determine
such terms and how (i.e., at which frequency) they enter the
Hamiltonian.
The downfolding derives directly from the single QP equation of

motion:

i∂t1Gð1; 2Þ ¼ δð1; 2Þ þ h0ð1ÞGð1; 2Þ � ivð1þ; 3ÞLð1; 3; 2; 3þÞ; (3)

where G is the one-body Green’s function (GF) defined as
Gð1; 2Þ ¼ �i Nh jT ½ĉð1Þĉyð2Þ� Nj i with time-ordering operator T
and Nj i representing the N-particle many-body ground state.
Here, the GF is defined using the 0K formalism, however, it can be
generalized to a finite temperature via the thermal quantum field
formalism. Further, h0 ¼ T̂ þ V̂

ext
is the one-particle operator

composed of the kinetic and external (ionic) potential terms, v is
the bare Coulomb interaction, and L is the two-particle Green’s
function defined as a time ordered product of two creation and
two annihilation operators (i.e., analogously to G). We adopted the
shorthand notation for space-time coordinates, i.e., 1≡ r1, t1, and
bar indicates a coordinate to be integrated over. In MBPT, the two-
body interactions are downfolded by introducing Hartree and
exchange-correlation self-energies:

vð1þ; 3ÞLð1; 3; 2; 3þÞ ¼ ΣHð1; 3ÞGð1; 2Þ þ Σxcð1; 3ÞGð3; 2Þ: (4)

The Hartree self-energy, ΣH, is the potential due to the density
mediated by the instantaneous Coulomb term ΣHð1; 3Þ ¼
vð1; 3ÞGð3; 3þÞ and vð1; 2Þ ¼ ðjr1 � r2jÞ�1δðt1 � t2Þ. Σxc downfolds
all quantum two-body effects not included in ΣH (discussed later

and, e.g., in ref. 28). The QP dynamics is governed by excitation
energies, corresponding to poles of G in the frequency domain;
these are represented as eigenvalues of the effective QP
Hamiltonian Hqp ¼ T̂ þ V̂

ext þ Σ̂ðωÞ, where the total self-energy,
Σ, is frequency dependent as a result of Fourier transformation
from the time domain. For a particular QP state, Hqp is computed
as a fixed point equation with Σ evaluated at ω corresponding to
the QP energy.
We now discuss the calculations of t and W terms, which follow

a similar route with the important difference, that only the
interactions with electrons in the remainder of the systems (i.e.,
outside of the correlated subspace) are downfolded. Given the
constrained description with fixed minimal orbital space, localizing
a QP in a particular state ϕj is associated with charge fluctuation
inside the subspace and polarization of the environment
(Penv= χenvν). Here, the superscript “env” indicates that the
polarization is restricted to the environment part of the system.
The separation into subspaces is based on state selection (and not
on e.g., spatial coordinates). Further, note that similarly to ref. 15

we assume the interaction between the subspace and the
environment is negligible. Indeed, we have tested this hypothesis
and the overall results differ by < 1% (see Section “Implementa-
tion”). The notation used is described in the SI. The QPs in the
subspace thus interact via a renormalized (screened) Coulomb
interaction:

Wenvð1; 2Þ ¼ νð1; 2Þ þ νð1; 3Þχenvð3; 4Þνð4; 2Þ; (5)

where χenv is the reducible polarizability of the environment due
to a potential variation δU: χenv= δnenv/δU, where δU is in the
subspace that is “external” to the environment. Within the GF
formalism, the two-particle interactions are formally downfolded
by substituting v terms by W env.
It is now important to distinguish interactions within the

subspace and with the remainder of the system. For a pair or QPs
inside the correlated region, we consider explicit interactions
mediated by the renormalized Wenv. Hence, for a particular choice
of localized single-QP states {ϕ}, we obtain a dynamical two-body
term as:

WijklðωÞ ¼ ϕiϕjjŴ
envðωÞjϕkϕl

D E
; (6)

which enters Eq. (1).
For the one-body term, the single-QP dynamics is governed by

Eq. (3) with downfolded two-body interactions between electrons
inside and outside the correlated subspace. We require, that the
same formalism applies (formally) to all states, i.e., the two-body
interactions represented by L will be mediated by Wenv. We thus
write:

Wenvð1þ; 3ÞLð1; 3; 2; 3þÞ
¼ ΣenvH ð1; 3ÞGð1; 2Þ þ Σenvxc ð1; 3ÞGð3; 2Þ;

(7)

where ΣenvH ð1; 3Þ ¼ Wenvð1; 3ÞGenvð3; 3þÞ is a dynamical Hartree
term which includes the effect of induced charge density in the
environment, represented by Genv(1, 1+), caused by density fluctua-
tions inside the subspace. This is a single-QP term, the physical
meaning of which is to account for the propagation of a single QP in
the local Hartree potential of other electrons. Note, the localization
of a quasiparticle on a particular site or its hopping (corresponding
to terms tii and tij accordingly) are associated with different QP
energies and charge fluctuations. Thus, they are subject to distinct
local potentials. Similarly, the exchange correlation term is, in
general, Σenvxc ð1; 2Þ ¼ Genvð1; 3ÞWenvð1þ; 4Þ~Γenvð3; 4; 2Þ, where the
GF is constructed only from the states of the environment. Note,
both Hartree and exchange correlation self-energies are restricted to
the states of the environment to avoid double counting in the
subspace. The vertex ~Γ

env ¼ δðGenvÞ�1=δU is constructed from the
response of the environment to the variation of the “external”
potential δU. Note that the vertex is reducible, i.e., distinct from the
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counterpart typically encountered in the Hedin’s formalism28,48,49. In
practice, this means that an additional screened response needs to
be included in the self-energy expansion given that Eq. (7)
substitutes v with Wenv.
Using the combined self-energy Σenv ¼ ΣenvH þ Σenvxc , based on

the quantities defined in Eq. (7), we obtain the single-QP effective
Hamiltonian containing the renormalization effects stemming
from the environment: Henv

qp ¼ T̂ þ V̂
ext þ Σ̂

envðωÞ. As discussed
above, Henv

qp directly enters the computation of the one-body
terms. In particular, for the onsite term and localized single-QP
state ϕj we obtain:

tjjðωÞ ¼ ϕj jT̂ þ V̂
ext þ Σ̂

envðωÞjϕj

D E
; (8)

where Σ̂
env

is the self-energy representing the effective interac-
tions among a QP in the subspace and electrons in the
environment. The expectation value of T̂ depends only on ϕj

and hence it is static. Similarly, the external potential (V̂
ext
) is not

frequency dependent, though this may be further generalized if
the electron-phonon coupling is taken into account. In this
picture, the electron-phonon coupling is represented as a charge
induced structural reorganization. As such, in the downfolded
treatment, the external potential is independent of the electronic
configuration, i.e., static. In principle, this constraint may be lifted
in a more generalized case when lattice coupling is taken into

account. Hence, both T̂ and V̂
ext

capture trivial differences
between the subspace sites j. Previously, the definition of the t
amplitudes was typically limited only to these two terms41,42. In
contrast, the self-energy introduces non-trivial dynamical effects.
In addition, the method can be extended beyond 0K to include
the electronic temperature as explained earlier.
The remaining step to compute the excitation spectrum of the

subspace using Eq. (1) is not straightforward if the renormalized
interactions remain functions of frequency, i.e., t(ω) and W(ω).
Since the representation stems directly from the effective down-
folding corresponding to one- and two-body propagators, we
consider t and W evaluated at ω corresponding to the poles of
equilibrium G and L in the frequency domain.
The one-body term is directly linked to the fixed point solution

of the QP Hamiltonian, Hqp, in which Σ is evaluated directly at the
QP energy, ωqp. In general, ωqp differs for the individual cases. e.g.,
the on-site term tjj and the inter-site single QP propagator tij are
distinct and the effective QP energies (hence ωqp) are thus
different. The portion of the self-energy that represents the
downfolded environment, Σenv, is also evaluated at ωqp, as
discussed e.g., in refs. 15,40. Since the subspace orbital basis does
not diagonalize Hqp nor Henv

qp , the off-diagonal (hopping) terms tij,
are computed as

tij ¼
1
4

tijðωi
qpÞ þ tijðωj

qpÞ þ tjiðωi
qpÞ þ tjiðωj

qpÞ
h i

; (9)

where ωi
qp is the ith subspace QP energy. This approach follows

the QP-selfconsistent method43,44 that imposes self-adjointness of
the Hamiltonian. In our practical calculations (detailed below) we
found that the Hqp is still strongly diagonally dominant, i.e., tii≫ tij
and the symmetrized and hermitized form of tij is justified in these
cases43,44. The two-body interactions are renormalized by charge
density fluctuations in the remainder of the system, i.e.,
polarization due to the electron-hole transitions (excitations) in
the subspace. In the following, we consider such optical
excitations to determine the frequency at which Wijkl(ω) should
be computed (Eq. (6)). Note that this is a particular choice; an
alternative strategy is to compute the two-body terms from two-
particle propagator, e.g., in the T-matrix approximation28,48 in
which the two-particle interactions are renormalized by particle-
particle scattering (which needs to be restricted to the environ-
ment). As we are primarily considering the particle-hole screening

in Eq. (5), we employ the Bethe-Salpeter equation for particle-hole
propagator L. The excitations are defined as the fixed-point
solutions for a two-QP Hamiltonian, H2qp

50, which for a particular
set of subspace states is:

hijjH2qpðωÞjkli ¼ Δijδikδjl þKijklðωÞ: (10)

Here, Δij ¼ ωi
qp � ωj

qp is the difference between two-QP energies,
corresponding to two independent single-QP excitations. Further,
K is a general dynamical interaction kernel that couples the two
QPs. We consider that the two-body interactions inside the
subspace are mediated by the screened Coulomb interaction at
the random phase approximation (RPA) level (Kijkl ¼ Wenv

ijkl ). This
choice is motivated by two reasons: for the description of
individual QPs, we resort to the GW approximation (see below)
in which we employ RPA; further, this approach directly utilizes
the quantity of interest, i.e., Wijkl(ω) from Eq. (6). The particle-hole
excitations ω2qp are found by computing the H2qp as fixed point
equation for energy (ω2qp) satisfying Eq. (10). In practice, this is
computed numerically through bisection so that 〈ij∣H2qp(ω)∣kl〉=
ω2qp and Kijklðω2qpÞ are satisfied simultaneously. Note, each two-
quasiparticle propagator differs for each set of ijkl. In the following,
we assume that the dynamically renormalized two-body interac-
tions are screened (by the polarization of the environment) in the
same way as the electron excitations in the subspace. Hence the
two-body interactions from Eq. (6) enter the Hamiltonian in Eq. (1)
as Wijkl(ω2qp).

Stochastic formalism
We now comment on the practical and efficient implementation
of the one and two-body terms. The key ingredient is the
renormalized two-body interaction, Eq. (5) which directly enters
the evaluation of Wijkl and t (Eqs. (6) and (8)). In practice, we
employ a stochastic evaluation of the QP-QP and single-QP terms,
i.e., we sample the action of the screened interaction: instead of
computing the environment polarizability, χenv, we repeatedly
compute the induced density δnenv= χenvδU constructed from
random vectors projected on the occupied portion of the single
particle Hilbert space30,51. The stochastic occupied states, ηj i, are
projected such that they are a part of the weakly correlated
environment: ~ηj i ¼ ð1� PϕÞ ηj i, where ηj i spans the entire
occupied subspace. Here Pϕ is the projection operator explicitly
formed from the states of the correlated subspace, {ϕ}:

Pϕ ¼
X
k2 ϕf g

f k ϕkihϕkj j; (11)

where fk is the occupation of the kth state. The variation of the
charge density, δn is induced by electrons in particular states of
the correlated region {ϕ}, which create a perturbing potential at
t= 0. The density is constructed from random vectors as
nðr; tÞ ¼ lim

Nζ!1
1
Nζ

PNζ

j¼1 j~ηðr; tÞj
2. In practice, the response is com-

puted separately for each perturbation (i.e., for each set of
perturbing states {ϕ}); yet the overall cost is significantly reduced
compared to the conventional (deterministic) method as only a
few sampling vectors ~ηj i are necessary to converge the one- and
two-body terms. This is discussed in Supplementary Information
Sec. II in more detail. The time evolution of ~ηj i states is evaluated
in the RPA, in which only the (mean field) ground state
Hamiltonian explicitly depends on time only through the Hartree
potential29,30,47,51,52.
For the two-body terms, we conventionally separate the bare

and polarization contributions WijklðωÞ ¼ Wb
ijkl þWp

ijklðωÞ, where
the former is directly computed as the static part of Eq. (6),
and the latter is obtained by Fourier transformation from its
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time-dependent form:

hϕiϕjj ~W
pðtÞjϕkϕli ¼

Z
ϕ�
i ðrÞϕjðrÞ~uðr; tÞdr: (12)

We use a time ordered induced potential u, computed from its
retarded counterpart: ~urð1Þ ¼ vð1; 2Þδnenvð2Þ, where the density
fluctuation is a response to a perturbation from the correlated
subspace. The time-evolved states ~ηj i are repeatedly projected
using Pϕ at each time step to exclude the dynamics of the
correlated subspace. This constitutes the stochastic density
constrained RPA (s-cRPA) introduced in Ref. 29. Note, the time-
evolution truncation introduces an effective broadening, which
translates into a finite frequency resolution of W(ω) (see details in
Section “Implementation”).
Finally, the contribution to the renormalized Hartree self-

energy, ΣenvH is similar in nature to Eq. (12), as it also contains
the dynamically screened Wenv term computed via stochastic
sampling. However, instead of treating only a set of correlated
states {ϕ}, it applies to the interaction between the density of the
environment and an individual single-QP density, represented by
∣ϕj(r)∣2. As such it is part of the one-body t term.
In practical calculations, further approximations need to be

introduced for the sake of tractability. As argued earlier, the G0W0

approximation, which captures the correlation effects via induced
charge density fluctuations, provides a good choice30–32. For
evaluating the Σenvxc in the t term, we resort to a formulation
analogous to G0W0 as well. In practice, this means that
~Γ
envð1; 2; 3Þ � δð1; 2Þδð1; 3Þ. As a result, this form neglects the
higher order screening in Σenvxc , that is inherently part of ~Γ. While
this step is an ad-hoc approximation, it still corresponds to the
leading-order term capturing the environment exchange-
correlation self-energy.
In this approximation, our calculations employ a portion of the

G0W0 environment exchange-correlation self-energy, which
depends only on an underlying mean-field Hamiltonian used to
generate the starting point. Analogously to the two-body terms
and the Hartree self-energy, Σenvxc is efficiently evaluated using a
real-time propagation of stochastic vectors (sampling the fluctua-
tions in the environment induced by addition of a particle or hole
to the subspace). This step follows the stochastic decomposition
scheme detailed in ref. 40. In the space-time representation,
Genv
0 ðr; r0; tÞ ¼ f~ξ�ðt; r0Þ~ζðrÞg, where j~ζi is obtained from a random

state sampling the entire single-particle Hilbert space, ζj i, by
projection j~ζi ¼ ð1� PϕÞ ζj i. Further, ξðtÞj i is a random state in
either occupied or unoccupied subspace of the environment
states (obtained by filtering) which is propagated backward or
forward in time due to time ordering applied to holes and
particles30,47,51,52. Again, only its portion j~ξi, which is orthogonal
to the correlated subspace, contributes to Genv and it is prepared
as j~ξi ¼ Pϕ ξj i. Finally, the time evolution is governed by the U0

which depends only on the ground state non-interacting
Hamiltonian and j ~ξðtÞi ¼ U0ðtÞj~ξi. The practical expression for
the xc self-energy for a state ϕj in Eq. (8) thus becomes (in the time
domain): ϕj

� ��ΣðtÞ ϕj

�� �
¼ hϕj

~ξðtÞjŴenvðtÞj~ζϕji.

Implementation
The following calculation workflow was employed in this work:

● The QuantumESPRESSO code53 code was used to perform the
atomic relaxations of the NV− center defect in 3D periodic
diamond supercells of size 215, 511 and 999 atoms. The
Tkatchenko-Scheffler’s total energy corrections54 and spin
polarization were included. The equilibrium lattice parameter
of 3.543 Å was used to construct the supercells.

● The starting-point DFT calculations for all systems were
performed with a real-space non spin-polarized DFT

implementation, employing regular grids, Troullier-Martins
pseudopotentials55, and the PBE56 functional for exchange
and correlation. For 3D periodic structures to converge the
eigenvalues to < 5 meV, we use a kinetic energy cutoff of 26
Eh. The real-space grids of 68 × 68 × 68; 92 × 92 × 92; and
112 × 112 × 112 with the spacing of ~ 0.3 a0 were used for
215, 511, and 999 supercells; Note, the real-space imple-
mentation of the stochastic GW methodology requires that
instead of sampling the Brillouin zone via k points, we
effectively only sample the Γ point for a large supercell. The
512-atom supercell corresponds to the 4x4x4 k-point mesh,
and the 4,096 atom supercell corresponds to the
8x8x8 mesh.

● The maximally localized functions were obtained by
PMWannier2.0 code based on sequential optimization36,57.
The localized orbitals were centered on four sites: nitrogen
atom and three nearest to vacancy carbon atoms (Fig. 1 of
the main text). This is a minimal model of the NV-center that
is commonly used27,42,58 to describe its low-lying excited
states.

● Further, the effective parameters were computed in a
localized basis. The dynamical renormalization of the
parameters was included through the frequency depen-
dent dielectric screening by the host environment contain-
ing 1020 valence states. The total number of states
(occupied and unoccupied) is given by the real-space grid
size that amounts to 778,688 states which are being
stochastically sampled. Screening was computed with the
s-cRPA method, which was implemented within a devel-
opment version of the StochasticGW code29,30,40,51,52. In
cRPA, the polarization of the system is divided into
subspace part Psub and the environment part Penv. While
the former is excluded from the model Hamiltonian,
the transition between subspace and the environment
(Psub-env), in principle, should be included. We tested both
strategies: with and without the transition between the
subspace and the environment. Specifically, in the real-
time formulation of cRPA, the subspace states are
perturbed and propagated, creating density fluctuations
in the rest of the system. The time-evolved states can
transition between the subspace and rest. If these
interactions are to be excluded, we constrain the dynamics
by projections at each time step. Our tests showed that
both strategies lead in this particular case to the same
result for the screening (with sub-1% differences in the
final results). In our calculations, we employed in total
3200 samplings for the one and two body terms; a detailed
study of the convergence of the stochastic errors is in the
Supplementary Information Sec. II. The frequency resolu-
tion depends on the time propagation of the induced
charge density. Here, it was performed for a maximum
propagation time of 50 a.u., with a time-step of 0.05 a.u.
The same time propagation was shown to provide well-
converged results for bulk diamond in our previous work30.

● At the next step, we calculated single and double
quasiparticle energies ωqp and ω2qp by solving auxiliary
quasiparticle Hamiltonian and Bethe-Salpeter equations. At
these finite frequencies, t(ωqp) and W(ω2qp) parameters
enter the effective Hamiltonian Eq. (2).

● Finally, to obtain the set of the many-body excited states in
the NV center we performed an exact diagonalization of
the effective Hamiltonian.

DATA AVAILABILITY
All the data supporting the results of this study are available upon reasonable request
to the corresponding author
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CODE AVAILABILITY
The public version of the stochastic GW code is available at stochasticGW.com. We
used a development version of the stochastic GW to perform calculations, which will
be released soon and is available upon reasonable request.
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