
ARTICLE OPEN

A unified field theory of topological defects and non-linear
local excitations
Vidar Skogvoll 1✉, Jonas Rønning 1, Marco Salvalaglio 2,3 and Luiza Angheluta1

Topological defects and smooth excitations determine the properties of systems showing collective order. We introduce a generic
non-singular field theory that comprehensively describes defects and excitations in systems with O(n) broken rotational symmetry.
Within this formalism, we explore fast events, such as defect nucleation/annihilation and dynamical phase transitions where the
interplay between topological defects and non-linear excitations is particularly important. To highlight its versatility, we apply this
formalism in the context of Bose-Einstein condensates, active nematics, and crystal lattices.
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INTRODUCTION
Topological defects are hallmarks of systems exhibiting collective
order. They are widely encountered from condensed matter,
including biological systems, to elementary particles, and the very
early Universe1–8. The small-scale dynamics of interacting
topological defects are crucial for the emergence of large-scale
non-equilibrium phenomena, such as quantum turbulence in
superfluids9, spontaneous flows in active matter10, or dislocation
plasticity in crystals11. In fact, classical discrete modeling
approaches such as point vortex models12 and discrete dislocation
dynamics13 describe turbulence and plasticity in terms of the
collective dynamics of topological defects as interacting charged
points (in 2D) or line defects (in 3D). In most of these theories, the
interactions of topological defects are modeled through the linear
excitations that they induce in the far fields. The physics of events
on short time- and length scales, such as core energies, nucleation
conditions, defect interaction, etc., are often introduced by ad-hoc
rules, such as cut-off parameters, Schmidt stress nucleation
criteria, and defect line recombination rules. However, the
dynamics of these events play a vital role in the transitions
between different dynamical regimes. This is the case, for
example, in stirred Bose-Einstein condensates where different
superfluid flow regimes are observed depending on the size and
speed of the moving obstacle14–19, and where there is a subtle
interplay between vortices and shock waves. Active nematic fluids
are characterized by a dynamic transition to active turbulence at a
sufficiently large activity where the spontaneous flows are
sustained by the creation and annihilation of orientational
defects20,21. During plastic deformation of polycrystals, grains are
progressively fragmented, a process governed by the nucleation
and patterning of dislocations22. A number of macroscopic criteria
exist for the nucleation of topological defects in crystals23–25. Due
to the highly non-linear nature of this process, however, it still
remains poorly understood.
In this paper, we present a formalism to describe the evolution

of ordered systems from the dynamics of their topological defects
and their interactions with smooth but localized excitations. The
versatility of the approach allows us to gain insight into defect
annihilation, the onset of collective behavior, and perspectives on
defect structures. In particular, we apply the method to systems of

increasing topological and dynamical complexity. First, we study
the motion of isolated vortices in Bose-Einstein condensates,
which, in addition to confirming that the method correctly
identifies topological defects and their velocities, sheds light on
changes in quantum pressure arising from the interplay between
phase slips and shock waves. For active nematics, we observe that
the onset of active turbulence as a melting of periodic arches is
signaled by the formation of bound dipoles of nematic defects at
the core of dislocations in the nematic arches. Similarly, bound
dipoles of phase slips are also associated with the nucleation of
dislocations in a crystal lattice.
The proposed approach builds upon the classical method

introduced by Halperin and Mazenko (hereafter called the HM-
method)26,27 to track and derive analytical results for topological
defects. Therefore, in the section “Classical description of
topological defects”, we begin with preliminary details of
homotopy theory for topological defects and how the HM-
method can be used for O(n)-symmetric theories to track their
location and kinematics. In the section “Non-singular defect
fields”, we then develop a non-singular field theory as a
generalization of the HM-method which constitutes our primary
reduced defect field. The method is then applied to the
aforementioned physical systems in the sections “Defect annihila-
tion: vortices in Bose-Einstein condensates”, “Onset of collective
behavior: active nematics”, and “Defect structures: solid crystals”.
For the sake of readability, a rigorous derivation of the theoretical
framework for arbitrary dimensions and details of the numerical
simulations are reported in the Supplementary Notes. Conclusions
and perspectives for further study are outlined in the section
“Discussion”.

Classical description of topological defects
Collective order is typically described by an order parameter field
representative of symmetries and carrying information about
topological defects and smooth, localized excitations. Although
the order parameters are well-established for conventional
systems, one often needs to define them for more exotic
systems28,29. In this paper, we focus on well-known order
parameters for systems with broken O(n) rotational symmetries,
where n is the intrinsic dimension of the order parameter.
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Homotopy theory provides a valuable identification and
classification of topological defects1. The fundamental idea of
homotopy theory is that the order parameter can be mapped onto
a particular topological space R and the homotopy group of R
classify topological defects. For example, in the XY-model of
ferromagnetism, and more generally for any system with O(2)
broken symmetry, the order parameter is mapped by a 2D unit
vector u onto R ¼ S1, the unit circle. On S1, we may define classes
of closed circuits (loops), where loops of the same class are
homotopic, i.e., they can be continuously deformed into each
other. These classes, together with an appropriate binary
operation, define the homotopy group of S1. This group is
isomorphic to Z under addition since the difference between two
loops that are not homotopic is how many times they have looped
around the circle S1. Therefore, in regions of space where u is
continuous and well-defined, a closed circuit ∂M in real space
corresponds to a closed circuit in S1, and the topological charge
stop contained in ∂M is given as an integer by the isomorphism
between homotopy group of S1 and Z. This topological charge is
obtained from u ¼ ðcos θ; sin θÞ, by the contour integral

stop ¼ 1
2π

I
∂M

dθ; (1)

which is invariant under any smooth deformations of ∂M. This
also implies that by shrinking ∂M down to a point and given that
stop is a constant, there must be regions inside ∂M where u is
undefined. These are the topological defects that have a stop
charge. Therefore, topological defects for R ¼ S1 in 2D are points
with their charge determined by corresponding loop integration.
On the other hand, such topological defects (with R ¼ S1) in three
dimensions are lines.
In field theories of symmetry-breaking transitions, the ground

state of the order parameter minimizes a free energy constructed
from symmetry considerations. For broken rotational symmetries,
the order parameter is a vector field Ψ, which in the ordered
(ground) state has a constant magnitude ∣Ψ∣=Ψ0, meaning that
the ground state manifold is Sn�1, where n is the number of
components of Ψ. The link between the order parameter Ψ, and
2D unit vector (director) field u 2 S1 is given by u=Ψ/∣Ψ∣ and
topological defects are located at positions where u is undefined,
which corresponds to ∣Ψ∣= 0 as shown in Fig. 1a, b.
A description of topological defects as zeros of order

parameters in O(n) models and their kinematics was proposed
originally by Halperin and Mazenko in the context of phase-
ordering kinetics26,27 and extended to systems driven out of
equilibrium, such as in stirred Bose-Einstein condensation18,30,31,

active nematics32,33, and deformed crystals34–36. Sticking to O(2)-
symmetry in two dimensions and using the definition of a
topological charge given in Eq. (1), it is possible to express the
topological defect density in terms of the zeros of the order
parameter Ψ26 tracked by Dirac-delta functions as

ρtopðrÞ �
X
α

qαδ
ð2Þðr � rαÞ ¼ DðrÞδð2ÞðΨÞ; (2)

where qα and rα are, respectively, the charge and position of the
topological defect α, δ(2)(Ψ)= δ(Ψ1)δ(Ψ2), and D(r) is the (signed)
Jacobian determinant of the map Ψ,

D ¼ ∂ðΨ1 ;Ψ2Þ
∂ðx;yÞ ¼ ∂xΨ1∂yΨ2 � ∂xΨ2∂yΨ1

¼ 1
2 ϵ

ij~ϵmnð∂iΨmÞð∂jΨnÞ;
(3)

where ϵij are the components of the Levi-Civita tensor in real
space. The Levi-Civita tensor ~ϵ in order parameter space is written
with a tilde to emphasize that it is contracted with the order
parameter Ψ. In the Cartesian space, both ϵ and ~ϵ are simply the
Levi-Civita (permutation) symbols. Note that Eq. (2) is the usual
scaling property of the delta function taking Ψ as input, apart from
the sign of D carrying information of the charge qα of the
topological defects. This result was shown in ref. 26 by considering
as explicit ansatz a negative point defect, but can, in general, be
justified using differential forms. Nominally, the D field in Eq. (3) is
evaluated at the location of the defect only, because of the δ-
function in Eq. (2).

RESULTS
Non-singular defect fields
The δ-function in the topological charge density of Eq. (2) locates
the topological defects at singular points where u is undefined. In
O(2) models, however, even though the ground state manifold is
S1, the topological excitations have a finite core over which the
magnitude of the order parameter goes smoothly to zero. This
feature is also seen in physical systems, for instance, in liquid
crystals, where optical retardance is an order parameter that goes
to zero at the core. This has been used to quantify the size and
structure of the defect cores in liquid crystals37. Motivated by this,
we seek to generalize Eq. (2) in a way that will avoid singularities
in the resulting charge density.
Since the equilibrium value Ψ0 of ∣Ψ∣ is constant, the order

parameter effectively resides in D2, the unit disk. We propose in
this paper that the simplest generalization of stop is to consider the
relative area of D2 swept by Ψ on the circuit ∂M. During an

Fig. 1 Different types of excitations in a 2D vector field theory. A+ 1 defect is shown in a the order parameter field Ψ and b in the unit
vector field u=Ψ/∣Ψ∣. Excitations of c the ground state can be categorized into d linear excitations with variations in the orientation of Ψ, (e)
local non-linear excitations for which also the magnitude ∣Ψ∣ varies and f topological defects.
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infinitesimal displacement along ∂M, Ψ sweeps the infinitesimal
area given by half of the parallelogram spanned by Ψ and dΨ. This
(signed) area is given by 1

2~ϵ
mnΨmdΨn, see Fig. 2. The complete area

of D2 is πΨ2
0, and we define the charge s as the area swept by Ψ

relative to the area of D2,

s ¼ 1

πΨ2
0

I
∂M

1
2
~ϵmnΨmdΨn; (4)

where ∂M is defined as in Eq. (1). Naming s a “charge” suggests
that it satisfies a global conservation law, which we shall prove
shortly. The connection between s and stop is made by recognizing
that for a path ∂M in the far field of a topological defect, where
∣Ψ∣=Ψ0, s= stop. To see this, note that if ∣Ψ∣=Ψ0, then the
infinitesimal area swept by Ψ is simply 1

2Ψ
2
0dθ, which inserted into

Eq. (4) gives Eq. (1). Closer to the core, however, the magnitude ∣Ψ∣
decreases and s is no longer an integer, which is why the
associated defect density will give information about the core
extent. Using Green’s theorem, we get

s ¼ 1

2πΨ2
0

I
∂M

~ϵmnΨm∂kΨndl
k ¼

Z
M
d2rρðrÞ; (5)

where ρ(r) is the charge density of s, given by

ρðrÞ ¼ DðrÞ
πΨ2

0

: (6)

Whereas ρtop describes topological defects as point singularities in
the physical space, ρ describes topological defects with a finite
core size.
The time derivative of Eq. (6) gives a continuity equation

∂tρþ ∇ � J ¼ 0; (7)

with the current density determined by the evolution of the order
parameter

Ji ¼ � 1

πΨ2
0

ϵij~ϵmnð∂tΨmÞð∂jΨnÞ: (8)

Thus, ρ is a globally conserved quantity, and the change in s
contained in a circuit ∂M is given by

∂ts ¼ ∂t

Z
M
d2rρðrÞ ¼

Z
∂M

J � dn; (9)

where dn is an infinitesimal surface area normal to the circuit ∂M.
Far away from defects, ∣Ψ∣=Ψ0 and the time evolution of Ψ is
carried by its phase θ(r, t) through Ψ ¼ Ψ0ðcos θ; sin θÞ which can
be inserted in Eq. (8) to show that J= 0. This means that linear
perturbations of the ground state, which affect the orientation of
Ψ only, are not described by the charge density ρ. However, it
describes a certain type of local non-linear perturbations, where
the magnitude is affected; see Fig. 1c–f. We will exemplify this

distinction in the applications. Due to the standard continuity
form of Eq. (7), we can connect it to a velocity field v through the
charge flux ρv. Equation (7) only determines the current ρv up to
an unknown divergence free contribution K, i.e., v ¼ 1

ρ ðJ þ KÞ,
where∇ ⋅ K= 0. However, when ρ ≠ 0, there exists a unique
velocity field v(Ψ) such that the evolution of Ψ can be written in a
generic advection form ∂tΨ+ (v(Ψ) ⋅ ∇ )Ψ= 0, equivalently
expressed as

∂tΨ1

∂tΨ2

� �
þ ∂1Ψ1 ∂2Ψ1

∂1Ψ2 ∂2Ψ2

� �
vðΨÞ1

vðΨÞ2

 !
¼ 0: (10)

This equation can be inverted to uniquely determine v(Ψ) if
detð∂iΨnÞ ¼ DðrÞ≠ 0. To find v(Ψ) where this condition holds true,
i.e., the regions of interest where also ρ(r) ≠ 0 from Eq. (6), it is then
possible to invert Eq. (10). However, it is easier to insert
∂tΨ=− (v(Ψ) ⋅ ∇ )Ψ into the expression J/ρ and see that it is the
solution of Eq. (10). Thus, to fix the gauge on v, we set K= 0 to get
v= v(Ψ) and find

vi ¼ Ji

ρ
¼ �2

ϵij~ϵmnð∂tΨmÞð∂jΨnÞ
ϵij~ϵmnð∂iΨmÞð∂jΨnÞ ; (11)

where it is implied that repeated indices are summed over
independently in the numerator and denominator. It should be
noted that the velocity v only describes the velocity of the defect
density ρ and is not, in general, the same as the advection velocity
of the order parameter. We have only shown that if ρ ≠ 0 in some
region then it is possible to write the evolution of Ψ in this way. If
the actual evolution of Ψ is given as the advection vD of a density
field (i.e., including the term Ψ∇ ⋅ vD), then v ≠ vD, because the
compressible part of the advection will not directly translate into
the motion of topological defects. However, if a localized
topological defect moves without changing its core structure,
i.e., with a frozen core, Eq. (11) will give this velocity in the region
of the core, which we will show in the section “Defect annihilation:
vortices in Bose-Einstein condensates”. While the expression for
the current of D and the velocity equation (11) have previously
been used in the HM-method, several important distinctions can
be highlighted. Firstly, the derivation of the ρ field from the
redefined charge, Eq. (6), shows that the field carries topological
information and does not only serve as auxiliary transformation
determinants of δ-functions. Secondly, the velocity field has
previously only been rigorously shown to apply to topological
defects. In contrast, this derivation also describes the velocity of ρ
for other non-linear excitations. Thirdly, the fixing of the gauge K
has not been adequately addressed in previous works to the
authors’ knowledge. While the derivation above was done for a
n= 2 order parameter in d= 2 spatial dimensions for simplicity,
topological defects exist whenever d ≥ n. Equation (4) can be
generalized to arbitrary dimensions by replacing the integrand

Fig. 2 A continuous field Ψ(r) containing defects with integer charges +1, −1, and +2. The net integer topological charge contained in the
circuits is given by the winding number of the unit vector field u in S1. The (signed) relative area gives the value of s for the circuits spanned
by the order parameter Ψ in D2.
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with the volume of the n-sphere spanned by Ψ= (Ψ1,…,Ψn) and
normalizing by the volume VnΨ

n
0 of the n-sphere. We show in the

Supplementary Notes the formal derivation, and here we state the
result that the charge density becomes

n ¼ 1 : ρi ¼ ∂iΨ
2Ψ0

n � 2 : ρi1 ¼ id�n
¼ Di1 ;¼ id�n

VnΨ
n
0

(12)

with

Di1 ¼ id�n ¼
1
n!
ϵμ1 ¼ μn

i1 ¼ id�n~ϵ
ν1 ¼ νnð∂μ1Ψν1Þ¼ ð∂μnΨνnÞ: (13)

Generalizing the derivation of the defect kinematics, we find
general expressions for the reduced defect velocity field

vμ1 ¼ �n
δ

ν1½
ν01
δν2ν02

¼ δ
νn�
ν0n
ð∂tΨν1Þð∂μ1Ψν01ÞQn

l¼2ð∂μlΨνl Þð∂μlΨν0l Þ
δ

ν1½
ν01
δν2ν02

¼ δ
νn�
ν0n

Qn
l¼1ð∂μlΨνl Þð∂μlΨν0l Þ

; (14)

Special case n ¼ d : vμ1 ¼ �n
ϵμ1μ2 ¼ μn~ϵν1 ¼ νnð∂tΨν1Þ

Qn
l¼2ð∂μlΨνl Þ

ϵμ1 ¼ μn~ϵν1 ¼ νn
Qn

l¼1 ∂μlΨνl

;

(15)

where [ν1ν2…νn] is the antisymmetrization over the indices ν1ν2…
νn. Equation (15) is the special case of n= d, where the velocity
can be written in a simpler way. Still, Eq. (14) looks complicated
due to the arbitrary number of dimensions and so we have
summarized the most important cases of n ≤ d ≤ 3 in Supplemen-
tary Figure 2 of the Supplementary Notes. Thus, Eqs. (12) and (14)
are the primary general expressions of the reduced defect field.
The equations generalize the description of topological defects in
the HM-method to include both topological defects and non-
linear excitations.
There are two important notes to be made on the general-

ization beyond the case d= n= 2. Firstly, for n ≥ 2, the charge
density is a rank (d− n) tensor that represents the defect density
per n-dimensional volume-oriented normal to the manifold, e.g.,
how the charge density on a 2D surface is expressed in terms of
the normal vector to the surface. The case of n= 1 is special
because densities on one-dimensional manifolds are usually
expressed in terms of the density along the manifold, i.e., the
charge density per length along the curve. Secondly, in the case of
n < d, the gauge K cannot be uniquely determined by looking at
the evolution of Ψ alone. Therefore, another condition is required
to obtain Eq. (14). This condition implies that topological defects
live effectively on a d− n dimensional submanifold and will move
perpendicular to this structure, e.g., how the motion of a line
defect is given by the velocity normal to its tangent vector. Due to
the difference in definitions of the integrals to yield the
topological content, this translates to the velocity being parallel
to the charge density for n= 1 and perpendicular to it for n ≥ 2.
This velocity will be normal to topological structures in the case of
topological lines or walls. While the systems of study in this
manuscript exhibit ground state manifolds with S1 symmetries
(n= 2), the generalization can be directly applied to systems with
n= 1, where the defect density represents domain walls in
interfacial systems such as viscous fingering38, or with n= 3, such
as the 3D Heisenberg model of ferromagnetism, where the defect
density will show emergent magnetic monopoles39. For further
discussions, see the Supplementary Notes.
With the method at hand, we study phenomena involving both

topological charges and non-linear local excitations through the
reduced defect field and the information it conveys, such as the
velocity of topological defects. This is done by considering
progressively such phenomena in three representative systems
with broken O(2) symmetry and featuring increasing complexity in
terms of order parameters and collective behaviors. Both system-
specific information and general behaviors will be outlined. As a
starting point, we consider a Bose-Einstein condensate where the

order parameter is isomorphic to Ψ 2 D2 so that the method can
be directly applied.

Defect annihilation: vortices in Bose-Einstein condensates
Within the Gross Pitaevskii theory of a superfluid Bose-Einstein
condensate (BEC), the condensed bosons are described by a
macroscopic wavefunction ψ, and its evolution can be described
by damped Gross Pitaevskii equation18,40

i_∂tψ ¼ ð1� iγÞ � _2

2m
∇2 þ gjψj2 � μ

� �
ψ; (16)

where g is an effective scattering parameter between condensate
atoms, γ > 0 is an effective thermal damping coefficient and μ is
the chemical potential. The complex condensate wavefunction ψ
is isomorphic to a real 2D vector order parameter Ψ= (Ψ1,Ψ2)
through ψ ¼ Ψ1 þ iΨ2, the norm of which is given by the absolute
value ∣ψ∣. In the equilibrium ground state, the phase of ψ (and
therefore the direction of Ψ) is constant, and the magnitude is
given by jψj ¼ Ψ0 ¼

ffiffiffiffiffiffiffiffi
μ=g

p
. Topological defects in the orienta-

tional (unit vector) field correspond to quantized vortices captured
by the charge density field

ρðψÞðrÞ ¼ gDðrÞ
πμ

: (17)

In this context, the D field (calculated from Ψ) has the physical
interpretation of the generalized superfluid vorticity31. Linear
perturbations of the ground state are phonons, which are
characterized by traveling waves in the phase of the order
parameter ψ, and will not be signaled in the defect density field ρ.
Non-linear local perturbations, e.g., brought on by external stirring
potentials or obstacles, will lead to a decrease in the magnitude of
the order parameter near the obstacle14,16,17,41, leading to an
increase in the quantum pressure, defined as

P ¼ � _2

2m
∇2jψj
jψj : (18)

Such excitations are detected by ρ(ψ), and mediate the nucleation
or annihilation of topological defects. To showcase this, we
simulate a BEC as dictated by Eq. (16) with an initial condition
featuring two vortices at (x, y)= (±5, 0). Numerical details are
reported in the “Methods” section. Dimensionless units are
defined so that ℏ=m= g= μ= 1 and the damping coefficient
is set to γ= 0.1. Figure 3 illustrates the defect density from Eq. (17)
during the fast event of annihilating a vortex with an anti-vortex
due to a small thermal drag.
The velocity field from Eq. (14) is plotted close to vortices and

shows two exciting features. At the beginning of the simulations
(t= 5), the non-uniform velocity over the vortex core indicates the
early core deformation induced by the initial conditions. After this
relaxation, however, vortices retain stationary or rigid cores and
consistently feature a uniform velocity. After the annihilation
event, we can see traces of their diffusive cores in the excitations
produced by the vortex annihilation, as seen by the quantum
pressure in the system, which is shown in Fig. 3c. We will see in
the following that similar traces appear as precursory patterns for
defect nucleation. Moreover, after having dealt with a system with
only one broken symmetry, we now consider systems that have
multiple rotational or translational symmetries.

Onset of collective behavior: active nematics
In this section, we consider the case of an active nematic system.
This system is peculiar as we can construct the defect density from
different order parameters. By applying the proposed formalism
we can investigate the transition among different regimes and the
interplay among defects. Interestingly, we will show that defects in

V. Skogvoll et al.
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one broken symmetry are the nucleation sites of defects for a
separate order.
Within the hydrodynamic approach42, the nematic orientational

order of active matter in two dimensions is described by a rank-2
symmetric and traceless tensor Q determined by the nematic
director n ¼ ðcosðθÞ; sinðθÞÞ

Q ¼ S
n1n1 � 1

2 n1n2
n2n1 n2n2 � 1

2

 !
� Ψ1 Ψ2

Ψ2 �Ψ1

� �
; (19)

where S is an order parameter which is 0 in the disordered phase.
Q is thus related to the D2 order parameter Ψ field by
Ψ ¼ S

2 ðcosð2θÞ; sinð2θÞÞ. The evolution of the Q-tensor follows
dissipative dynamics coupled with an incompressible Stokes flow
with substrate friction43. Details on the evolution equation and its
numerical method are reported in the “Methods” section. The
system is here initialized in a homogeneous nematic phase with
small perturbations in the angle of the director field. These
perturbations are enhanced by the active stress creating a striped
phase that is further destabilized and eventually melts due to the
creation of topological defects leading into active turbulence. The
ground state corresponds to a constant magnitude jΨj � Ψ0 ¼ffiffiffi
B

p
=2 dependent on the parameter B, which is defined in the

“Methods” section. Within the framework introduced in the
section “Non-singular defect fields”, this gives the following
expression for the defect density

ρðQÞ ¼ 4DðrÞ
πB

; (20)

which supports orientational defects with half-integer charge
stop= ± 1/2. In Fig. 4a, we show the nematic orientation θ in the
colorbar to emphasize the breaking of translational symmetry and
the formation of a (transient) striped order. The striped order
arises from modulations in the nematic orientation which, to first
order, do not change the magnitude of the order parameter Ψ.
Thus, these are linear perturbations not signaled by ρ(Q).
The inset of Fig. 4a shows a dislocation in the periodic arches in

the nematic director. To describe these defects, we represent the
parameter Ψ as a complex field ψ= ∣Ψ∣eiθ and decompose it into a

slowly-varying amplitude field of the periodic arch mode as

ψðrÞ ¼ ψ0ðrÞ þ ηkðrÞeik�r þ η�kðrÞe�ik�r; (21)

where ψ0(r), ηk, η−k, are slowly-varying complex fields on the
length scale a0 of the director field modulations. k is the wave
vector of the modulations which is k ¼ 2π

a0
ex due to the initial

condition. We can extract the complex amplitude of a k mode
by a demodulation of ψ,

ηk ¼ hψe�ik�ri; (22)

through the convolution with a Gaussian kernel denoted by 〈 ⋅ 〉,
which filters out the small-scale variations, Eq. (40). The modula-
tion length scale a0 and the equilibrium value η0 of ∣ηk∣ are found
numerically to be a0= 10.6 and η0= 0.20 for the given
parameters. From the order parameter ηk, we can construct the
defect density ρðηkÞ as for the complex wavefunction in the BEC.
This field locates the dislocations from the nematic arches as
shown in panel (b) at t= 240, just prior to the nucleation of
nematic defects.
By also showing the reduced defect field ρ(Q) associated with

the rotational symmetry (Fig. 4c), we clearly notice that each
dislocation detected by ρðηkÞ is a source for the nucleation of a
dipole of half-integer defects. The precursory pattern of the two
bound defects prior to nucleation is similar to the pattern retained
by the dipole annihilation in the BEC. However, for active
nematics, the bound state is associated with a dislocation in the
periodic arches, while for BECs it is a source of quantum pressure.
We observe numerically that the melting of the smectic-like arches
is mediated by the dissociation of the dislocations into dipoles
of ± 1/2 nematic defects. This occurs very fast and simultaneously
at various locations, such that the system quickly transitions to
active turbulence. Notice also that the core size of the dislocations
in the periodic arches is bigger than the core size of the ± 1/2
nematic defects that form in the transition. To quantify such
nucleation events, we compute the defect velocity Eq. (11)
associated to the charged defect density ρ(Q) which is localized in
well-defined blobs of opposite signs around a dislocation as
illustrated in Fig. 4b, c. By averaging the speed around these blobs,
we can track the defect speed v= 〈∣v∣〉 as function of time and
show that prior to dissociation, the defects are in a bound state

Fig. 3 Annihilation of a vortex dipole in a Bose-Einstein condensate. Snapshots of a defect density, b condensate phase arg(ψ), and
c quantum pressure at different times from bottom to top: at t= 5, t= 60 (before annihilation), t= 105 (after) and t= 110. a Defect velocity is
included prior before annihilation. Notice in (b) the large phase gradients after the annihilation due to the induced shock-waves which can
also be seen in the (c) quantum pressure profiles. The plots in column (c) have saturated colorbars because of the singular pressure at the
defect core.
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while afterwards they move apart as ± 1/2 defects with different
speeds as shown in Fig. 4e. Notice that the− 1/2 defect slows
down while the+ 1/2 acquires a net speed related to its self-
propulsion.
To summarize this part, our analysis offers an alternative

perspective on the onset of active turbulence using the presence
of competing symmetries. The transition to a turbulent state from
a periodic arch state seems to be mediated by the dissociation of
one type of topological defect into a different kind associated with
changes in the global symmetries. In the following section, we
study a system where the order parameters with O(n)-symmetry
are found by decomposing a more complicated topological space.

Defect structures: solid crystals
We focus here on the study of defects and collective order in
crystals. The ground state manifold of the crystal can be factorized
in fundamental S1 spaces, which has a straightforward physical
interpretation related to the crystal’s Bravais reference lattice
reflecting the broken translational symmetry. As discussed below,
this implies that a dislocation, i.e., a topological defect in the
crystal, can be represented by bound vortices in the amplitudes of
the fundamental periodic modes. Indeed, by applying the
formalism introduced in the section “Non-singular defect fields”,
analogies with previously discussed systems emerge, as well as
peculiar features that will be discussed in detail.
In the conserved Swift-Hohenberg modeling of crystal lattices,

commonly named phase-field crystal (PFC)44,45, the order para-
meter is a weakly distorted periodic scalar field ψ(r), and can be

approximated as

ψðrÞ ¼ ψþ
XN
n¼1

ηne
iqðnÞ�r; (23)

where ψ and fηngNn¼1 are slowly varying (on the lattice unit length
scale) amplitude fields, and N is the number of reciprocal lattice
vectors fqðnÞgNn¼1 taken into consideration. Disordered or liquid
phases are described by ηn(r)= 0. For a perfect lattice, ψðrÞ ¼ ψ0
and ηn(r)= η0 are constant, and an affine displacement r→ r− u
amounts to a phase change ηn ¼ η0e

�qðnÞ�u. The displacement field
u supports dislocations, which are line topological defects. For a
path ∂M in real space circling one dislocation, the charge is given
by the vector difference between the end and starting point,
namely the Burgers’ vector b,I

∂M
du ¼ �b; (24)

(minus sign by convention). The corresponding dislocation density
tensor αij is defined through the integral of some 2D surface M
bounded by ∂MZ

M
αijn

idS ¼ bj; (25)

where n is the normal vector to the surface element dS. By
multiplying Eq. (24) with a reciprocal lattice vector q(n) of the
structure, we getI

∂M
dðqðnÞ � uÞ ¼ �2πsn; (26)

where sn is an integer by definition of the reciprocal lattice vector.
This shows that the phase of an amplitude θn≡ (−q(n) ⋅ u) is a

Fig. 4 Onset of active turbulence in a nematic liquid crystal mediated by the nucleation of topological defects. a The angle of the nematic
director at t= 240, prior to nucleation of half-integer defects from the unstable periodic arches, and d at t= 260, after nucleation. b The defect
density ρðηkÞ at t= 240, corresponding to the broken translational symmetry, shows the charge signature of dislocations with large core
structures. The dislocation core harbors a bound dipole (inset) shown in (c) the defect density ρ(Q) associated to the nematic order at t= 240,
which splits into fully formed ± 1

2 defects after nucleation as shown in (f) ρ(Q) at t= 260. Panel (e) shows the speed v= 〈∣v∣〉 of the two localized
blobs in the charged defect density ρ(Q) around the nucleation site. After the nucleation event indicated by the dashed line, these correspond
to the speed of the ±1/2 defects.
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topological order parameter that has integer winding numbers,
i.e., θn 2 S1.
The amplitude ηn acts as an order parameter in D2, i.e., ΨðnÞ

1 ¼
<ðηnÞ and Ψ

ðnÞ
2 ¼ =ðηnÞ. A topological description of dislocations

using the HM-framework has been provided in two and three
dimensions in refs. 34,36. Here, we adopt an alternative and
convenient description using the charge density from Eq. (12),
which is a vector field for 3D lattices

ρ
ðηnÞ
i ¼ DðnÞ

i

πΨ2
0

; (27)

where

DðnÞ ¼
ð∂yΨðnÞ

1 Þð∂zΨðnÞ
2 Þ � ð∂yΨðnÞ

2 Þð∂zΨðnÞ
1 Þ

ð∂xΨðnÞ
2 Þð∂yΨðnÞ

1 Þ � ð∂xΨðnÞ
1 Þð∂zΨðnÞ

2 Þ
ð∂xΨðnÞ

1 Þð∂yΨðnÞ
2 Þ � ð∂xΨðnÞ

2 Þð∂yΨðnÞ
1 Þ

0
BB@

1
CCA: (28)

By contracting Eq. (25) with qj, we can relate the dislocation
density tensor with the defect charge density in a given
amplitude36

αij ¼ 2d
Nη20

XN
n¼1

DðnÞ
i qðnÞj ; (29)

where d is the spatial dimension. The amplitudes ηn used to
calculate D(n) are extracted from the phase-field ψ as in Eq. (22),
and only the modes corresponding to the shortest reciprocal
lattice vectors are used to calculate αij.
Next, we focus on two examples to highlight insights obtained

from using this approach. We consider the nucleation of
dislocations in a square lattice from the point of view of its
precursory pattern formations and quantify the dislocation core
size. Then, we consider the classical inclusion problem of a rotated
spherical crystal embedded in another crystal with the same
lattice symmetry, to show how the surface of the inclusion
changes its topology as a function of the lattice misorientation.

Dislocations in 2D square lattices. A minimal PFC free energy
which can be minimized by a square lattice reads46,47

Fsqψ ¼
Z

d2r
1
2
ðL1L2ψÞ2 þ r

2
ψ2 þ 1

4
ψ4

� �
; (30)

where LX ¼ X þ ∇2 and r is a parameter. We recall that PFC
energy functionals describe order–disorder (solid–liquid) phase
transitions. The minimizer field ψ of (30), for certain model
parameters, has a perfect square lattice symmetry with an
accurate two-mode amplitude expansion

ψ ¼ ψþ
X2
n¼1

ηne
iqðnÞ �r þ

X4
n¼3

ηne
iqðnÞ�r þ c.c. ; (31)

where {q(n)}= {(1, 0), (0, 1), (1, 1), (1,− 1)} are the reciprocal lattice
vectors of the square lattice with lengths 1 and

ffiffiffi
2

p
. This sets the

characteristic length a0= 2π of the system, which is the width of
the square unit cell. At equilibrium, the amplitude field ηn goes to
the equilibrium values η1,2→ Asq, η3,4→ Bsq. The characteristic unit
of stress is given by the elastic shear modulus μ ¼ 16B2sq

47. The
dislocation density tensor can be factorized as αij ¼ tiBj , where B
is a 2D Burgers vector density and t the tangent vector to the
dislocation line. In two dimensions, we define t to point out-of-
plane so that the Burgers vector density is given by

B ¼ ðα31; α32Þ; (32)

where αij can be computed by using q(1,2). We initiate a perfect
square lattice of 101 × 101 unit cells and use the sHPFC model of
ref. 48 to apply a local stress in the central region which causes the
nucleation of a dislocation dipole. The PFC deforms gradually,
trying to account for the externally imposed stress, increasing

from linear to non-linear strains until nucleation of a pure ± a0ex
dislocation dipole. Once formed, these dislocations move under
the action of the Peach-Koehler force49, namely they separate at
large speeds due to the external stress and slow down as they
reach the far-field regions of the crystal. Simulation details are
given in the “Methods” section. Figure 5 shows the region of
applied stress during the nucleation event. Like for the nucleation
of nematic defects, the nucleation is singled by a precursory
localized pattern formation in the Burgers vector density, which
corresponds to a bound dipole of phase slips. While variations
only in the phase of the complex amplitudes are associated with
linear elastic perturbations, non-linear elastic strains cause a
decrease in the equilibrium value of the amplitudes50 and so
produce a signal in the reduced defect density given by the
expression of the dislocation density. Thus, the excitations visible
in the dislocation density B prior to nucleation are due to non-
linear elastic strains. From the signal profile, Fig. 5c, we observe
that these large non-linear elastic strains can be connected to a
bound dislocation dipole.
From the defect density corresponding to η1 for q= (1, 0), we

can also determine the average speed v= 〈∣v∣〉 of dislocations
with positive and negative charge before and after nucleation. The
defect speed as a function of time is shown in Fig. 5e. Like for the
nucleation of defects in the active nematic, we observe a speed
build up prior to nucleation succeeded by a relaxation to a
constant speed. Unlike the ±1/2 defects in active nematics,
however, both dislocations are equally mobile in this case.
The Burgers vector density, in addition to describing the

process of nucleation itself, provides us with useful information
about the defect core. To extract the core size directly from the
Burger vector density without free-tuning parameters, we consider
a coarse-grained version of the PFC model, namely its amplitude
expansion (APFC)51,52. This approach gives access to phases and
lattice deformation directly rather than through the demodulation
of Eq. (22). It builds on the definition of a free energy functional Fη
derived from the PFC free energy Fsqψ under the approximation of
slowly-varying amplitudes. We simulate a square lattice hosting
dislocations in a static, periodic configuration, and focus on a
single defect therein. The expression for Fη, the choice of q(n), and
details of the simulation setup are given in the “Methods” section.
For the given lattice structure, the extension of its core depends
on the parameters r0 and s in the free energy Fη. The parameter r0
corresponds to a phenomenological temperature controlling a
first-order order–disorder phase transition at r0 ¼ r0 with r0 the
critical point and ordered (disordered) phase for r0 < r0 (r0 > r0), and
s is a constant scaling the elastic moduli53,54. Δr ¼ r0 � r0 is
referred to as the quenching depth. These parameters affect the
competition among gradient terms and the bulk energy terms in
Fη. Figure 6a, b illustrates two different core sizes for the same
dislocation obtained with different values for r0 and s. They show
the reconstructed densities obtained by computing Eq. (23) with
the numerical solution for the amplitudes (first column), the
Burgers vector density component Bx (second column), a plot of
Bxðx; 0Þ and Bxð0; yÞ (third column, empty symbols) with Gaussian
fits (solid lines). The data fitting is obtained via G expð�x2=2σ2

x �
y2=2σ2

yÞ with G, σx and σy fitting parameters (dashed lines), well
reproducing its shape and allowing for an estimation of the core
size. The definition here introduced for the Burgers vector density
fully characterizes the loss of coherency at the dislocation core.
Importantly, it realizes a spreading of the topological charge at the
core similar to non-singular continuum theories based either on
regularization of singularities55 or within strain-gradient elasticity
theories56,57.
The amplitude expansion defined in Eq. (23), and thus the

density field ψ, correspond to the sum of plane waves (Fourier
modes) which are periodic stripe phases similar to the one shown
in Fig. 4. The dislocation in the crystal then corresponds to the
superposition of defects in such stripe phases. Interestingly,
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dislocations do not necessarily correspond to a defect for all the
coupled stripe phases. Indeed, by applying Eq. (1) to the phase of
the amplitudes one gets −∮q(n) ⋅ u= 2πq(n) ⋅ b. At least for perfect
dislocations, those having a translation vector of the lattice as
Burgers vector, we have that q(n) ⋅ b= 0, for some n. Therefore, at
the dislocation core, a different ordered phase forms as some
amplitudes may have non-singular phases and, in turn, do not
vanish. This differs from the case of dislocations forming in pure
stripe phases, e.g., in Fig. 4, where the single complex amplitude
vanishes, pointing to a disordered phase. In Fig. 6c, the fields
ηne

iqðnÞ�r entering the sum in Eq. (23) are reported. Three out of
four stripe phases (n= 1, 3, 4) vanish at the core, while one (n= 2)
features a small variation of its amplitudes with no topological
content.
The defect core can then be interpreted as a transition region

between two different ordered phases, one of which is present
at the dislocation core only. To explore the analogy with phase
interfaces, we compare its extension with the width of a
solid–liquid (order–disorder) interface, w, which measures the
correlation length for these phases. We find some analogies and
differences in the dependence on the parameters entering the
free energy. Traveling-wave solutions exist for solid–liquid
(order-disorder) interfaces with amplitudes having hyperbolic
tangent profiles, η / ðη0=2Þf1� tanh½ðx � VtÞ=w�g with
w / ffiffiffi

g
p

=ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8r0=9r0

p Þ, V the interface velocity along its
normal and g a parameter in the free energy which multiplies
gradient terms and scales the elastic constants54,58,59 (see also
“Methods”). For a given set of parameters, we determine the
specific amplitude profile and w by fitting the result of
numerical calculations with the hyperbolic tangent profile
mentioned above for an interface with normal along the

x-axis (〈10〉 crystallographic direction, further details are
reported in the “Methods” section, Measuring the size of the
dislocation core through σx and σy from a Gaussian fit as in Fig.
6a, b, we find that it scales linearly with w when varying g, while
a different scaling is observed when varying r0, c.f. Fig. 6d. Here
g is an energy scale associated with amplitudes gradients,
similar to theories based on Ginzburg-Landau energy func-
tionals59. r0, instead, affects the equilibrium values of the
amplitudes, which are qualitatively different for an interface,
where they all vanish in the disordered phase, and a defect,
where some amplitudes are non-zero owing to a non-singular
phase (see Fig. 6c). Also, for r0 ≠ r0, interfaces move, which
affects the width w60. A more detailed analysis would require
finding a solution for the amplitudes’ profile at defects, which
goes beyond the goals of this investigation and will be
addressed in future work.
The evaluation of the Burgers vector density also allows for

the characterization of anisotropies in the behavior of phases at
the core as illustrated in Fig. 6d. σy/σx ≈ 0.75 throughout the
whole range of parameters investigated here as also illustrated
in Fig. 6e. This may be ascribed to the asymmetry introduced by
the specific orientation of the Burgers vector. We conclude that,
for systems described by order parameters as in the phase-field
crystal model, as well as in descriptions exploited in previous
sections, the defect density may be exploited to characterize
the loss of coherency at defects.

Order transition for 3D crystal inclusions. Like the melting of
translational order in the nematic liquid crystal through the
nucleation of defects in the nematic field, the global translational
order in a single crystal is also destroyed under large deformations

Fig. 5 Nucleation of a dislocation dipole in a square PFC model. a The PFC at t= 1600 prior to the nucleation of (b) a dislocation dipole at
t= 1800. Panels (c) and (d) show the x-component Bx of the dislocation density B at t= 1600 and t= 1800, respectively. The magnitude of By
is, in both cases, two orders of magnitude smaller and not shown. e The average speed v= 〈∣v∣〉 at the nucleation site of positive charge (
Bx > 0) and negative charge (Bx < 0) where the dashed line indicates the time of nucleation (see text).
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and rotations. To highlight this, we use a full 3D PFC model
corresponding to a cubic lattice for which the PFC density in the
one-mode approximation reads as

ψðrÞ ¼ ψ0 þ
X

q2Rð1Þ
bcc

η0e
iqðnÞ�r;

(33)

where Rð1Þ
bcc are the reciprocal lattice vectors of the bcc Bravais

lattice with unit length47. This sets the length of the bcc unit cell
as a0 ¼ 2π

ffiffiffi
2

p
. We consider spherical inclusions with radius 17a0,

rotated at an angle θrot about the [1, 1, 1]-axis. The initial condition
is relaxed by dissipative dynamics with an appropriate symmetry-
conserving free energy; see further details in the “Methods”
section. We choose three representative angles θrot and calculate
the Frobenius norm jαj ¼ ffiffiffiffiffiffiffiffiffi

αijαij
p

of α at each angle. Since ∣α∣ > 0,
we plot its isosurface at half its maximum value jαjM ¼
maxrðjαjðrÞÞ in Fig. 7 for three representative misorientation
angles θrot. For small lattice misorientations, ∣α∣ ≪ 1, indicating
only slight non-linear elastic excitations (and no fully formed
dislocations) at the interface between the inclusion and the
matrix. As expected, these non-linear strains are largest in the
plane perpendicular to the rotation axis, since the rotation
deformation field scales with distance from the rotation axis.
Notably, we observe a three-fold symmetry in the profile of ∣α∣,
which can be ascribed to the underlying crystallographic
orientation. For larger values of θrot, the non-linear distortions
increase and localize into a network of dislocations. Notice that
such a defect network is determined directly by the Burgers vector
density rather than through arbitrary reconstructions61,62. The
description breaks down at large misorientations, as witnessed by
the decrease in the magnitude of the defect density field since
there is no longer a global translational order. Indeed, large
misorientations lead to the nucleation of grain boundaries which
are fully described by accounting for the bicrystallography of the
two crystals meeting at the interface rather than the deformation
with respect to a reference lattice63. Such a regime shift echoes

the onset of active turbulence in the nematic liquid, where the
description in terms of the order parameter ρðηqÞ also breaks
down.

DISCUSSION
In-depth understanding and tailoring of collective behaviors
require a unified description of defects associated with symmetry
breaking and the non-topological excitations of ground states.
Here, we proposed a systematic way of deriving reduced defect
fields from order parameters associated with O(n) broken
symmetries which captures topological defects, localized non-
linear excitations, and their dynamics. This enables the non-
singular description of defects and their interaction, accounting
for precursory and resulting patterns involving non-topological
excitations. In this way, short-scale interactions between topolo-
gical defects may be more accurately described, since features
such as core overlap and high-energy excitations become more
prominent at shorter length scales. This paves the way for a more
thorough characterization of defect interactions, particularly in
cases where the defects get close or are annihilated, as in the
applications shown above. Moreover, the proposed framework
can be used to study concurrent symmetry breakings and order
transitions. Applications to systems of general interest, such as
superfluids, active nematics, and solid crystals, are shown to
showcase the considered framework, while we envisage applica-
tions in many other contexts.
We have shown that the method accurately tracks topological

defects since these appear as localized blobs in the defect density
field. The associated current density and velocity field determine
the kinematics of the defects, and its utility has been shown to
extend beyond tracking the velocity of topological defects. For
example, in the case of the motion of vortices in a BEC, the
velocity field accounts for both the overall velocity of the defect
and local variations associated with the early-stage rearrange-
ments of the defect core evolving towards its stationary shape.

Fig. 6 Dislocation core size near melting by APFC modeling. a, b Reconstructed density (left), Bx (center), and Bx along x and y direction for
a relatively small and large core size, respectively obtained with a Δr= 10−4, s= 3.16 and b Δr= 10−1, s= 1, with r0= 7.455 × 10−2 the critical
point. Symbols show values from APFC simulations; dashed lines correspond to Gaussian fits. The latter are exploited to quantify the size of
the core in terms of the variance along x and y, namely σx and σy. c Periodic modes ηne

iqn�r þ c.c. for the density in panel (b). d Core size in
terms of σx as a function of the order–disorder correlation length w, for various values of s and r0 (the latter shown by different colors and
symbols). e Comparison of σx and σy as function of w for Δr= 0.00464 and s∈ [10−1, 3.16].
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Thus, the uniformity of the velocity field over the core extent tests
whether the frozen-core approximation1 is valid. For active
nematics and solid crystals, the velocity formula is shown to track
the dynamics of defect dipoles, during, and after the nucleation of
topological defects, pointing at interesting analogies and differ-
ences between processes in different physical systems. The
rigorous derivation of these fields given in the Supplementary
Notes for any dimensions makes the equations readily applicable
to tracking topological defects and localized excitations in general.
We have found interesting features and insights about the

evolution of these systems with broken symmetries. After the
annihilation of the vortex dipole in the BEC, the remaining shock
wave produces a signal in the defect density field that echoes the
charge density pattern of the dipole, remnant also of other similar
observations during mass-driven vortex collision64. In active
nematics, the large cores of the dislocation in the translational
order harbor a bound dipole of orientational defects associated
with the rotational order. This picture presents the idea of a
hierarchy of topological defects, where the defects associated with
one symmetry can spontaneously dissociate into stable defects for
a different symmetry and melt the former ordered state. This is a
non-equilibrium transition that echos the equilibrium Kosterlitz-
Thouless transition for melting of 2D crystals via the hexatic
phase65.
In the case of a 3D crystal, a rotated inclusion was shown to be

described as a network of topological defects (dislocations) up to
a point before these dissociated into other types of defects (grain
boundaries) and the global orientational order was destroyed.
The best topological description of polycrystalline materials is an
open challenge, even though candidates, such as interacting
disconnections63, exist. Applying this formalism to such topolo-
gies is a fascinating avenue of research. Employing the APFC
framework, where the periodic nature of crystal densities is
inherently coarse-grained, we have shown that dislocation cores
in Swift-Hohenberg theories emerge as transition regions from
crystalline to pointwise stripe-like phases. When approaching the
solid–liquid coexistence limit, analogies between the dislocation
core size and the extensions of order-disordered interfaces have
been found.
Finally, while the whole framework is presented for systems

with one broken rotational symmetry, it is a powerful tool that can
be generalized to systems with multiple broken symmetries and
reveal hidden hierarchies of topological defects associated with
each symmetry, laying the foundation for unified theories in
systems characterized by collective behaviors.

METHODS
Bose-Einstein condesates
The damped Gross Pitaevskii equation, Eq. (16), is solved by using
a Fourier pseudo-spectral integration scheme which is described
in detail in ref. 30. We use a periodic grid of size
[− 32, 32] × [− 32, 32] with spatial discretization Δx= Δy= 0.25.
To initialize the dipole we use the ansatz ψ ¼ Π2

α¼1χðjr � rαjÞeiqαθα ,
where rα is the position of the vortex labeled α,
θα ¼ arctan½ðy � yαÞ=ðx � xαÞ�, and

χðrÞ ¼ r; r < 1

1; r > 1

�
: (34)

This order parameter is then evolved in imaginary time, t→ iτ,
with γ= 0 to lower the energy and find a better estimate for the
core structure of the vortices we use as the initial condition.

Active nematic liquid crystals
The evolution of the Q-tensor follows dissipative dynamics
coupled with an incompressible Stokes flow43

∂tQij þ v � ∇Qij � QikΩkj þ ΩikQkj ¼ λW ij þ γ�1Hij; (35)

ðΓ� η∇2Þvi ¼ ∂jðαQjiÞ � ∇p; ∇ � v ¼ 0; (36)

where v is the flow velocity that advects the nematic structure, p is
the fluid pressure, Γ is the friction with a substrate, η is the
viscosity and αQ is the active stress. The vorticity tensor
2Ωij= (∂ivj− ∂jvi) rotates the nematic structure, λ is the flow
alignment parameter which aligns the nematic orientation in the
direction of shear

W ij ¼ Eij þ ðEikQkj þ QikEkjÞ � QlkEklðδij þ QijÞ;
with the trace less strain rate 2Eij= (∂ivj+ ∂jvi− δij∂kvk). The
molecular field

Hij ¼ K∇2Qij þ AðB� 2Q2
kkÞQij: (37)

controls the relaxation to equilibrium with γ as the rotational
diffusivity. We have here assumed a single Frank elastic constant
K, treating splay and bend distortions similarly. The second term in
the molecular field is a relaxation to a homogeneous nematic
state. The parameter A is the quench depth and B sets the value of
the order parameter S0 ¼

ffiffiffi
B

p
in the homogeneous state. We

discretize the above equations on a [−64, 64] × [−64, 64] grid with
spatial discretization Δx= Δy= 0.5, and solve the system using
pseudo-spectral methods. The parameters are set to K= Γ= γ= 1,
A= λ= η= 0.5, B= 2 and α=− 1.4. The initial state is S ¼ ffiffiffi

2
p

with the angle of the director θ being uniformly distributed in the

Fig. 7 Rotated inclusions in the bcc PFC model. The panels show, for three representative rotation angles θrot the isosurface of the Frobenius
norm of the coarse dislocation density tensor jαj ¼ ffiffiffiffiffiffiffiffiffi

αijαij
p

at 50% of its maximal value jαjM ¼ maxrðjαjðrÞÞ, which is given in the panels.
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interval (−0.05, 0.05). We solve the equations for the flow field, Eq.
(36), in Fourier space and evolve the equation for the Q tensor, Eq.
(35), using the same scheme as for the BEC.

2D square lattice PFC
To simulate the PFC dynamics, we use the sHPFC model proposed
in ref. 48, namely

∂tψ ¼ Γ∇2 δF
sq
ψ

δψ
� v � ∇ψ; (38)

coupled to a momentum equation for ∂tv

ρ0∂tv ¼ h~μc∇ψ� ∇~f i þ ΓS∇2v þ f ðextÞ: (39)

〈 ⋅ 〉 is a convolution with a Gaussian kernel given by

h~Xi ¼
Z

dr0
~Xðr0Þ

2πw2
exp �ðr � r0Þ2

2w2

 !
; (40)

which filters out variations on length scales smaller than w. The
quench depth in Eq. (30) is set to r=− 0.3 and the average
density to ψ ¼ �0:3. Parameters are set to Γ= 1, ρ0= ΓS= 2−6,
and an initial velocity field v= 0. We solve the system of coupled
equations with a Fourier pseudo-spectral method. The spatial grid
of the simulation is set to Δx= Δy= a0/7. Further details can be
found in ref. 48.
In the simulation reported in Fig. 5, the perfect lattice is indented by

an applied external force density given by a Gaussian profile
f ðextÞ ¼ f 0

ðy�y0Þ
a0

expð� ðr�r0Þ2
2w2 Þex . Above a critical strength f0= 3.5μ/

a0 and width w= a0, this force causes the nucleation of a dislocation
dipole.

2D square lattice APFC
The evolution of the amplitudes as delivered by the APFC model
can then be directly expressed as

∂ηn
∂t

¼ � qðnÞ�� ��2 δFη
δη�n

; (41)

with Fη the free energy depending on {ηn} that can be derived by
substituting (31) in Fsqψ and integrating over the unit cell59. By
assuming constant ψ it reads

Fη ¼
Z

d2r g
XN
n¼1

jGnηnj2 þWðfηngÞ þ CðψÞ
 !

; (42)

with Gn ¼ ð∇2 þ 2iqðnÞ � ∇Þ, g a coefficient that controls elastic
constants, WðfηngÞ ¼ r0Φ=2þ ð3=4ÞΦ2 � ð3=4ÞPN

n¼1 jηnj4þ
f sðfηngÞ, r0 ¼ r þ 3ψ2, Φ ¼PN

n¼1 jηnj2, and f s({ηn}) a symmetry-
dependent polynomial in the amplitudes. For the square
symmetry as encoded in Eq. (30) and the choice q(1)= (1, 0),
q(2)= (0, 1), q(3)= (1, 1), q(4)= (−1, 1) and {q(n)}= {−q(n−4)} for
n= 5,…, 8, we have f sðfηngÞ ¼ 2ψðη1η2η�3 þ η1η

�
2η4Þ þ 3ðη21η�3η4

þη22η
�
3η

�
4Þ þ c.c. , with fη�ng ¼ fηn�4g for n= 5,…, 8 as ψ is a real

function. Therefore, one may consider just ηn with n= 1,…, 4 as
variables. CðψÞ is a constant depending on ψ59, set here to ψ ¼
�0:3 as set in the corresponding PFC modeling of the 2D square
lattice. r0 corresponds to a phenomenological temperature. With r0
the solid–liquid critical point, the solid crystalline phase is favored
for r0 < r0.
We simulate a stationary system hosting dislocations with the

APFC model exploiting the (FEM) numerical approach with
adaptive grid refinement outlined in refs. 66,67. The semi-implicit
integration scheme adopted for numerical simulations can be
found therein. We consider dislocations with spacing L= 50a0
arranged in a periodic, 2D matrix with alternating Burgers vectors
± a0x̂. The system is initialized by setting the displacement field of
dislocation known from classical continuum mechanics49 in the

phase of amplitudes, −q(n) ⋅ u, and let relaxed according to the
amplitudes evolution law (41). We can consider a system 2L × 2L
by exploiting periodic boundary conditions.
In the section “Defect structures: solid crystals”, we characterize

the extension of the core of dislocations through the field D(n) as
entering the definition of the dislocation density tensor α, Eq. (29).
We compare the size of the defects extracted with the aid of
Gaussian fits (see Fig. 6a, b) with the extension of a solid–liquid
interface, w, computed numerically as the average of interface
width for single amplitudes. This is obtained by initializing the
solid phase with a straight interface having normal along the
x-axis and letting the system evolve by Eq. (41) until reaching a
steady state. Then, a fit of each amplitude with a function
ϕi ¼ Ai½1� tanhðx � xiÞ=wi�, representing a traveling wave solu-
tion for a solid–liquid interface54,58,60, is performed with Ai , xi and
wi parameters and the solid–liquid interface thickness extracted as
w ¼P4

i¼1 wi=4.

3D bcc lattice PFC
Numerical simulations reported in the section “Defect structures:
solid crystals” are obtained by solving the classical PFC equation
encoding dissipative dynamics,

∂tψ ¼ ∇2 δF
bcc
ψ

δψ
; (43)

where Fbccψ is a free energy functional that produces a stable bcc
lattice, given by

Fbccψ ¼
Z

d3r
1
2
ðL1ψÞ2 þ r

2
ψ2 þ 1

4
ψ4: (44)

As parameters, we use r=− 0.3 and ψ0=−0.325 with spatial
discretization Δx= Δy= Δz= a0/7 and exploiting a Fourier
pseudo-spectral integration scheme. We consider a 51 × 51 × 51
cubic crystal as matrix in which we embed a spherical inclusion
with radius 17a0 rotated at an angle θrot about the [1, 1, 1]-axis.
This initial condition is obtained just by a rotation of grid points
inside the inclusion. This leaves a sharp (and unphysical) interface
which is regularized by letting this initial condition relax as
dictated by Eq. (43) for 300 time steps with Δt= 0.1.
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