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Multi-reward reinforcement learning based development of
inter-atomic potential models for silica
Aditya Koneru1,2, Henry Chan 1,2, Sukriti Manna1,2, Troy D. Loeffler1,2, Debdas Dhabal 3, Andressa A. Bertolazzo 3,
Valeria Molinero3✉ and Subramanian K. R. S. Sankaranarayanan 1,2✉

Silica is an abundant and technologically attractive material. Due to the structural complexities of silica polymorphs coupled with
subtle differences in Si–O bonding characteristics, the development of accurate models to predict the structure, energetics and
properties of silica polymorphs remain challenging. Current models for silica range from computationally efficient Buckingham
formalisms (BKS, CHIK, Soules) to reactive (ReaxFF) and more recent machine-learned potentials that are flexible but computationally
costly. Here, we introduce an improved formalism and parameterization of BKS model via a multireward reinforcement learning (RL)
using an experimental training dataset. Our model concurrently captures the structure, energetics, density, equation of state, and
elastic constants of quartz (equilibrium) as well as 20 other metastable silica polymorphs. We also assess its ability in capturing
amorphous properties and highlight the limitations of the BKS-type functional forms in simultaneously capturing crystal and
amorphous properties. We demonstrate ways to improve model flexibility and introduce a flexible formalism, machine-learned ML-
BKS, that outperforms existing empirical models and is on-par with the recently developed 50 to 100 times more expensive Gaussian
approximation potential (GAP) in capturing the experimental structure and properties of silica polymorphs and amorphous silica.
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INTRODUCTION
Silica crystals are a class of oxide materials that are used in a
plethora of applications owing to their eco-friendly nature and
their rich polymorphism that allows them to display widely
different properties. For example, α-quartz is piezoelectric whereas
α-cristobalite has a negative Poisson ratio. Zeolites add to the
exceptional polymorphism of silica. The porosity of zeolites1–6

makes them outstanding as selective catalysts7–12, adsorbents13,14,
and membranes15–17 in the gasoline industry, hydrocarbon
separations, and desalination, respectively, with potential applica-
tions in aquaculture18 and photocatalysis19,20. High-pressure
phases of silica include stishovite, a dense polymorph that is
octahedrally coordinated and is of interest from a geological
perspective, since it occurs in silica rich parts of subducted oceanic
slabs and crystal fragments in the Earth’s mantle. There are about
240 zeolite frameworks recognized by the International Zeolite
Association21 and plenty of hypothetical structures compiled into
several databases. Given these large number of zeolite frame-
works and polymorphs, it is important to develop models that can
enhance our understanding of their properties and applications.
Molecular dynamics (MD) simulations represent an elegant way

of capturing structure-property relationship at the nanoscale, as
well to probe the mechanisms of growth and phase transitions
materials. While ab initio techniques and first-principles calcula-
tions can be used22,23 to get an understanding of a system, they
quickly become computationally expensive given the large unit
cells of silica polymorphs and the number of possible configura-
tions. Furthermore, ab initio simulations of silica are often limited
by length-time scales, that circumscribe them for the dynamics of
small clusters24,25. Faster models are required to access longer
time scales and accurately capture the dynamical evolution of the
structural features like the angular distribution between the

tetrahedral units and even features such as charge distribution,
when subject to external stimuli26–28.
It is therefore not surprising that have been several attempts

over the past three decades to develop interatomic potential
models that can elucidate dynamics and structural characteristics
of silica polymorphs. The majority of empirical silica force fields are
based on pairwise interactions, i.e., without an explicit three-body
term, and differ in the type of charge assigned to capture the
electrostatic interactions. Typically, the charge computation
methodologies involve either shell–core or the rigid-ion models29.
There have been extensive studies that compare the performance
of different atomistic models for silica, including those using
partial charges that suggest that even without the three-body
term the predictions of these models across various polymorphs
can be fairly reasonable when compared to experiments30.
For more details, we refer the reader to the review in ref. 29,

which summarizes the performance of partial, formal charge and
molecular mechanics type potentials. Amongst the various
atomistic models based on pairwise interactions including partial
charges, the one of van Beest, Kramer, and van Santen (BKS)31

seems to perform the best in capturing the energetic ordering of
the select few silica polymorphs considered in their study while
reasonably describing amorphous properties at ambient condi-
tions, despite having been fitted primarily to α-quartz. Several
notable silica models are a slight modification or reparameterisa-
tion of the existing BKS form, such as the CHIK32 and PSO33

models. Despite sharing the same functional form, the CHIK
parameterization outperforms the original BKS in its description of
amorphous systems. The improvement has been attributed to the
additional silicon-silicon Buckingham-type interactions absent in
the original BKS. Other attempts to improve upon the BKS model
have been based on fine tuning of the silicon partial charge. These
include the SHIK model34 that shares with CHIK significantly lower
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partial charges compared to those in the original BKS. It was
concluded from these models that there must be a trade-off
between the various structural, energetics and elastic properties
depending on the choice of partial charges. Other studies aimed
at incorporating more flexibility translated into more complex
formalisms that implement polarization terms, charge transfer,
and explicit three-body effects35–38. Despite several attempts at
reparameterization and improved formalisms, the above poten-
tials typically describe only a subset of the crystalline and
amorphous forms, and often lack a fully accurate description of
the relative energetic ordering of different polymorphs observed
in the experiments. Recent improvements in machine learnt
potentials39–41, such as the Gaussian Approximation Potential
(GAP42) model, allow for higher flexibility and improvements in
the predictions of the solid-amorphous phase properties. How-
ever, this gain in accuracy and flexibility comes at a 50 to 100
times increase in computational cost. Hence, it is desirable to
retain the computationally effective models that can capture the
physics of silica with interpretable interatomic potentials.
Historically, the development and reparameterization of intera-

tomic potentials involve the use of optimization techniques that can
efficiently navigate through the often high-dimensional parameter
search space43–45. This is often a time-consuming and nontrivial
process. For classical potential models with few to tens of
parameters, the techniques used for optimization are primarily
based on local optimization or gradient-based information46,47.
These impose a requirement that the gradients of the objective
function are well-defined. This approach can be efficient and has
been a popular method for optimization32. Nonetheless, local
optimization techniques remain limited in the search space that
they can efficiently explore. Global optimization techniques, in
contrast, have recently found tremendous success48–51. These
techniques include genetic algorithms (GA), particle swarm, or
Bayesian optimization which have been employed to explore a
much wider parameter search space and obtain optimal set of
parameters that perform well on several different physical,
mechanical and thermodynamic properties52,53. A drawback of such
global optimization techniques is that they often require a large
number of evaluations (e.g., populations and generations in GA) to
converge to an optimal solution54. The sluggish nature of the
convergence combined with the solution quality tends to be poor,
especially in higher dimensional search spaces. The search
procedure can also become much more complicated when the
aim is to fit multiple objectives (e.g., lattice constants, cohesive
energies and elastic constants of a multitude of polymorphs55. In
such cases, the search algorithms tend to either be biased towards a
certain subset of properties depending on the selection of individual
weights or depend on the preference of the user (in case of pareto-
type) to pick an optimal parameter set from the pareto front56. The
emergence of ML-based optimization techniques such as reinforce-
ment learning (RL)-based search algorithms can help overcome this
issue, especially when dozens of properties (for tens of different
polymorphs) need to be concurrently captured57–59.
Here, we introduce a multireward reinforcement learning based

workflow that allows us to reparameterize the coefficients of the
BKS model and significantly improve its performance in capturing
the properties of silica polymorphs. We employ a hierarchical
reward system that eliminates the property bias associated with
weight selection during the search process. This allows us to
concurrently capture and improve the relative energetic ordering
amongst the polymorphs, their lattice parameters, densities,
cohesive energies as well as elastic constants compared to the
available experimental training and test datasets. We show that in
the BKS formalism, the improvements in capturing the crystal
properties come at the expense of liquid and amorphous
properties. To address this limitation, we introduce the ML-BKS
formalism that includes an additional repulsive WCA-type inter-
action that allows for capturing the liquid and amorphous

properties without sacrificing the improvements in those of the
crystal polymorphs. We compare the performance of these two
models to several existing, empirically fitted interatomic potentials
and discuss the origin of the improvements. We find that the
inclusion of Si–Si interaction allows us an additional degree of
freedom which significantly improves the overall performance of
the ML-BKS model. We also discuss, more generally, the criteria for
evaluating the quality of interatomic potentials in terms of their
computational cost, predictive power, and the need for better
formalisms to overcome the limitations of existing empirical
potential models.

RESULTS AND DISCUSSION
We build upon our recently developed multireward reinforcement
learning workflow60 and train a physics-based model with BKS
formalism to an available experimental dataset of 21 silica
polymorphs, including 17 silica zeolites (see “Methods”). In the
methods, we first describe the functional forms used in our work,
and then explain our multireward hierarchical reinforcement
learning workflow. The RL method is used to navigate through 16-
dimensional BKS potential surface. We also discuss a formalism of
machine learnt BKS (ML-BKS) which includes an additional WCA-
type repulsive interaction that enables the model to describe both
the crystals and the liquid and amorphous phases of silica. Finally,
we provide details on the atomistic simulations used for property
evaluation of the various crystalline silica polymorphs as well as
liquid/amorphous phases. Below, we discuss the application of our
c-MCTS RL workflow to develop and parameterize silica models.

c-MCTS-trained optimal parameter set
We deploy the hierarchical c-MCTS workflow to optimize the
parameters of the BKS force field with an expanded training
dataset that includes the experimental densities, energetics, and
structural features of 21 different silica polymorphs. c-MCTS is able
to successfully navigate through the 16-dimensional parameter
space and arrive at the optimal set of parameters (Table 1). The
evolution of the best objective score is shown in Supplementary
Fig. 1 (see Supplementary Information). We observe that the
objective function, which represents the difference between the
model and target properties, has a sharp drop within the first 1000
evaluations. This fast convergence is due to the hierarchical
multireward scheme implemented in this work.
The initial ranges chosen for each of the parameter sets are

quite broad as seen from Supplementary Table S1—an advantage
of the hierarchical multireward scheme is that it rank-orders the
multiple properties depending on the choice of the user and sets
a threshold for the evaluation of each of the different properties
(of several polymorphs in this case). However, it is typical to
include structural features such as lattice parameters and density
first followed by energetics (cohesive energy) and subsequently
equations of state, elastic constants, etc. This is to ensure that the
target elastic constants and other properties are mapped to the
correct polymorph and allows the algorithm to exploration of
search space where the parameter sets correspond to sub-optimal
solutions. In other words, the c-MCTS algorithm avoids getting
trapped in a sub-optimal minima. As a result, the objective or cost
function shows a rapid decrease in the score. Subsequently, once

Table 1. ML-BKS-Solids model parameters for crystalline silica
polymorphs obtained in this work.

ASi−Si ρSi−Si CSi−Si AO−O ρO−O CO−O ASi−O ρSi−O CSi−O q(Si)

3891 0.299 529.1 737.1 0.353 8.074 16,555 0.158 4.95 1.785

Parameters A, ρ, and C are in eV, eV Å−1, and eV Å−6, respectively.
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the solution approaches a decent minimum, there is a rather
slower decay in the objective score as the algorithm starts to
exploit more near the search space to approach the best possible
minimum for the defined objective. It takes around 10,000 total
evaluations to reach this minimum. The final optimal set of
parameters corresponding to this minimum is reported in Table 1.
We compare the normalized objective score obtained in this

work with other parameterizations of the BKS models (see
Supplementary Fig. 2). We note that the ML-BKS-Solids model
has a lower objective score on our experimental training dataset
compared to the existing parameterizations. A quick comparison
of the ML-BKS-Solids model parameters with other parameteriza-
tions of BKS model are shown in Table 2. Unlike the existing force-
field models (BKS, SHIK, CHIK, PSO-1, PSO-2) that have a fixed
cutoff distance for all Van der Waals interactions, the optimal ML-
BKS-Solids has 11 Å, 5.5 Å, 7.4 Å for Si–Si, O–O, and Si–O
Buckingham interactions, respectively. These cut-offs are thus all
different in the optimal parameter set. A more detailed discussion
on the comparison of the different model parameters and their
predictions is provided in “Discussion”.

Predictions of crystal properties of silica polymorphs
We first assess the performance of the trained ML-BKS-Solids
model on its ability to predict the experimentally determined
cohesive energies, densities, Si–O–Si and O–Si–O angles across 21
different silica polymorphs. In general, we compare the calculated

structure, energetics and mechanical properties of α-quartz and
the other silica polymorphs with experiments. α-quartz is the
thermodynamically stable phase of quartz under ambient condi-
tions. It is trigonal with a 9-atom unit cell and P3121 space group
symmetry. This phase has been exhaustively studied in the past
and represents one of the main sources of data for parametriza-
tion of silica interatomic potentials. We use as initial models the
structure corresponding to the experimental X-ray resolved unit
cells for each polymorph and subject them to an energy
minimization process at constant pressure, allowing for the
optimization of all the lattice parameters. The cohesive energies
for α-quartz as well as the relative energies of the various
polymorphs with respect to the α-quartz are also compared. For
the structural properties, we compare the densities as well as the
bond distances Si–O, Si–Si and the angles between Si–O–Si and
O–Si–O triplets. These properties allow us to assess the structural
features predicted by the different force fields relative to those
determined in experiments. The training dataset includes the
lattice and energies of the 21 polymorphs, which allow us to
capture the global features. In addition, their densities and angular
distributions ensure the learning of the local environment. While
the four properties in Fig. 1 are the quantities used to optimize the
model parameters, we have also characterized the elastic proper-
ties, structure factor, and melting point to showcase the
robustness of the model (see "Testing of ML-BKS model", below).
The optimized parameter set is shown in Table 3.

Table 2. Comparison of the electrostatic and Buckingham parameters in the ML-BKS-Solids and ML-BKS models developed in this work and previous
parameterizations.

Model ASi−Si ρSi−Si CSi−Si AO−O ρO−O CO−O ASi−O ρSi−O CSi−O q(Si)

ML-BKS-Solids 3891 0.299 529.1 737.1 0.353 8.074 16555 0.158 4.95 1.785

ML-BKS 3891 0.299 529.1 737.1 0.353 8.074 16,555 0.158 4.95 1.785

BKS 0 1 0 1388 0.362 175 18,000 0.205 133 2.4

CHIK 3150 0.351 627 660 0.386 26.84 27,029 0.194 148 1.91

PSO-1 0 1 0 883 0.36 50.4 28,954 0.185 111.9 1.79

PSO-2 0 1 1 1522 0.366 17.4 44,409 0.187 201 2.35

Fig. 1 Multireward RL workflow to train the silica models. The training set consists of the experimental structure and energetics of 21 silica
polymorphs, including 17 zeolites. The multireward technique gives the choice to tune the parameters based on the relative importance of
the target desired properties. The global optimization is performed using Monte Carlo Tree Search (MCTS) while the parameter set satisfying
all the different stages of objectives is fed into Simplex for local optimization. More details are presented in the Methods section.
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Figure 2 compares the predictions made by the ML-BKS-Solids
model with those of other silica force fields, including the recently
developed machine learning potential GAP42. The relative
cohesive energies of the various polymorphs with respect to α-
quartz are plotted on the LHS of Fig. 1a, and the corresponding
absolute errors are plotted on the RHS. Figure 2a shows that while
the general trend is correctly captured by the original BKS as well
as the CHIK parameterization, these models show high error in the
relative cohesive energies, in the 0.1–0.2 eV atom−1 range, for
highly metastable polymorphs when compared to the experi-
ments. The PSO-1 and PSO-2 parameterizations that used particle
swarm-based optimization improve the predictions, resulting in
errors in cohesive energies within 0.1 eV atom−1. The ML-BKS-
Solids significantly improves the predictions, resulting in errors

much below 0.03 eV atom−1 and perfect agreement with the
experimental relative energy ordering of the polymorphs. The
GAP42 model also has low errors of about 0.02 eV atom−1 for most
polymorphs, but does not capture the experimental ordering for
the least stable or highly metastable silica polymorphs such as the
pure silica zeolites CHA, FAU, MEI, and ISV.
Figure 2b compares the density predictions of the various

models, including ML-BKS-Solids. It can be noted that all models
present similar deviations from the experimental densities; the
performance of the models is comparable for this property, with
errors in the 10–20% range. We find that the original BKS model,
which imposes a higher partial charge on the atoms (Table 2),
captures the trend of the curve of experimental densities, but
underpredicts this property for the lower-density silica

Table 3. Full set of parameters of the ML-BKS model, developed for simulations of the amorphous and crystalline polymorphs of silica.

ASi−Si ρSi−Si CSi−Si AO−O ρO−O CO−O ASi−O ρSi−O CSi−O q(Si) σSi εSi

3891 0.299 529.1 737.1 0.353 8.074 16555 0.158 4.95 1.785 2.8 0.01

Fig. 2 Comparison of select properties and structural features of silica polymorphs predicted by different models. a Relative cohesive
energy with respect to α-quartz, b Density, c Si–O–Si angle, d O–Si–O angle. All the properties were computed at 300 K in order to compare
with the reference experimental values from ref. 69. ML-BKS-Solids (abbreviated here as M-B-S) is the model developed in this work. Table
shows the absolute error (AE) or relative percent error (RE) with respect to the experimental values.
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polymorphs. Although the under-prediction of density could be
attributed to the partial charge assigned to the silicon atom, it
must be noted that an increase in the Si–O-Si angle (Fig. 2c) results
in a higher margin of error. We conclude that the large magnitude
in partial charges results in greater repulsive forces that favor
open structures. This leads to lower densities than in the
experiments. Note that the CHIK model is similar to the BKS
model and also suffers from under-prediction of the density. It is
counterintuitive that the CHIK model performs worse than the
original BKS despite featuring a lower partial charge. We attribute
this to the additional Si–Si interactions considered by the CHIK
model. Therefore, the CHIK model needs to be much “softer” than
the original BKS to compensate for the effect of added Si–Si
repulsive forces. It should be noted that the increased accuracy in
the cohesive energies comes at the cost of higher errors in
densities. Next, we observe that PSO-2, which is slightly lower on
the partial charge than BKS displays the same behavior as BKS,
with only a slight improvement in density predictions. While the
energetics have improved in PSO-2, we find that the ordering of
energies of the polymorphs is sacrificed. Similarly, we note that
PSO-1, which has a much lower partial charge (i.e., is soft), shows
an improvement in density prediction with a better cohesive
energy ordering. ML-BKS-Solids has the lowest partial charge
amongst the models considered, i.e., it is much softer compared to
models reported previously. It performs as well as the PSO-1
model for the densities but has a much lower error in cohesive
energies, while improving the relative energetic ordering. The
success of ML-BKS-Solids suggests that Si–Si interactions must also
be considered for a better representation of both energy and
density.
We further inspect the angular distribution for all the

polymorphs in the training set. Figure 2c, d corresponds to the
intra-tetrahedral O–Si–O and inter-tetrahedral Si–O–Si angles,
respectively, represented as the weighted average of the angular
distributions in each polymorph. Figure 2d shows that, the intra-
tetrahedral angle O–Si–O is fairly well and similarly predicted by all
the models, with very low error that suggests that this angle is less
sensitive to the imposed partial charges. For the BKS model, the
largest errors for the Si–O-Si angle is 10° for the high-density
polymorphs. The CHIK parameterization slightly improves with
maximum errors of 7°. Interestingly, the PSO parameterization
shows higher errors in the Si–O–Si angle, even for low-density
polymorphs. The Gaussian approximation potential GAP42 model
generally shows low error, except for a few polymorphs such as
FER (10°), CFI (6°) and MWW (7°). The predictions of the ML-BKS-
Solids model are the more accurate among all the BKS-type
models considered in this work, and comparable to those of the
much more expensive GAP42 model. This result supports the
hypothesis that a lower partial charge reduces the magnitude of
repulsive forces that otherwise might lead to a more open (i.e.,
lower-density) structure. Moreover, ML-BKS-Solids captures best
the density of the high-density polymorphs without sacrificing the
accuracy for the lower-density zeolites.

Predictions of ML-BKS-Solids model for amorphous silica
We next evaluate the ability of the optimized ML-BKS-Solids to model
amorphous silica. We perform the simulations at around 1500 K (see
“Methods”) in order to check the stability of the force field to the
Buckingham catastrophe at high temperatures, as well as to compare
the structural characteristics of amorphous silica. We find that
although the ML-BKS-Solids model performs very well in capturing
the properties of the crystalline polymorphs, it is dynamically
unstable at 1500 K i.e., fails in simulating the amorphous structures
at higher temperatures such as 1500 K and beyond. We find that the
failure originates in Buckingham’s catastrophe: the soft nature of the
ML-BKS-Solids model allows it to enter the unphysical short-range
region of steeply attractive Si–Si interactions of the Buckingham’s

potential (Fig. 3a). The O–O interactions shown in Fig. 3b and the
Si–O interactions shown in Fig. 3 for the ML-BKS-Solids do not seem
to have this issue (Fig. 3b, c).
We then investigate the origin of such erroneous force

predictions by the ML-BKS-Solids model at high temperatures.
Figure 3a shows that the potential energy curve for Si–Si
interactions in the ML-BKS-Solids model has a maximum at 1.8 Å
and the Si–Si interaction is attractive at shorter distances. Though
the equilibrium bond length of Si atoms is around 3.2 Å, we find
that the relatively low charges on the silicon atoms enables Si–Si
bond distances at high temperatures (see the radial distribution
function shown in Supplementary information). The unphysical
attraction of the potential energy curve for these atoms at short
distances destabilizes simulations of the amorphous phases. We
note that such features are absent in the original BKS and PSO
parameterization, because they have larger partial charges that
push the region of unphysical attraction to extremely small
interatomic distances (Fig. 3). Although the other parameteriza-
tions such as BKS and even PSO models have a maximum at 1.2 Å
for Si–O interaction, such distances are not effective sampled at
moderately high temperatures and do not impact the dynamical
stability. However, at high pressures, such parameterizations
might also result in unphysical forces due to the absence of
repulsive regimes at short Si–O distances.

Fig. 3 Potential energy for the three pairwise interactions across
different models with BKS formalism. a Si-Si interaction, b O-O
interaction, and c Si-O interaction as a function of the interatomic
distance.
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ML-BKS formalism to model both crystal polymorphs and
amorphous silica
To address the cause of dynamic stabilities at high temperatures
and to adequately represent the structural/dynamical properties
of liquid/amorphous phase, we modify the functional form of the
ML-BKS- Solids model to include an additional repulsive term that
prevents the sampling of the configurations with much shorter
Si–Si bond lengths. We model this repulsive interaction with the
Weeks–Chandler–Andersen potential (WCA, see Eq. (4)). By placing
the WCA repulsion for the Si–Si interaction at σ= 2.8 Å, the Si–Si
potential becomes purely repulsive at short distances (Fig. 4a),
without affecting the Si–Si interactions in the region that is
accessed by the silica crystals. The result is a model that does not
impact the ML-BKS-Solids predictions for the crystals while
improving the predictions for the liquid phase because it prevents
the unphysical attraction that fails the Buckingham potential at
shorter distances. We term this hybrid ML-BKS-Solids/WCA model
as ML-BKS, and demonstrate below that it efficiently simulates
both solids and liquid phases of silica.
Figure 4 represents the Si–Si, Si–O, and O–O pairwise potential

interactions as a function of the corresponding interatomic
distance. The addition of the repulsive interaction clearly
eliminates the Buckingham catastrophe that ails ML-BKS-Solids.
The figure shows that the correction applied to the Si–Si
interactions does not affect other pairwise interactions, and the
equilibrium bond distances match with the experimental values.
We note that the addition of the WCA term in the ML-BKS
potential serves the same purpose as the D r−24 term used in
models such as CHIK, PSO-1, and PSO-2, but with the advantage
that it can be implemented using a Lennard–Jones potential (see
Eq. (4)). Moreover, owing to the r−12 dependence it does not
require extremely small time steps in the integration of the
equations of motion to conserve the energy.
We aim to develop a model that concurrently captures the

properties of both the crystalline polymorphs as well as
amorphous/liquid phases. Figure 4 RHS presents the radial
distribution functions, 5, for Si–Si, Si–O, and O–O interactions in
the ML-BKS model; the dashed vertical lines show the position of
the first peaks determined from experimental methods61,62. In
Fig. 5, we compare the experimental structure factor S(q) of
amorphous silica62 and the predictions of the ML-BKS model. The

model represents well the intensity and positions of the peaks in
the structure factor S(q)42. We conclude that ML-BKS accurately
captures the structure of amorphous silica. The performance of
the ML-BKS is on-par or better than several of the existing models
based on similar formalism—one can refer to the work in ref. 42 to
draw a comparison on the structural factor of glassy silica
predicted by other notable parameterizations of the classical
force fields of silica.
Next, we want to ensure that the ML-BKS has not compromised

the predictions of the crystal properties. In Fig. 6, we compare the
various crystal properties as we did for ML-BKS-Solids in Fig. 2. The
corresponding errors in the prediction between the ML-BKS-Solids
and the ML-BKS models remain low and unchanged, confirming
that the crystal properties are unaffected by the addition of the
WCA term. This is not surprising because the unphysical
interactions at interatomic distances (less than 1.8 Å) were
sampled only at high temperatures in the amorphous phase and
are irrelevant for crystal phases of silica. Thus, the ML-BKS-Solids
and ML-BKS model predictions of crystal properties are similar. For

Fig. 4 Comparison of the pairwise potential energies and radial distribution functions of the liquid in the ML-BKS and ML-BKS-Solids
models. Panels on the left present the pairwise a Si-Si, b O-O, and c Si-O interaction energy plots, comparing ML-BKS parameterization with
WCA repulsion between Si atom, and the ML-BKS solids that does not have WCA terms. Panels on the column on the right present the
corresponding d Si-Si, e O-O, and f Si-O radial distribution functions for liquid silica at 2000 K.

Fig. 5 Structure factor of silica glass at 300 K. The experimental
curve from ref. 62 is shown in blue, and the prediction of the ML-BKS
model in orange.
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the low-temperature simulations (e.g., at 300 K) of crystalline silica
polymorphs, one can safely omit the WCA functional form and use
the ML-BKS-Solid model.

Testing of ML-BKS model
We next present a comprehensive evaluation of the elastic
constants, phonon dispersion and thermodynamic properties of
silica polymorphs using ML-BKS as well as other silica force fields.

Elastic constants. First, the elastic constants of α-quartz were
computed using the ML-BKS model. While the experimental,
BKS and CHIK elastic constants are available in the literature32,
the predictions for PSO-1 and PSO-2 models were not available
and were computed in this work. Elastic constants were part of
the training set in the development and optimization of both
BKS and CHIK force fields,. However, it is worth noting that
neither of the PSO models were optimized for α-quartz and they

primarily considered the mechanical properties of amorphous
silica.
Figure 7 shows the comparison of the elastic constants for the

various models relative to the experiments. If the agreement
between model and experimental value were perfect, then the
values would coincide with the center of the spider plot. The
greater the deviation, the farther from the center of the spider
plot. The corresponding percentage mean absolute errors in
the various elastic constants are also tabulated in Fig. 7. We
note that the original BKS performs quite well and the errors
are generally less than 30% for most elastic constants except
the shear ones (C12 ~ 48% and C13 ~ 40%). ML-BKS improves
upon these predictions without sacrificing the other elastic
constants except C14 ~ 40%. We note that other models such as
PSO-1, CHIK, and even the GAP42 potential have much higher
errors for C12 and/or greater than 100% for C13. Elastic constants
of PSO-2 were already reported33 to be erroneous and hence

Fig. 6 Comparison of the predictions of the two models of this study, ML-BKS-Solids and ML-BKS, and the experimental properties.
a cohesive energy relative to quartz, b density, c Si–O–Si angles, and d O–Si–O angles. Here M–B–S refers to ML-BKS-Solids.

Fig. 7 Elastic Properties of α-quartz computed using different models. Spider plots indicate the deviation with respect to experiment and
the Table shows the percentage absolute errors. Each concentric circle corresponds to a 25% error.
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were not included in the comparison. It appears that the higher
accuracy of BKS and ML-BKS is a result of closer agreement to
the Si–O–Si angles to the reference values across different
crystals. Moreover, we do not observe any explicit influence of
partial charges on the mechanical predictions made by ML-BKS.
Overall, the ML-BKS captures quite well the elastic constants of
α-quartz when compared to experiments.

Melting of cristobalite. To estimate the melting temperature of
cristobalite, we heat a simulation cell containing only cristobalite
from 300 to 3000 K and monitor the enthalpy as a function of
temperature. Figure 8a shows that there is a jump in enthalpy at
around 2200 K that corresponds to the melting of cristobalite,
confirmed by visual inspection of the simulation trajectory. This
melting is not in equilibrium, but one-phase melting that should
involve significant superheating for the nucleation of the liquid
phase. Considering that the experimental melting temperature of
cristobalite is 1999 K63 we use the enthalpy spike around 2000 K to
estimate the enthalpy of melting. We find that the melting enthalpy
is 11.25 KJ/mol, 26% larger than the experimentally reported value
of 8.9 ∓ +

− 1 KJ/mol. The original BKS model strongly overestimates
the melting temperature of cristobalite, resulting in one-phase
melting at temperatures over 4400 K64 at same heating rate.
To fine tune the melting temperature of cristobalite in the ML-

BKS model, we perform MD simulations for the two-phase
cristobalite-amorphous system described previously, and track
ratio of crystal and amorphous (by following the position of the
solid–liquid interface, see methods) as the system is heated at a
rate of 2200 K/ns (see “Methods”). Figure 8b shows the
temperature evolution of the enthalpy for the two-phase system,
where we can observe the slight change in the slope around
1500 K. To accurately assess the melting temperature, we have
tried using slower heating kinetics by accessing longer time
scales up to 10 ns at 1400 K (Fig. 8c). We find that the interface
remained intact after 10 ns at 1400 K, as seen in the snapshot
shown in (Fig. 8c). The crystal-amorphous interface begins to
undergo a rapid transformation at 1480 K, as seen in Fig. 8d. The
transformation to an amorphous phase is complete at 1500 K
(Fig. 8e). For comparison, the two-phase melting of cristobalite in
the BKS model occurs at 3600 K64. However, we do not observe
growth of cristobalite at temperatures below 1500 K; the
dynamics is too sluggish compared to the time scales accessible
to the simulations. We note that spontaneous growth of

cristobalite has never been observed in molecular simulations
of any model. The only example of growth of cristobalite, using
the Takada65 force field, has been achieved using metadynamics
simulations66.

Phonon dispersion. An important metric to ascertain the
predictive power of any force field, especially for crystalline
solids, is to compare the phonon dispersion relations with
experiments or ab initio calculations. Phonon dispersions are
defined as the reciprocal space k dependence of the frequencies,
ω(k,j), of the normal modes for all branches j and selected
directions in the crystal. Typically, the number of phonon
branches, j= 1, 2,…, 3r, is equal to the number of degrees of
freedom in the primitive unit cell. Every point on the phonon
dispersion curve ω(k,j) corresponds to a frequency of a phonon,
which can be visualized as a dynamical wave of length λ= 1/k,
propagating along the k/k direction. Atoms in this wave vibrate
with frequency ω(k,j). The high-symmetry directions Γ− X, X–M,
M− Γ and Γ− R connect the high-symmetry points
Γ− X= (0, 0, 0), X = (1/2, 0, 0), M = (1/2, 1/2, 0), R = (1/2, 1/2,
1/2) of the primitive cubic Brillouin zone.
Figure 9 compares the experimental67 and ML-BKS phonon

dispersion for α-quartz. Our ML-BKS model displays high
accuracy and the acoustic branches closely matches previous
experimental data. The predictions are an improvement over the
previous parameterizations, including the original BKS models
and are on-par with the CHIK parameterization which also
predicted phonon dispersion quite well. Other parameterizations
such as the Broughton and the Vashishta potentials have the
acoustic branches scaled by a somewhat constant factor
compared to experimental results. In our case, the predictions
and slope of the various acoustic branches at the Γ point are in
good agreement compared to experiments but show a deviation
near the K point. The recently developed ML potential GAP42

shows the highest accuracy, with only a very slight deviation
near the K point (see Supplementary Fig. S5). Overall, the ML-BKS
model provides a reasonable description of the phonon
dispersion properties of α-quartz.

CONCLUSIONS
In this work, we introduce a parameterization and a new
formalism for the BKS potential for silica using a multireward

Fig. 8 Solid–liquid and interface of β-cristobalite in simulations with ML-BKS. a Corresponds to the change in enthalpy with temperature at
a heating rate of 1.7 K/ps, b corresponds to the change in enthalpy of the solid–liquid interface system with temperature, snapshot of the
interface c at 1400 K, d 1480 K, e 1500 K in simulations with a heating rate 2.2 K/ps.
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reinforcement learning algorithm. The models from this work, ML-
BKS-solids and ML-BKS, represent improvements over the existing
BKS parameterizations in their ability to describe the energetics
and relative ordering of a wide range of cristalline silica
polymorphs with respect to α-quartz, including the 17 silica
zeolites for which the energetics are available from experiments.
We have also assessed the structure of these 21 silica polymorphs,
as well as the elastic constants and phonon dispersion of α-quartz,
the melting of cristobalite, and the structural characteristics of the
amorphous phase. Although the discussion below focuses on silica
polymorphs, the arguments are generally applicable to other
zeolitic and hierarchical materials. A summary of the comparison
of the performance of the ML-BKS to all popular existing models of
silica, including the recently developed machine learnt GAP42

model is shown in Fig. 2 (see Supplementary Information). We find
that our parameterization of BKS improves upon the already good
predictions of the original BKS model. In particular, the structural
features (density, Si–O–Si and O–Si–O angles) and elastic
constants are predicted quite well by the BKS-type BKS, CHIK,
and PSO-2 potentials. The more complex GAP42 model also shows
excellent predictions and can achieve a more comprehensive
description of the phase stability than the BKS-type models. The
ML-BKS model performs on-par with GAP42, and even displays
improved predictions of phase stability of compact and porous
silica polymorphs relative to α-quartz.
We note that ML-BKS-Solids and ML-BKS are based on rather

simple analytical potentials, which results in computationally
efficient evolution of their dynamics. ML-BKS-Solids has the same
functional form as the original BKS, CHIK, SHIK and PSO models.
However, the performance of the ML-BKS-Solids for crystalline
solids is significantly improved. Note that one of the main
differences between previous BKS-type models and ML-BKS is the
reduction in the effective charge on the atoms, from 2.4 e to
around 1.785 e for Si (half these values for O). Thus, the ML-BKS
model is much “softer” compared to the original BKS as well as
CHIK (1.91 e), and PSO-2 models (2.35 e) that typically do well on
crystalline and amorphous systems. In general, we note that
“hard” models, i.e., with higher Si partial charges, tend to
underpredict the densities and overpredict the cohesive energies
of the polymorphs30. We hypothesize that the higher magnitude
of partial charges causes greater repulsive forces that leads to a
much more open structure i.e., atoms are pushed away leading to
lower-density predictions in comparison to the experimental

values. Consequently, the cohesive energies of the hard BKS-type
parameterizations tend to be underestimated, which is consistent
with the increased repulsion. The soft ML-BKS parameterization
addresses both of these limitations and thus provides an
improved description of the structure and energetics of the
various polymorphs. Interestingly, the PSO-1 model (charge +1.79
for Si) parameterized using particle swarm is as soft as the ML-BKS
models, but tends to perform poorly in predicting crystalline
properties, especially the elastic constants and phonons. This
suggests that the non-electrostatic pairwise interactions are more
optimal in ML-BKS compared to the PSO-1 parameterization. The
GAP42 model has a more flexible functional form and predicts
silica properties in very good agreement with experiments, which
is particularly impressive considering that its training data was not
experimental data but a SCAN-derived dataset. The ML-BKS model
performs on-par with the GAP42 model but with a much simple
two-body interaction, which is quite remarkable and computa-
tionally advantageous.
We note that BKS, CHIK, SHIK, PSO-1, PSO-2, and the ML-BKS-

Solids models developed in this work have all the same
Buckingham plus coulomb form, but their performances are
widely different. The training datasets and parameterization
strategies utilized for the different models result in the different
optimal sets of parameters, shown in Supplementary Table 1.
Capturing the crystal properties of the different polymorphs with a
single model is nontrivial; it customarily requires defining multi-
objective cost functions which typically present the challenge of
defining weights for each of the individual properties. This can
induce bias in that a subset of polymorphs and/or properties are
fit better than the others. The multireward hierarchical scheme of
this work overcomes this bias and defines the cost function
analogous to stagewise rewards in computer games. As a result,
the MCTS decision tree is able to explore and exploit regions of
the parameter space that favor higher rewards, i.e., a better fit to
as many polymorph properties as possible for the defined
functional form. The MCTS algorithm is able to effectively navigate
around sub-optimal regions in the parameter space by growing
other branches of the tree effectively utilizing the trade-off
mechanism between exploration and exploitation. MCTS simulta-
neously explores potentially better pathways to reach the optimal
point in a search space, and exploits pathways that have the
greatest estimate value of the multireward cost function. This
combination of exploration and exploitation, together with an
appropriate trade-off mechanism between them, represents a
powerful strategy of identifying optimal parameter sets for a given
functional form.
We also note that the fixed functional form of BKS potentials

impose limitations. Although the predictions of the ML-BKS-Solids
model are a significant improvement over the existing para-
meterizations for the crystalline silica polymorphs properties when
compared to experiments, we find that ML-BKS-Solids is unstable
for the modeling of the liquid phase. We systematically compare
the various pairwise interactions and conclude that the dynamic
instability arises from the lack of repulsive interactions at short
distances in the Si–Si interaction of ML-BKS-Solids. Such issues
with dynamical stabilities have also been observed in prior
parameterizations of BKS-type models, and the PSO models
include a D r−24 term to avoid them. Here, we opt for the addition
of a computationally efficient, shifted LJ repulsive term analogous
to the WCA functional form for the Si–Si interaction. The resulting
formalism of Buckingham plus coulomb plus WCA is termed ML-
BKS and is shown to capture the amorphous properties very well
when compared to experiments, without sacrificing the improve-
ments obtained in the crystalline properties for the ML-BKS-solid
potential.
Despite the improvements, there is always an upper limit that

can be attained with simple, pairwise functional forms such as
BKS. Further improvements in the structure and energetics for the

Fig. 9 Phonon dispersion of α-quartz predicted by ML-BKS
compared to the experiments. The experimental results are shown
with dashed black lines, and the predictions of ML-BOP with
red lines.
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wide range of silica polymorphs would require more flexibility in
the functional form, such as for example, via the incorporation of
explicit three-body interactions. In this respect, the recent
developments in machine learnt potentials such as GAP42 offer
encouraging prospects. It should however be noted that the
computational cost of GAP42 is still 10 to 100 times higher than
that of simple pairwise interaction potentials. Symbolic regression
approaches such as genetic programming can allow for search of
two-body and/or short-range three-body corrections to the
existing BKS functional form. Such an approach would retain the
computational efficiency of ML-BKS while incorporating more
flexibility.
An advantage of the ML-BKS models, however, lies in their

simplicity and interpretability, since the functional form is based
on the physics of molecular interactions (electrostatics plus van
der Waals interactions). While physical models are less flexible
than neural networks, they also impose constraints that ensure
that they can work well in scenarios beyond those presented by
the training dataset. To further ensure reliable model predictions,
we have performed short timescale MD equilibration on-the-fly
during our training workflow. This helps to relax the initial
structures and obtain time-averaged predictions with the asso-
ciated uncertainties. Moreover, we used a large enough simulation
box size to address any inconsistencies between the predicted vs.
target structures and densities arising from finite size effects.
The ML-BKS all-atom model could be used to understand the

phase behavior and mechanical properties of silica polymorphs.
However, the slow dynamics of breaking and reforming bonds in
silica requires accessing long simulation time scales, that could
only be achieved with shorter-range and/or coarser-grained
models. Combined with the recent developments in powerful
machine learning potentials such as GAP42, the ML-BKS model
along with future coarser-grained models would allow for
prediction of structural evolution and dynamical properties of
silica polymorphs across a wide range of applications.

METHODS
Functional form
We utilize two types of formalisms for our study. First, we aim to
reparameterize the BKS-type functional form (we term that
optimized ML-BKS-Solids). Next, we describe a modification to
this BKS functional form to include an additional term similar to
the WCA formalism68 (we name that ML-BKS). The two are briefly
described below:

VML�BKS�SolidsðrijÞ ¼ VBKSðrijÞ (1)

VML�BKSðrijÞ ¼ VBKSðrijÞ þ VWCAðrijÞ (2)

in which, VBKS constitutes short-range Van der Waals interactions
in the usual Buckingham form plus a long-range Coloumbic term
with partial charges while VWCA models the repulsive component
of a Lennard–Jones interaction

VBKSðrijÞ ¼
X

i≠j

qiqj=rij þ Aijexpð�rij=rhoijÞ � Cij=r
6
ij (3)

VWCAðrijÞ ¼
P
i≠j

VLJðrijÞ � VLJð21=6σÞ rij � 21=6σ

0 otherwise

8
<

: (4)

VLJðrijÞ ¼ 4ϵ½ðσ=rijÞ12 � ðσ=rijÞ6� (5)

The VWCA term is added only to the Si-Si interactions, to prevent
the well-known catastrophic collapse that originates in the highly
attractive nature of Buckingham potential at very short distances.
We use the Ewald summation for long-range Coulombic (cutoff of

11 Å) while the short-range interactions are determined as part of
the training process.

Training data
The parameters of the ML-BKS-Solids and ML-BKS model are trained
against experimental data available for 21 silica polymorphs69. This
training data consists of the various polymorph structures, densities,
and relative cohesive energies tagged to 21 experimentally realized
silica polymorphs. The energetics were obtained from enthalpies of
formation of the crystals obtained through high-temperature
calorimetry70. All this data has been reported at standard conditions.

Test data
To test the optimized models, we compare the elastic constants
for α-quartz reported in ref. 32. This work compares predictions
made by the original BKS and the reparameterized CHIK model to
an experimental reference. In this work, we additionally computed
the elastic constants for the PSO-based model and make a
comparison with the predictions of our ML-trained models. The
procedure to compute elastic constants is described in the
molecular modeling section. In addition, our test dataset includes
the experimental enthalpy of melting of cristobalite at its
experimental melting point63 which allows us to compare
thermodynamic predictions of our models at high temperatures.

Multireward reinforcement learning workflow
We utilize the reinforcement learning (RL)-based workflow
described in Fig. 1. Our RL approach is based on the use of a
decision tree, i.e., Monte Carlo Tree Search (MCTS). The MCTS tree
consists of several nodes, each of which contains a unique BKS
parameter set. In the RL approach, the main idea is to grow those
tree branches that contain nodes with promising parameter sets.
To achieve this, the head node of the MCTS tree is initialized
randomly with a ML-BKS-Solids or ML-BKS parameter set and then
the four stages of MCTS are executed iteratively using a learning
policy with modifications to enable operation in a continuous
search space as described in our recent work71.
Having defined the objective evaluation strategy, we now

provide an overview on our optimization engine, the Monte Carlo
Tree Search (MCTS) algorithm. Our c-MCTS algorithm iterates over
four stages- selection, expansion, simulation, and backpropaga-
tion. In the selection stage, we select a node (a parameter set) with
the highest score based on the learning policy. This first step
usually involves initializing the head node of the tree. About 50
leaf or child nodes are initialized in our search. Next, there are
playouts that assign rewards to the parameter set as described in
the feedback description. Now the score is fed into an equation
usually referred to as the “learning policy”. Here, we use the
popular upper confidence bound (UCB) as the learning policy,
with important modifications to suit efficient optimization in the
continuous potential energy surface as opposed to the traditional
discrete design space.

UCBðθjÞ ¼
X

Hstage

�minðr1; r2; ¼ ; rni Þ þ c � f ðθjÞ �
ffiffiffiffiffiffiffiffi
lnNi

ni

s

(6)

The learning policy contains two parts, one is focused on
exploitation or achieving minimum error score while the other is
related to the exploration and is based on the ratio of parent-to-
child node visits made by the MCTS agent. The latter term
contains an exploration constant, a hyper-parameter that balances
the exploitation-vs-exploration trade-off. Next, in the expansion
stage, child nodes are added to the selected node such that their
parameter values are small perturbations to that of the parent
node. We note that the region of the space explored reduces with
the increase in tree depth, which helps in the convergence of the
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algorithm71. In the simulation stage, playouts are conducted for
the newly generated child nodes to evaluate their performance
and the scores of all relevant parent and child nodes are updated
in the backpropagation stage. More details on the UCB policy are
added to the S1 section of the suporting information.
Next, we discuss about the objective function or the definition

of the rewards used in the MCTS workflow. Feedback is an
important aspect of any learning process and hence we enhance
the learning by returning hierarchical rewards to the RL workflow,
as illustrated in Fig. 1. We draw analogies from computer games
and introduce a rewards scheme where the objectives are
evaluated based on an hierarchical manner where error for
multiple properties are evaluated stagewise depending on a
typically increasing level of difficulty. All the multiple objectives or
rewards are evaluated using LAMMPS72. Initially, the agent makes
a heuristic guess of the model parameters within the specified
bounds of the high-dimensional space. The property evaluations
are ordered according to their simulation cost as demonstrated in
Fig. 1. The reward for the first stage (the lattice parameters of the
21 silica polymorphs) is evaluated and if the constraint on the
relative error is satisfied, the agent moves to evaluate the reward
for the successive stages (cohesive energy, densities, etc. of all
polymorphs) one at a time. The rewards from each stage are
accumulated and the overall reward is fed back to the agent. Thus,
the reward value for a BKS parameter set is higher if it successfully
completes multiple stages. Hence, we identify each of the target
properties as an individual stage (see Fig. 1). This type of setting
allows the user to set the order of property evaluation along with
different error criteria. Our initial gateway of lattice constants was
chosen so that we first predict the correct structure for each of
the polymorphs and then map their properties to the structures. If
the cohesive energies are made the initial gateway, then the
algorithm may accurately predict the cohesive energies but the
corresponding structures that the energies would be mapped to
might be different. In principle, if this mapping were unique, then
the hierarchy would not matter. However, in some cases, where
there is a many-to-one mapping, then it is preferable to keep the
structure as the initial gateway to make it easier to map the
properties that are lower in the hierarchy onto the correctly
predicted structures.
Our hierarchical rewards approach offers several advantages. One

is the early rejection of parameter sets without having to evaluate all
the properties, thus saving time and computing power. Another is
the ability to tune the search space to simultaneously identify and
map regions of good parameters relative to the most desired
properties. For instance, Fig. 1 has the first two properties marked as
“yes”meaning the parameter set is well within the range of the error
criterion defined by the user. A cumulative reward is computed for
both of them—note that this eliminates the need to evaluate all the
properties and one can assign a penalty based on the extent of
error. This way we save on the number of calculations made in each
of the iteration made by the optimizer. It should be noted that this
saves a lot more computations when we loop across each of the 21
polymorphs from the training dataset. Clearly, this leaves a faster
and smarter feedback to the optimizer allowing it to carry out more
iterations unlike in the workflows with all the properties evaluated
without a stage cutoff. This way as the optimizer samples through
the search space, it tends to target the search space such that the
high-reward stages still yield at least the same accuracy while
improving the subsequent stages. Another added advantage is the
elimination of property bias as we do not need to set any weights to
the rewards computed at each stage in order to train a property
better. Instead we simply alter the training order of properties. More
details on the hyperparameters and the LAMMPS computations are
provided in the Supplementary Information60.
To summarize, based on the cumulative rewards score returned

by learning policy (which is a balance of exploration and
exploitation of the search space), the best-scored head-leaf node

is selected, this completes the first c-MCTS stage. Next stage is the
expansion of such leaf or parent node with a certain number of
child nodes (in this study, five child nodes were generated per
parent). This is followed by a simulation stage, which involves
evaluation of every child node using the learning policy described
in detail above by perturbing the parameters within the search
bounds of that node. The last stage involves back-propagating the
scores until the head or parent-leaf node is selected. Back-
propagation keeps a track of the number of times a child node is
visited and the chances of it being exploited diminish if it has
lower rewards despite a higher number of visits. This allows the
algorithm to learn and explore newer regions and helps identify
the next best head node that needs to be expanded or the child
node with next best score available in the tree. The global
optimization of the parameter sets is thus achieved through a
multireward MCTS scheme which is followed by a Simplex
algorithm73 for a subsequent local optimization to derive the
final set of best parameters.

Molecular modeling
The RL workflow for training and testing force-field parameters
needs the target properties for the rewards to be predicted. These
properties are further used to learn the exploration of the search
space. All the property evaluations for the crystalline and
amorphous phases are performed using the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS)74. Prior to the
computation of any property, the corresponding starting config-
urations are minimized via the conjugate gradient technique with
force and energy tolerances equal to 10−4 eV Å−1 and 10−4 eV,
respectively. A barostat with P= 1 bar, a time step of 1 fs and a
3 × 3 × 3 supercell was used in all the simulations.
For the crystalline polymorphs (obtained from IZA database), the

minimized system is relaxed using the model parameters using
box/relax and subsequently equilibrated at 300 K in the NVE
ensemble for 10 ps. Then the target properties—lattice, density,
cohesive energy, Si–O–Si and O–Si–O angles are evaluated in order
to assess the quality of the parameter set within the multireward
decision tree workflow. The lattice parameters are retrieved from
the equilibrated box dimensions while the cohesive energy for
each polymorph is computed by normalizing the potential energy
of the system with the total number of atoms in the simulation cell.
We must note that cohesive energies are always computed relative
to the most stable polymorph, i.e α-quartz, and the relative
energetic ordering is compared w.r.t. experiments69. We use a
cutoff radius of 10 Å with a shell thickness of 0.01 Å for the
calculation of the angular distribution functions. The angles are
obtained by computing the Angle Distribution function (ADF) of
the relaxed structures. To evaluate the elastic constants, each
relaxed crystal structure is subjected to both positive and negative
deformations along all directions to compute the derivative of the
pressure tensor with respect to the strain, which is used to
construct the elastic constant matrix. The phonon dispersion is
obtained using the Finite displacement method through the
Phonopy75 package.
We perform MD simulations to evaluate the structure and

enthalpy of amorphous silica. To obtain an amorphous configura-
tion, we heat the cristobalite crystal to a temperature of 5000 K
and then cool it back to 300 K. For the original BKS model, the
one-phase melting of crystobalite occurs above 4400 K64. There-
fore, in the process of preparing the glass sample, we heated it up
to 5000 K which ensures the complete melting of the crystal. The
amorphous system is then replicated to obtain a large enough
system size with about 12,000 atoms that is used for MD
simulations. We measure the enthalpy of melting for cristobalite
around 2000 K, because the experimental melting temperature of
this mineral is 1999 K. The simulation cell of the crystal is
replicated to size similar to that in the amorphous simulation. Both
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the crystal and amorphous systems are then slowly heated from
300 K to a temperature of 2500 K in an NPT ensemble and then
equilibrated for 1 ns at that temperature. The enthalpy of melting
is computed as the difference in the enthalpy per atom in the
simulations of the amorphous and cristobalite phases identifying
the jump in the potential energy (see “Results”). We also estimate
the melting point through heating of a two-phase amorphous and
solid β-cristobalite separated by a flat interface. The two-phase
system is created by dividing the crystal simulation cell-sized
5.2 nm × 5.5 nm × 16 nm into two regions along the z axis. The
positions of the atoms in one half are fixed using the setforce
command in LAMMPS resulting in zero forces, while the other half
was heated to 3000 K in NPT ensemble (p= 1 bar) with anisotropic
barostatting over 1 ns and subsequently equilibrated at the same
temperature (3000 K) for another ns. This procedure results in the
amorphization of the unfixed block. Next, the system is cooled to
300 K. This two-phase system is then evolved in the NPT
ensemble, removing the setforce constraint and integrating the
equations of motion of all atoms. The temperature of the
simulation is increased linearly to the target temperature i.e.,
from 300 to 2500 K, over 1 ns. The structural characteristics are
evaluated to determine the melting point.
Silica glass is created using melt-quench simulations starting from

β-cristobalite (4000 SiO2 units). We heat the crystal from 300 to 3000 K
over 1 ns, at 1 bar in an NPT ensemble and then rapidly cool the
configuration to room temperature in order to obtain the glass. This is
then held at 300 K and 1 bar for 3 ns in a NPT ensemble in order to
generate trajectories necessary to evaluate the structure factor.

DATA AVAILABILITY
All the training and validation data used in this work is publicly available via the IZA
database (http://www.iza-structure.org/databases/).

CODE AVAILABILITY
The c-MCTS algorithm for training and validation the silica models is implemented in
the BLAST framework developed by the authors. The codes, scripts, and framework
are available from the authors upon reasonable request through DOE user facility
program and submission system (https://www.anl.gov/cnm/about-the-cnm).
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