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Performance of two complementary machine-learned
potentials in modelling chemically complex systems
Konstantin Gubaev 1,5✉, Viktor Zaverkin 2,4,5✉, Prashanth Srinivasan 1, Andrew Ian Duff 3, Johannes Kästner 2 and
Blazej Grabowski 1

Chemically complex multicomponent alloys possess exceptional properties derived from an inexhaustible compositional space. The
complexity however makes interatomic potential development challenging. We explore two complementary machine-learned
potentials—the moment tensor potential (MTP) and the Gaussian moment neural network (GM-NN)—in simultaneously describing
configurational and vibrational degrees of freedom in the Ta-V-Cr-W alloy family. Both models are equally accurate with excellent
performance evaluated against density-functional-theory. They achieve root-mean-square-errors (RMSEs) in energies of less than a
few meV/atom across 0 K ordered and high-temperature disordered configurations included in the training. Even for compositions
not in training, relative energy RMSEs at high temperatures are within a few meV/atom. High-temperature molecular dynamics
forces have similarly small RMSEs of about 0.15 eV/Å for the disordered quaternary included in, and ternaries not part of training.
MTPs achieve faster convergence with training size; GM-NNs are faster in execution. Active learning is partially beneficial and should
be complemented with conventional human-based training set generation.
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INTRODUCTION
Alloys consisting of multiple principal components have attracted
considerable attention over the last decade1–8. Apart from the
conventional subsystems like binary and ternary alloys, one can also
access the interior regions of the highly complex compositional
space of such alloys, revealing a multitude of untapped composi-
tions. High entropy alloys (HEAs) are one such class of alloys
consisting of at least four to five elements in near-equal proportions.
They are known for remarkable properties such as high tensile and
yield strength, high ductility, and fracture toughness9,10.
A high mixing entropy stabilises the disordered phase of a HEA

wherein elements randomly occupy sites of the simple lattices, i.e.,
bcc11,12, fcc7,13, or hcp14. However, this is the predominant effect
only at high temperatures, accompanied by large vibrations in the
system. At lower temperatures, there is a possibility of segregation
of individual elements, short-range ordering, and phase decom-
position15–19. Therefore, to fully analyse the thermodynamics of
the alloy across the entire temperature range, both vibrational and
configurational entropy contributions are critical, and one needs
to study both the high-temperature disordered phase and the
low-temperature segregated sub-phases. In addition, the proper-
ties of a HEA cannot be deduced by simply performing a linear
combination of properties of individual elements and subsystems,
as the interaction between the elements leads to unusual
behaviour.
Computational techniques can assist in a rapid exploration of

complex compositional spaces. However, the accuracy of results
relies critically on the computational method. Running ab initio
molecular dynamics (AIMD) simulations using density-functional
theory (DFT) to obtain accurate results is computationally
demanding. In particular, studying configurations with short-
range order requires much larger length scales making DFT

prohibitively expensive. Atomistic simulations employing intera-
tomic potentials are a possible alternative. Most potentials assume
the locality of interatomic interactions, facilitating much faster
computation and better scaling with system size than DFT.
The key challenge lies in developing accurate and robust

interatomic potentials. In particular, simultaneously accounting for
both the vibrational and configurational degrees of freedom is
extremely difficult. Conventional potentials, e.g., based on the
embedded-atom method (EAM)20 or the modified embedded-
atom method (MEAM)21, are restricted to simple fixed analytical
forms for the energy with a small number of parameters. The
sparsity of the respective parameter space does not provide
enough flexibility to model complex systems.
In this regard, state-of-the-art machine learning (ML)-based

models have a more systematic approach toward the parameter-
ization of interatomic interactions. The atomic environment
around a central atom is encoded by a local representation,
which depends on vibrational (coordinates) and configurational
(atomic types) degrees of freedom. Typically, local representations
are composed of a radial part (depending only on interatomic
distances) and an angular part (depending on the angles). The
representations are invariant with respect to atomic permutations,
translations and rotations of physical space and form a set of
functions that describe the local atomic arrangement. This set of
functions provides suitable input to an ML model. The mapping
from this input to the energy is determined by the values of
model parameters, which are obtained by training on DFT
energies, atomic forces, and stresses.
ML-based models can also robustly estimate the uncertainty in

their predicted energies and forces22–28. Such estimations are
used to develop active learning algorithms to select the data most
informative to the model. The data are obtained from the
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configurational and vibrational spaces sampled during, e.g., a
molecular dynamics (MD) simulation using the existing model,
either beforehand or in an on-the-fly fashion. The model is then
retrained with the updated training data set, which includes DFT
values of these sampled configurations. Hence, in addition to their
unique way of accurately describing a complex multidimensional
phase space with a certain number of model parameters, the
learning-on-the-fly feature allows ML-based models to be a more
robust and reliable approximation of the DFT potential energy
surface.
Several ML-based models have been proposed in the literature,

each with its own representation of the atomic environment29–32.
In the present work, we analyse two complementary ML-based
approaches, the moment tensor potential (MTP)23,33 and the
Gaussian moment neural network (GM-NN)34,35. MTPs have been
developed for thermodynamic property prediction up to the
melting point of a single disordered phase of a TaVCrW HEA36.
MTPs have also been built to study partial compositional spaces
of a TiZrHfTax HEA37. GM-NNs, on the other hand, have so far
been developed for a different class of chemical structures. For
instance, they were used to study the dynamics of N and H2

on water and CO ice surfaces, respectively38–40, and the
dynamic behaviour of magnetic anisotropy tensors of
½CoðN2S2O4C8H10Þ2�2�, ½FeðtpaÞPh��, and ½NiðHIM2 � pyÞ2NO3�þ
molecular crystals41. However, they have not been tested for
metallic, let alone, complex HEA systems.
Here, we develop and compare an MTP and a GM-NN potential

for the Ta-V-Cr-W HEA family, and assess their performance in
modelling chemically-complex multicomponent systems. We
include the vibrational and configurational degrees of freedom
of the system in the potential development. We do so by
attempting to predict energies and forces in Ta-V-Cr-W sub-
systems under two scenarios: (i) the 0 K energies and forces in
binaries, ternaries and quaternaries; (ii) near-melting temperature
energies and forces in 3- and 4-component disordered alloys. The
subsystems are categorized into two groups—the in-distribution,
and the out-of-distribution subsystems, where the former includes
those subsystems used for training, and the latter includes non-
equiatomic ternaries that are not a part of the training. In addition
to the energy and force estimates, we assess the quality of the
potentials by also computing thermodynamic properties.
The MTP and the GM-NN models are equally accurate in

describing the Ta-V-Cr-W HEA family. The 0 K energies and forces
of the in-distribution subsystems are predicted extremely
accurately, while the RMS errors are slightly larger for the out-
of-distribution subsystems. The high-temperature configurational
space of the disordered quaternary (part of the in-distribution
subsystems) is accurately captured to within 0.18 eV/Å RMS error
in forces. Likewise, even non-equiatomic ternaries (part of the out-
of-distribution subsystems) are accurately predicted, with RMS
errors in forces of less than 0.16 eV/Å. While the absolute energies
of the out-of-distribution subsystems are not predicted well, the
relative energies—which are relevant for thermodynamics proper-
ties—are accurate to within 5.5 meV/atom. Classical EAM/MEAM
potentials are unsuitable for such a complex phase space and
have errors one to two orders higher in magnitude. Finally, we
investigate the role of active learning strategies applied to HEAs
and find that human-based inspection is crucial in this
specific case.

RESULTS
Features of the two ML models
Figure 1 is a schematic illustration of the similarities and
differences between the MTP and the GM-NN approaches. MTPs
and GM-NNs assume locality of interatomic interactions. The total
energy of an atomic system is split into the contributions of

individual atoms. For every atom, only the interactions within a
cutoff Rcut are explicitly considered, as shown in Fig. 1a. Since the
total energies (written as a sum of site energies for all atoms) are
trained on DFT systems which include long-range effects, the
interactions beyond Rcut get implicitly included during the fitting.
The building blocks of the MTPs and GM-NNs are the atomic

environment descriptors, shown in Fig. 1b. MTPs and GM-NNs
encode the structural and chemical composition of a local atomic
environment by utilizing symmetry preserving representations
motivated by invariant polynomials and Cartesian Gaussian-type
orbitals (GTOs)42, respectively. Interestingly, both approaches lead
to a common representation invariant to translations and
permutations but equivariant to rotations.
Descriptors, invariant to rotations, are obtained by computing

tensor contractions and eliminating possible linear dependencies;
see Fig. 1c. For MTP, the selected contractions are restricted to the
ones of a particular level levmax

33, providing restriction on both
radial and angular parts and thus defining the basis in which the
atomic energy is expanded. Larger values of levmax account for
high-order tensors participating in contractions, thereby produ-
cing more descriptors and increasing the fitting capabilities of the
potential. In fact, the EAM and MEAM potentials can be viewed as
reduced MTP potentials with levmax ¼ 0 and levmax ¼ 2, respec-
tively. For GM-NN, linear dependencies are eliminated by
identifying unique generating graphs corresponding to the tensor
contractions43 and taking into account the permutational
symmetry of the respective tensors or, equivalently, nodes on
the graph34,35. The intermediate equivariant representation relates
MTP and GM-NN to the recently proposed equivariant message
passing neural network (NN) architectures44,45.
The invariant features of the atomic environments computed

within both approaches are then used as an input to linear
regression or a neural network-based model for MTP and GM-NN,
respectively, as illustrated in Fig. 1d. The GM-NN has ~500 times
more parameters as it utilizes artificial NNs to map the structure
and the respective properties. Finally, the models are trained on
DFT data (energies, atomic forces and stresses) by minimizing a
specified loss function. The reader is referred to the ‘Methods’
section for more details about the construction of the ML-based
models, and the relation of the MTP and GM-NN models to other
ML potentials.
From configurations generated by the trained model, new

samples are iteratively selected for active learning based on
uncertainty quantification. In the MTP and GM-NN approach,
uncertainty measures are based on gradient feature maps, i.e., ∇θE
with θ being the model’s parameters. In the simplest case, ∇θE
would correspond to input features of the linear regression in
Fig. 1d. Specifically, for MTP, the uncertainty measure is based on
the maximum volume (MaxVol) principle for the matrix of the
basis function derivatives with respect to the fitting coefficients46.
The actual measure of the uncertainty is the determinant of the
corresponding MaxVol submatrix. For GM-NN, the uncertainty is
computed by employing gradient features of a trained NN (with θ
being the weights and biases)26–28, corresponding to the finite-
width neural tangent kernel47. In this work, the largest cluster
maximum distance (LCMD) method28 for selecting new structures
and last-layer gradient features (FEAT(LL)) to compute the
similarity between structures and the model’s uncertainty from
it is used. Other active learning approaches are also possible27,28.

Evaluation strategy
The objective of the ML-potentials is to capture both the
vibrational and configurational degrees of freedom at near-DFT
accuracy. The TaVCrW HEA stabilizes as a fully disordered structure
at high temperature. As the temperature decreases, there is short-
range ordering in the alloy, followed by segregation of individual
elements or phases18. Hence, a robust ML model that accurately
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Fig. 1 Schematic representation of the moment tensor potential (MTP) and the Gaussian moment neural network (GM-NN) approaches.
a Both methods rely on the assumption of locality of interatomic interactions but implicitly include interactions beyond the cutoff radius Rcut.
b As an intermediate step in constructing invariant features, both methods obtain a common representation equivariant to rotations.
c Invariant features are obtained by computing tensor contractions and eliminating linear dependencies specific to the considered approach.
d Utilizing linear regression or neural networks, which take invariant features as an input, mapping from a structure to the respective energy is
modelled.
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predicts the complete HEA behaviour should be able to predict
both the high-temperature disordered phase, and the low-
temperature ordered phases.
Hence, we choose structures that represent both these

temperature regimes for training and evaluation of the ML
potentials. The training data includes 0 K energies and forces of
ordered phases—binaries, ternaries and quaternaries. In addition,
we also include configurations of strained binaries and of the
disordered TaVCrW alloy at 2500 K. These subsystems that form
the training set are classified as in-distribution subsystems.
To further investigate the generalization capabilities of the ML-

potentials, we also evaluate their performance on subsystems
from different parts of the compositional space of the Ta-V-Cr-W
family that do not form a part of the training set. For this, we
choose a set of non-equiatomic ternaries, and evaluate both the
0 K and high-temperature energy and force predictions of the ML-
potentials. These subsystems are classified as out-of-distribution
subsystems. The structures in the training and validation data set
of the in-distribution and out-of-distribution subsystems are
detailed in the ‘Methods’ section.

Accuracy for the in-distribution subsystems
Figure 2 shows the root-mean-square (RMS) errors in the
predicted energies and forces for all in-distribution subsystems
using the MTP. The RMS error-tetrahedra for the GM-NN potential
and the EAM/MEAM potentials are compiled in the Supplementary
Information. In addition to the 0 K subsystems (binaries, ternaries,
quaternary), Fig. 2 also shows errors for the 0 K strained binaries
and the 2500 K disordered HEA, all of which form the in-
distribution subsystems. The ‘Overall errors’ correspond to the
RMS errors on all configurations put together. The results are
additionally compiled in Table 1. To guarantee reliable statistics, all

values refer to averages over ten separately fitted MTPs and GM-
NNs.
From Fig. 2 and Table 1 (and Fig. S1 in the Supplementary

Information), we see that both ML-based models MTP and GM-NN
are almost equally accurate and reproduce DFT values extremely
well for the in-distribution subsystems. For the 0 K subsystems, the
RMS errors in energies and forces range from 1–4 meV/atom and
0.02–0.06 eV/Å, respectively, and for the 2500 K disordered
structure, the RMS errors are around 2.5 meV/atom and 0.16 eV/Å,
respectively. The strained binary structures are also predicted to
within 4.5 meV/atom error in energy, with some binaries (CrW,
TaCr, and VW) being predicted more accurately than the others,
irrespective of the model chosen. The MTP is marginally better
than the GM-NN in predicting the 2500 K structure (i.e., the
vibrational degrees of freedom). The GM-NN predicts the 0 K
structures marginally better (i.e., the configurational degrees of
freedom).
Figure 3 shows the correlation between the predicted forces for

the 0 K and the 2500 K TaVCrW structures. The 0 K data in the
training and validation data set include a combination of relaxed
and unrelaxed structures, and they span a broad range of force
values. For example, as seen in Fig. 3, the forces range from −2 to
2 eV/Å for the TaVCrW 0 K structures. For the 2500 K MD structure,
they range from −10.5 to 10.5 eV/Å. Irrespective of this, there is an
excellent agreement in the forces predicted by the ML-based
models for all structures of the in-distribution subsystems.
The overall accuracy achieved by the MTP and the GM-NN with

respect to the DFT values is remarkable, given the complexity of
the configurational phase space (which includes both 0 K
subsystems and a 2500 K disordered quaternary). To put it into
perspective, Table 1 also shows the RMS errors of an EAM that was
fit to a combination of the 2500 K 4-component structure and 0 K
subsystems. Both the energy and force errors are one to two
orders of magnitude higher, deeming them almost unusable for

Fig. 2 RMS errors in predicted energies and forces for the MTP model evaluated on the test data for different in-distribution subsystems
of Ta-V-Cr-W. Energy RMS errors in meV/atom are shown in bold, while the atomic force RMS errors in eV/Å are in grey. The numbers with
arrows indicate the RMS errors for the energy per atom for strained binary structures.
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any accurate property prediction. The last column in Fig. 3 shows
the force correlation between the EAM-predicted forces and the
DFT forces on both 0 K and 2500 K TaVCrW structures. The 0 K
forces predicted by the EAM are highly uncorrelated to the DFT
values, and the 2500 K forces have a much broader distribution
(larger RMS error) compared to the two ML-based models.

Heat capacity prediction for the HEA
Having shown the remarkable accuracy in energies and forces
achievable with the ML-based models for the in-distribution
subsystems, we now test their reliability and robustness in
predicting thermodynamic properties of the disordered TaVCrW
HEA. In particular, we analyse the isobaric heat capacity, Cp(T), up
to 2500 K (close to the melting point). The heat capacity is
calculated numerically using thermodynamic integration, the
details of which are in the ‘Methods’ section.
Figure 4 shows the heat capacity curves obtained using the MTP

and the GM-NN. The curves are compared to the DFT results from
literature36. We have removed the electronic part from the full DFT

curve to be able to directly compare to the results predicted by
the current potentials. Both the MTP and the GM-NN predict
almost the same behaviour of the heat capacity with temperature.
The curves are also very close to the full DFT curve up to around
2200 K after which the ML-based curves diverge. The heat
capacity, calculated as the second derivative of the Gibbs energy
with temperature, is extremely sensitive to small changes in the
free energy. Hence, given that only 25% of the training set
comprised of disordered quaternary structures (0 K and 2500 K),
the accuracy achieved by both the MTP and GM-NN for the heat
capacity is outstanding. The curves are also compared to the heat
capacity calculated using the EAM in Fig. 4. The EAM that was
fitted to the entire training set whose RMS errors were compared
in Table 1 was not stable enough to run TI across the entire
temperature and volume range. Hence, we have fitted an EAM
only to the 2500 K disordered TaVCrW structures to calculate the
heat capacity. Even then, the heat capacity calculated by the EAM
diverges from the DFT curve after 750 K and is much less accurate.

Accuracy for the out-of-distribution subsystems
Figure 5 shows the errors in the predicted energies and forces
(finite-temperature results at 2000 K and 0 K results) for the out-of-
distribution subsystems (non-equiatomic ternaries on the x-axis)
using both the MTP and the GM-NN potential. The first row of plots
contains the errors in absolute energies of the various subsystems.
It is observed that the prediction of the absolute energies by the
ML-based potentials is off by as much as 20 meV/atom in some
cases. The out-of-distribution subsystems are not a part of the
training set. The ML-potentials—although trained on absolute
energies of configurations of the in-distribution subsystems—
cannot accurately predict the large, absolute chemical potentials.
Hence, we observe these much higher errors in the absolute
energies of the out-of-distribution subsystems compared to those
from the in-distribution subsystems.
However, the temperature dependence of thermodynamic

properties such as the heat capacity discussed in the previous
section, are numerical functions of energy differences instead of
absolute energies. Thus the absolute energy predictions do not
serve as a rigorous assessment of the accuracy of the ML-based
potentials in predicting thermodynamic properties. In the second
row in Fig. 5, we show the respective RMS errors in the relative
energy (with respect to the corresponding relaxed structure) of
the out-of-distribution subsystems, and find that the errors are less
than 5.5 meV/atom.
In the third row of Fig. 5, we also show the errors in atomic forces

at both 2000 K (left) and 0 K (right). The errors observed in the 2000
K forces are similar to those for the in-distribution systems with
values not exceeding 0.16 eV/Å. Accurate prediction of MD
trajectories at elevated temperatures can be thus expected for
various alloy compositions in the Ta-V-Cr-W family. The errors in the
0 K forces are even smaller, and comparable to the 0 K subsystems
in the in-distribution set. An exception is the Cr17W17V66 alloy,
where the higher error comes from the distinctly higher absolute
value of the force in the corresponding configuration (marked on
the top of the plot). Hence, relative force errors are comparable
among the different out-of-distribution subsystems.
In clear contrast to the ML models, the performance of the EAM

on the out-of-distribution subsystems is much worse. The absolute
energies are off by 120–200 meV/atom, while even the relative
energies are off by 60–80 meV/atom. The RMS error in the forces
in the ternaries is similar to the error observed for the TaVCrW
quaternary with values ranging from 0.5 to 0.7 eV/Å. Such errors
make the EAM unsuitable, even more so, for thermodynamic
property predictions of out-of-distribution subsystems.
Overall, the performance of the ML-based potentials is equally

and remarkably good even for out-of-distribution subsystems. The
observed larger errors in the absolute energies could be, for

Table 1. RMS errors in the predicted energies/forces for the individual
Ta-V-Cr-W in-distribution subsystems.

Subsystem MTPa GM-NNb EAMa

TaV 1.94/0.050 1.54/0.029 32.0/0.404

TaCr 3.26/0.057 2.98/0.038 43.6/0.343

TaW 2.72/0.038 2.99/0.025 44.8/0.248

VCr 2.29/0.036 2.82/0.025 44.8/0.270

VW 2.50/0.037 2.00/0.023 21.3/0.292

CrW 4.35/0.041 2.87/0.029 23.4/0.248

TaVCr 2.43/0.054 1.97/0.045 34.1/0.313

TaVW 1.67/0.043 1.70/0.034 39.6/0.321

TaCrW 2.08/0.051 2.19/0.039 23.6/0.327

VCrW 1.37/0.040 1.94/0.031 19.4/0.314

TaVCrW (0 K) 2.09/0.049 2.16/0.037 50.8/0.488

TaVCrW (2500 K) 2.40/0.156 2.67/0.179 59.4/0.521

Overall 2.43/0.054 2.32/0.043 37.14/0.443

Deformed Structuresc

TaV 4.43 3.63 56.8

CrW 1.25 1.04 27.1

TaCr 1.89 0.49 13.3

VW 0.41 0.52 66.1

TaW 3.74 3.11 161.9

VCr 4.29 2.70 283.2

Overall 2.67 1.91 101.4

The results are provided for the MTP, GM-NN, and EAM models. Atomic
energies are given in meV/atom, while forces are given in eV/Å. The best
training result is written in boldface.
aThe results for MTP and EAM are obtained by averaging over ten splits of
the original data set, except for the deformed structures. The latter were
obtained for all models trained on the whole data set (training + test).
bFor GM-NN models, 500 structures were selected randomly from the
respective training set to prevent overfitting using the early stopping
technique54. Thus, GM-NN models were trained on 500 structures less than
MTP and EAM. This procedure was repeated ten times for each of the
original data splits and resulted in averaging over 100 splits in total. For the
deformed structures, the results are averaged over ten splits.
cBinary structures are strained along the [100] direction and used as a part
of the validation set. For different binaries, the strains are chosen based on
certain accommodation rules (see ‘Methods’ section). The strains can vary
up to 4.71%.
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example, corrected in an additional step by single static DFT
calculations at the respective compositions.

Active learning applied to the TaVCrW HEA
Figure 6 compares the learning curves obtained by training the MTP
and the GM-NN models on randomly and actively selected data.
Figure 6a, b shows the RMS and MAX errors in energies. It can be
seen that the MTP (orange lines) needs significantly fewer data to
reach its final accuracy in the energies. The GM-NN model (blue

lines), on the other hand, shows a continuous (nearly linear)
decrease in the error on the energies as the size of the training set
increases. The final accuracy of the two models is similar. The reason
for the faster convergence of the MTP can be attributed to the
difference in the inherent nature of the two ML-based models—the
relatively simpler formalism of the MTP with ~500 times fewer
trainable parameters favoring quicker convergence versus the
enhanced non-linear NN formalism of the GM-NN model making
it continuously more accurate with increasing training data.
Indeed, the MTP reaches convergence in the energy already

with a seemingly very small training set size of 128 structures.
However, one should note that each structure contains several
tens to hundreds of atoms with many distinct local chemical
environments. The total number of atoms in each training set is
tabulated in Table 2. For example, the MTP trained on 128-atom
structures constitutes around 11,000 atoms. Hence, even with
128 structures, the MTP is trained on a sufficiently large number of
atomic neighbourhoods, allowing it to make accurate predictions
on every part of the configurational space.
Comparison of the dashed and solid lines in Fig. 6a, b reveals

that there is no improvement in the RMS errors in energies using
the active learning approach for neither of the two ML models.
Since the random data selection was made across the entire
diverse configurational space (with data chosen from all 0 K
subsystems and MD), it is already sufficient to reach good energy
accuracy for the Ta-V-Cr-W alloy family. An advanced active
learning approach is superfluous for obtaining good energies.
Figure 6c, d show the errors in forces with increasing training set

size. Once again, the MTP converges faster to its minimum RMS error
in the forces in comparison to the GM-NN which has a more gradual
decrease. The reason for this is the same as above, i.e., the simpler
formalism of the MTP. However, unlike in the energies, here we
notice a difference in convergence in the RMS error between the
random and actively learnt MTP (dashed and solid orange lines
respectively). The MTP trained on actively learnt training sets
converges faster than the MTP trained on randomly selected
training data. There is no such clear difference seen in the GM-NN
curves (dashed and solid blue lines). To explain the improvement of

Fig. 3 Correlation between the predicted forces (by the MTP, the GM-NN and the EAM potential) and the DFT forces in eV/Å for the 0 K
and 2500 K structures of the TaVCrW alloy. The colours indicate the relative density as estimated by a kernel density estimator.

Fig. 4 Isobaric heat capacity as a function of temperature
computed by employing the MTP, the GM-NN, and the EAM
interatomic potentials. The reference DFT values (without the
electronic contribution) are taken from literature36.
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active learning over a random selection for the MTP and the
absence of such an improvement for the GM-NN, we track the
number of 2500 K configurations in the actively learnt training set.
Table 2 shows the fraction of 2500 K configurations, given in

brackets, at different stages of the MTP and GM-NN active learning
process. The active learning scheme of the MTP selects a higher
fraction of 2500 K configurations in comparison to the GM-NN
model, especially as the training set size increases. For example,
for the MTP trained on 256 structures, 34% of the training set
comprises of 2500 K configurations. This is reflected in the
considerably better performance of the actively learnt MTP in
predicting atomic forces at small training set sizes. In contrast, the
active learning approach employed by GM-NN selects roughly the
same amount of 2500 K data across all active learning steps, but a
much smaller fraction than the corresponding MTP scheme. The
GM-NN method constrains representativity of the selected batch,
i.e. takes data distribution into account, and almost 80% of the
total training set comprises of 0 K data. Thus, there is only a very
small decrease in the RMS error in forces using the GM-NN model
coming from the actively learnt training set. In conclusion, active
learning might be beneficial as long as multiple structures are
provided before labelling, i.e., computing DFT energies and forces.
One can only take advantage of active learning in combination
with a conventional human-based training set generation.

Training and inference times
The time taken to train an ML-based model and to perform MD
calculations with it depends on the number of model parameters.

In the case of the GM-NN potential, this number is dictated by the
neural network representation, whereas for an MTP the contrac-
tions are decisive (check ‘Methods’ section for details). To
elucidate the training and inference times, we compare five
GM-NNs and five MTPs built with different numbers of model
parameters. The GM-NNs are designated as: 593-512-512-1, 593-
128-128-1, 593-32-32-1, 360-512-512-1, and 910-512-512-1. Here
the first number represents the number of input features, the
following two numbers represent the number of hidden neurons,
while the 1 in the end stands for the single output neuron (which
corresponds to the energy of the system). For the MTP, we
compare potentials with levels 16, 20, 24, 26, and 28 (see Equation
(6)) resulting in 92, 288, 864, 1464, and 2445 descriptors,
respectively.
Table 3 lists the training times for the different MTP and GM-NN

models fitted to the in-distribution subsystems. Naturally, the time
taken to train the MTP increases with the level as the number of
parameters increase. Similarly, the time taken to fit a GM-NN
potential increases with the number of input features, and with
the number of neurons. The lev24 MTP—which is used eventually
for the thermodynamic properties—takes eight hours to reach
convergence in 400 iterations of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm48. The corresponding GM-NN model
takes four hours for 1000 epochs. In addition, in every epoch, the
GM-NN evaluates 500 other configurations to avoid overfitting.
Figure 7 shows the inference time of the ML-models in

comparison to the classical potentials and in relation to the
achievable accuracy. In general, the MTPs (orange circles) are
faster than the GM-NN potentials (blue triangles). However, the

Fig. 5 Errors in predicted energies and atomic forces for finite-temperature (2000 K) and 0 K out-of-distribution non-equiatomic
ternaries. For the 2000 K data, twelve structures have been sampled for each system. Thus, ΔE and ΔFij denote the respective RMS errors. For the
relative energy, we used the first structure in each subsystem as a reference. Therefore, RMS errors ΔErel are evaluated for the remaining eleven
structures. For the 0 K test, we employed a single configuration such that ΔE denotes the mean-absolute error, while ΔFij denotes the RMS error.
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GM-NNs have been designed to run on graphical processing units
(GPUs), which makes them faster (blue stars) than the higher-level
MTPs. More specifically, the MTP used in this work for the HEA
modelling—the lev24 MTP—is faster by a factor of 2.5 than the
corresponding GM-NN—(593-512-512-1)—on the same CPU.
However, on an NVIDIA GeForce RTX 3090 Ti 12GB GPU, the
GM-NN is 2.5 times faster than the lev24 MTP.
It can also be observed that the inference time of an MTP

gradually increases as the level of the MTP increases, although the
accuracy (normalized error) saturates to a minimum after lev24.
On the other hand, all GM-NN models are comparably

computationally efficient on a GPU, and only minor differences
in inference times have been observed on CPU nodes. The
accuracy of GM-NN deteriorates when decreasing the number of
hidden neurons or input features. For example, decreasing the
number of neurons by a factor of 16 leads to similar results as
decreasing the number of features by a factor of 1.6. Thus, the
employed representation affects the final result more than the
network size.
Obviously, the ML-based models are slower than conventional

potentials such as the EAM and the MEAM model. For example,
the lev24 MTP is slower by a factor of 35 in comparison to the
EAM. However, the speed of the classical potentials is accom-
panied by an extreme inaccuracy compared to the ML potentials,
at least an order of magnitude in the normalized error.

DISCUSSION
We have developed two ML-based interatomic potentials—an
MTP and a GM-NN—that can accurately capture the atomic
interactions of the Ta-V-Cr-W alloy family. This is the first instance
of exploring the limits of applicability of ML-based models to an
extent where both the configurational and the vibrational degrees
of freedom are included in the training and testing data sets for a
chemically complex system. Specifically, the MTP and the GM-NN
are able to extremely accurately reproduce energies and forces of
both the 0 K subsystems, and the high-temperature (2500 K)

Fig. 6 Learning curves for MTP and GM-NN models. Shaded areas denote the standard error on the mean evaluated over 10 or 100
independent runs for MTP and GM-NN, respectively. An additional factor of ten appears for GM-NN as for each of the ten data splits, another
ten splits for early stopping have been performed. The root-mean-squared (RMS) and maximal (MAX) errors for energies are shown in (a) and
(b) respectively in meV/atom; The RMS and MAX errors for atomic force are shown in (c) and (d) respectively in eV/Å.

Table 2. The average number of atoms in the differently sized training
sets during active learning (Ntrain= number of training structures).

Ntrain MTP GM-NN

64 5845 (0.21) 3101 (0.17)

128 10784 (0.18) 6427 (0.16)

256 20322 (0.34) 12222 (0.17)

512 45371 (0.53) 23601 (0.19)

1024 99549 (0.66) 46249 (0.19)

The fraction of 2500 K MD structures contained in the resulting training set
are shown in brackets.
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disordered equiatomic TaVCrW HEA, which make up the in-
distribution sets. They are also able to accurately predict the
energies of the 0 K strained binaries. The accuracy achieved in the
present work is very similar to the MTP errors obtained in ref. 36 for
the same disordered alloy, although their MTP was trained only on
the equiatomic 2500 K structures. Adding the configurational
degrees of freedom by introducing many 0 K structures in the
training data set does not affect the predictive capabilities of the
MTP (nor the GM-NN) on the HEA behaviour, suggesting that there
is scope for further expanding the training set.
The models have also been tested on out-of-distribution

subsystems (not a part of the training set) comprising of non-
equiatomic ternaries. Both models successfully provide a similar
performance for the out-of-distribution subsystems as compared
to the in-distribution subsystems in the prediction of high-
temperature MD forces. The observed RMS errors in absolute
energies are larger than for the in-distribution cases, arising from
the inability to predict accurate absolute chemical potentials.
Nevertheless, the relative energies relevant for calculating
temperature-dependent thermodynamic properties are still pre-
dicted with a low RMS error. These results indicate a good
generalization of the MTP and GM-NN models even to out-of-
distribution data.
In an earlier work18, lattice-based Monte Carlo and cluster

expansion techniques were used to predict chemical SRO and
phase separation below 1300 K in the TaVCrW alloy. With the here
developed ML-based potentials, we can now model off-lattice
behaviour that enables us to capture strong lattice relaxations. In
phase-separated structures, lattice mismatch at the interface can
lead to strained subsystems, which are likewise well-predicted by
the MTP and GM-NN. Consequently, the low-temperature phase-
separated structures in combination with strained interfaces, the
intermediate SRO structures, as well as the high-temperature fully
disordered structure can now be simultaneously and more
accurately modelled with a single potential. The here-developed
ML models also offer scope to combine MD with Monte Carlo
methods to further enhance the sampling of phase spaces of
chemically complex alloys. The vibrational degrees of freedom
that the ML-based models entail enable, for example, a more
accurate prediction of the order-disorder transition temperature. A
well-determined transition temperature is crucial in deciding the

operational temperature of the HEA since ordering and phase
segregation can lead to changes in mechanical behaviour15.
The robustness of the ML-based models is also noticeable in the

heat capacity curves shown in Fig. 4. Even small differences in the
free energies are known to cause large deviations in the
computed heat capacity49. Nevertheless, the MTPs and GM-NNs
are reasonably accurate (< few meV/atom) in the free energy
prediction that they are able to predict the heat capacities to DFT
accuracy (without electronic contributions) up to around 2200 K.
Even though the ML-based models are remarkable in their free

energy and the eventual thermodynamic property prediction, one
needs to keep in mind they have been fitted to DFT data that only
contain the vibrational and configurational degrees of freedom. To
reach ‘full DFT’ accuracy, one also needs to include the electronic
degrees of freedom (electronic free energy and the impact of
vibrations on it) and the magnetic degrees of freedom. The state-
of-the-art method to include the electronic contribution uses the
direct upsampling technique49, wherein we can perform DFT
calculations (including electronic contributions) on snapshots
generated by the ML-based models. The number of snapshots
needed to reach a certain accuracy in the free energy can be
roughly estimated based on the RMS errors in our models. In the
current case, for an RMS error of 3 meV/atom, we can reach to
within ± 1 meV/atom accuracy using approximately 35 snapshots49

for a given volume and temperature. By doing so, we can include
the temperature-dependent (and vibration-coupled) electronic
degree of freedom into the thermodynamics of the alloy. To

Table 3. Training times for both ML-based models evaluated for
different numbers of model parameters on two Intel Xeon E6252 Gold
(Cascade Lake) CPUs.

Model No. parameters No. cfgs No. epochs/iterations Time (h)

MTP Models

lev16 608 5373 400 iterations 0.9

lev20 932 5373 400 iterations 2.1

lev24 1636 5373 400 iterations 7.1

lev26 2236 5373 400 iterations 9.2

lev28 3217 5373 400 iterations 10.8

GM-NN Models

593-32-32-1 20032 4873 1000 epochs 2.8

593-128-128-1 92416 4873 1000 epochs 3.0

593-512-512-1 566272 4873 1000 epochs 3.4

360-512-512-1 446976 4873 1000 epochs 3.0

593-512-512-1 566272 4873 1000 epochs 3.4

910-512-512-1 728576 4873 1000 epochs 3.9

The bold font emphasizes the default potentials used throughout this
work.

Fig. 7 The trade-off between computational cost and normalized
error (Equation (13)) evaluated for MTP, GM-NN, EAM, and MEAM.
For the normalized error, the overall errors from Table 1 have been
chosen. The darkened colour represents the default MTP and GM-
NN models used throughout this work. Blurred colours show models
with varying hidden neurons and/or input features. For MTP, the
respective level defines the number of employed input features; see
Equation (6). For GM-NN, we use a convention where the first
number indicates the number of features, while all following
numbers define the number of neurons in the respective layer
(two hidden and one output layer).
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account for the magnetic free energy, there have been proposi-
tions put forth in the literature, such as the magnetic MTP50, that
can be used for magnetic systems. In consequence, on top of the
predictions of the currently fitted ML-based models, further
expanding the configurational space of the training set (e.g., also
including temperature-dependent behaviour of binaries and
ternaries) and adding the electronic and magnetic degrees of
freedom would lead to a more complete and accurate picture of
the behaviour of chemically complex multicomponent alloys.
For a complex system such as the Ta-V-Cr-W family, active

learning is only partially beneficial. The RMS errors in predicted
energies converge similarly irrespective of an active or random
selection of configurations. This is true for both ML models. The
random selection done uniformly across the diverse set of
subsystems is already sufficient to reach good accuracy in the
energies. The advantage of active learning is more evident in the
convergence of the atomic forces, arising likely from the data set
size and complexity of the atomic-force landscape compared to
the energies. The active learning algorithm employed by MTP
preferably selects more high-temperature configurations which
have large force values. In contrast, the algorithm employed by
GM-NN has been designed to select new data considering the
data distribution. Thus, the GM-NN scheme selects almost equal
portions of MD data in every iteration.
The convergence of the current models with respect to the

training set size is also the result of the number of trainable
parameters. The MTP has ~ 500 times fewer fitting parameters
than the GM-NN model. Hence, it reaches its final accuracy faster
while showing no improvement when increasing the training set
size above a certain amount. On the other hand, the GM-NN
model shows gradual yet continuous improvement in accuracy
with the training set size, owing to a larger number of trainable
parameters. This fact allows us to assume that the GM-NN would
outperform the MTP on larger data set sizes. However, the
accuracy of the MTP on larger data sets can be improved by
increasing the level of the selected MTP model, i.e., by increasing
the effective number of trainable parameters.
Ultimately, in complex systems such as the TaVCrW HEA, which

require large simulation cells to allow for events such as SRO to
occur, the choice of the interatomic model is an interplay between
the accuracy and the inference (simulation) time. Although the ML-
based models are one to two orders slower than classical potentials
(yet negligibly small in comparison to ab initio simulation times),
they are at least an order of magnitude more accurate. Classical
empirical potentials such as the EAM/MEAM are restricted in their
functional form. Although such potentials need a smaller training
set leading to less severe phase space sampling problems, their
inaccuracy far outweighs their partial benefits. The inaccuracy of
classical models might not only affect their robustness and stability
while running MD across the volume and temperature range but
would also highly alter, for example, the order-disorder transition
temperature, making them unsuitable for such applications. Hence,
for predicting challenging multicomponent system behaviour, one
needs to resort to ML-based models.
In summary, despite certain prominent differences between

MTP and GM-NN, they provide similar results, evaluated on a test
data set or during a real-time simulation. Considering that the two
models are cutting-edge representatives of the ML-potential
family, these results may reflect the constantly growing bound-
aries of the machine-learning potentials applied to current
material systems of interest.

METHODS
Local interatomic potentials
An atomic structure is defined by S ¼ fri ; ZigNat

i¼1, where Nat is the
number of atoms, ri 2 R3 denotes the Cartesian coordinates of

atom i, and Zi 2 N is the respective atomic number. We consider
the mapping f from the atomic structure to a scalar electronic
energy E, i.e., f : S 7!E 2 R. All models employed here assume
locality of interatomic interactions (Fig. 1a), thus the total energy
of the system is split into contributions from individual atoms

E ¼
XNat

i¼1

Ei : (1)

The energy contributed by atom i is defined by a parameterized
function, i.e., Ei ¼ Ei Si; θð Þ, where θ are trainable parameters and Si
is the local atomic environment of atom i. The parameters θ are
learned from the training data by minimizing a predefined loss
function L θð Þ. The data set typically contains total energies, atomic
forces, and stresses obtained by an ab initio method. The local
environment, Si ¼ fri; Zi; frj; Zjgj2Rcutg

Nat

i¼1
, is defined by the chosen

cutoff radius Rcut. In this work, we choose a cutoff radius of 5.0 Å.

Moment tensor potential—MTP
The MTP site energy for each atom i is linearly expanded through
a set of basis functions Bα:

Ei ¼
Xαmax

α¼1

ξαB
ðiÞ
α ; (2)

which are contractions (e.g., dot products of vectors and matrices,
see below) of the moment tensor descriptors Mμ,ν

33. The ξα are
expansion coefficients and the parameter αmax is determined from
Equation (6) below. Each descriptor Mμ,ν is composed of a radial
part (scalar function depending only on the interatomic distances)
and an angular part (a tensor of a certain rank) (Fig. 1b),

Mμ;νðniÞ ¼
X
j

fμðjrijj; Zi; ZjÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{radial

rij � ¼ � rij|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ν times

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{angular

; (3)

where ni stands for the neighbourhood of the atom i (all atoms
within the radius Rcut around atom i), μ stands for the number of
the radial functions, ν is the rank of the tensor in the angular part,
and rij the vector between atom i and j. The radial functions
fμ(∣rij∣, Zi, Zj) are expanded in a basis of Chebyshev polynomials,
usually up to rank seven,

f μðjrijj; Zi; ZjÞ ¼
X
k

ckμ;Zi ;ZjQ
kðjrijjÞ; (4)

where ckμ;Zi ;Zj are expansion coefficients and

QkðrÞ ¼ TkðrÞðRcut � rÞ2: (5)

Here Tk(r) are the Chebyshev polynomials of order k and the
ðRcut � rÞ2 term is introduced to ensure a smooth decreasing to 0
at Rcut.
Although the moment tensor descriptors themselves are two-

body functions (depending only on rij), many-body interactions
get included into the basis functions Bα by building various
contractions of the Mμ,ν, under the condition that each contraction
has to yield a scalar value. Note that the coefficients ckμ;Zi ;Zj enter
Equation (2) non-linearly, as the basis functions Bα contain
multiplications of different radial functions, see examples below.
This way, the MTP fitting parameters θ ¼ fξα; ckμ;Zi ;Zjg are
composed of the coefficients ξα and ckμ;Zi ;Zj , which enter Equation
(2) linearly and non-linearly, respectively.
For the purpose of choosing which (out of the infinite number

of) basis functions to include in the interatomic potential, we
define a degree-like measure, ‘level’, of Mμ,ν defined by levMμ,ν=
2μ+ ν and the level of Bα obtained by contracting Mμ1;ν1 ,
Mμ2;ν2 ; ¼ , as

levBα ¼ ð2μ1 þ ν1Þ þ ð2μ2 þ ν2Þ þ ¼: (6)

K. Gubaev et al.

10

npj Computational Materials (2023)   129 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Thus, to define an MTP we choose a particular levmax and expand
the site energy function linearly through such Bα, which satisfy
levBα � levmax. The MTP part of Fig. 1c (left-hand side) has
examples of how some of the basis functions are constructed:

● For the 2-body case, the scalar moments M0,0, M1,0, and M2,0

already serve as basis functions, which differ by the radial
functions involved.

● For the 3-body case, the moments M0,1 and M1,1 produce basis
functions M0,1 ⋅M0,1 and M1,1 ⋅M1,1, respectively, which differ
by the radial functions involved.

● For the 5-body case (the most complex case for MTP in this
work), the basis function has the form M0,1 ⋅M0,2 ⋅M0,2 ⋅M0,1.

Note how the condition specified in Equation (6) reduces the
number of different radial functions involved in the many-body
moments (Fig. 1c left). By increasing levmax, MTPs with more
parameters emerge, which are capable of more accurately fitting
or handling a larger training set, but which require more
computational time for fitting and inference (simulation time). In
this work, we use an MTP with levmax ¼ 24.
The parameters of an MTP are obtained as those minimizing the

mean squared loss on the training data (Fig. 1d). We use the
second-order quasi-Newton BFGS48 optimization method, which
requires exact first derivatives of the loss function with respect to
the model parameters and approximates the second derivatives
by constructing the so-called hessian matrix. To balance the
relative contributions of energies, forces, and stresses for a
configuration j with NðjÞ

at atoms, weight factors of Ce ¼ 1=NðjÞ
at ,

Cf= 0.001 Å2, and Cs ¼ 0:0001=NðjÞ
at are used, respectively.

Gaussian moment neural network—GM-NN
GM-NN uses an artificial NN to map an atomic structure S to the
total energy E S; θð Þ. Specifically, GM-NN employs a fully-
connected feed-forward NN consisting of two hidden layers34,35

yi ¼ 0:1 � bð3Þ þ 1ffiffiffiffi
d2

p Wð3Þϕ 0:1 � bð2Þ
�

þ 1ffiffiffiffi
d1

p Wð2Þϕ 0:1 � bð1Þ þ 1ffiffiffiffi
d0

p Wð1ÞGi

� ��
;

(7)

with Wðlþ1Þ 2 Rdlþ1 ´ dl and bðlþ1Þ 2 Rdlþ1 being the weights and
biases of the layer l+ 1, respectively. The default network in this
work consists of d0= 593 input neurons (dimension of the feature
vector Gi ¼ Gi Sið Þ), d1= d2= 512 hidden neurons, and a single
output neuron d3= 1. The weights of the network W(l+1) are
initialized by picking the respective entries from a normal
distribution with zero mean and unit variance. In contrast, the
trainable bias vectors b(l+1) are initialized to zero. To improve the
accuracy and convergence of the GM-NN model, we employ a
neural tangent parameterization (factors of 0.1 and 1=

ffiffiffiffi
dl

p
)47. For

the activation function ϕ, we use the Swish/SiLU function51,52.
The network’s output is scaled and shifted to aid the training

process even further,

Ei Gi; θð Þ ¼ c � ðσZi yi þ μZi Þ; (8)

where the trainable shift parameters μZi are initialized by solving a
linear regression problem, and the trainable scale parameters σZi
are initialized to 1. The constant c is given by the RMS error per
atom of the regression solution35.
To encode the invariance of the total energy to translations,

rotations, and permutations of the same species, we employ the
Gaussian moment (GM) representation34. The construction of GM
features is based mainly on defining pairwise distance vectors
rij= ri− rj and splitting them into their radial and angular
components: rij= ∥rij∥2 and r̂ij ¼ rij=rij . Thus, the equation from
Fig. 1b takes a slightly different form as the L-fold outer product is

computed for the normalized distances,

Ψi;L;s ¼
X
j≠i

RZi ;Zj ;s rij; β
� �

r̂�L
ij ; (9)

where r̂�L
ij ¼ r̂ij � � � � � r̂ij . The non-linear radial functions

RZi ;Zj ;s rij; β
� �

are defined as a finite sum of Gaussians Φs0 rij
� �

(NGauss= 8 for this work)35

RZi ;Zj ;s rij; β
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

NGauss
p

XNGauss

s0¼1

βZi ;Zj ;s;s0Φs0 rij
� �

: (10)

The factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
NGauss

p
influences the effective learning rate and is

inspired by the neural tangent parameterization47. The individual
radial functions are centred at an equidistant grid of points
between Rmin ¼ 1:5 Å (specific to this work) and Rcut, and are re-
scaled by a cosine cutoff function29. The chemical information is
encoded in the GM representation by trainable parameters
βZi ;Zj ;s;s0 . The index s runs over the number of independent radial
basis functions, set to Nbasis= 6 for this work.
The features invariant to rotations Gi (Fig. 1c right) are obtained

by computing contractions of the respective tensors, as any full
contraction of Cartesian tensors r̂�L

ij yields a rotationally invariant
scalar34. For the employed GM-NN model, contractions of up to
three tensors of the maximum rank of three are used. Thus, the
many-body expansion is restricted to the maximum of four-body
terms, e.g.,

Gi;s1;s2;s3 ¼ Ψi;1;s1

� �
a Ψi;1;s2

� �
b Ψi;2;s3

� �
a;b; (11)

where we use Einstein notation, i.e., the right-hand sides are
summed over a, b∈ {1, 2, 3}. Particular contractions are defined by
identifying unique generating graphs43. In a practical implemen-
tation all GM features are computed at once providing tensors
GðjÞ 2 fRNbasis ;RNbasis ´Nbasis ; ¼ g. However, the number of invariant
features used as input to NNs is reduced by considering the
permutational symmetries of the respective graphs (see Fig. 1c
right)34, i.e., only tensors of the same rank can be exchanged.
The parameters θ= {W, b, β, σ, μ} of the NN, i.e., weights W and

biases b, as well as the trainable parameters β of the local
representation and the parameters that scale, σ, and shift, μ, the
output of the NN, are optimized by minimizing the mean squared
loss on training data (Fig. 1d). We employ the Adam optimizer53 to
minimize the loss function. The respective parameters of the
optimizer are β1= 0.9, β2= 0.999, and ϵ= 10−7. We use a mini-
batch of 32 molecules. The layer-wise learning rates are set to
0.0075 for the parameters of the fully connected layers, 0.005 for
the trainable representation, as well as 0.0125 and 0.00025 for the
shift and scale parameters of atomic energies, respectively. The
training is performed for 1000 training epochs. To balance the
relative contributions of energies, forces, and stresses, weight
factors of Ce ¼ 1=NðjÞ

at , Cf= 0.005 Å2, and Cs ¼ 0:0001=NðjÞ
at are

used, respectively. To prevent overfitting during training, we
employ the early stopping technique54. All models are trained
within the TensorFlow framework55.

Relation of MTP and GM-NN to other ML potentials
Interestingly, the MTP and GM representations can be related to
many other approaches of modelling interactions proposed in the
literature by considering a general function, e.g., ref. 56X
j;k;l

f rij
� �

f rikð Þf rilð Þĥrij r̂ikiĥrik r̂ili: (12)

This expression describes a four-body interaction but scales
cubically with the number of atoms within Rcut. It is reminiscent of,
e.g., atom-centred symmetry functions57. However, by writing the
definition of scalar products ĥrij r̂iki explicitly and pulling out the
sum with respect to spatial coordinates we arrive at expressions
proposed in ref. 33 and ref. 34, which scale linearly with the number
of atoms within Rcut. Specifically, for GM-NN the expression is
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obtained in Equation (11), while for MTP the analogue is
contracting the tensor moments from Equation (3), each of which
scales linearly with the number of atoms. Since a Cartesian tensor
of rank L can be written as a linear combination of spherical
harmonics up to angular momentum L58, both MTP and GM-NN
representations (which use Cartesian tensors) are closely related to
linear ACE59 and message-passing NequIP and MACE models45,60,
which use spherical harmonics. Note that for message-passing
models, the resulting many-body order and the effective cutoff
radius increase with the increasing number of interaction blocks.
While it often leads to a better performance in terms of error
metrics such as RMS errors, it may lead to larger inference times
and, thus, less efficient potentials.
The recently proposed extension of HIP-NN models61 with

tensor sensitivity information is closely related to MTP and GM-NN
potentials, as it employs irreducible Cartesian tensors to pass
tensor information between atomic sites62. Another example of
local representations based on spherical harmonics is SOAP or the
respective GAP model63. Unlike the above-mentioned models, it
employs Gaussian process regression to map the structure to the
respective energy. A more detailed overview of existing intera-
tomic ML potentials is out of the scope of this work, and the
reader is referred elsewhere32,64,65.

EAM and MEAM potentials
Classical interatomic potentials based on the embedded-atom
method (EAM)20 and the modified embedded-atom method
(MEAM)21 are well understood in the literature and are not
discussed here. We just draw attention to their relation to the ML-
based models. EAM can be viewed as an MTP potential with one
radial function per species pair and without the angular part, i.e.,
levmax ¼ 0, see Equation (6). In turn, MEAM would be close to an
MTP with levmax ¼ 2 (see Equation (6)), allowing for different radial
functions, and a vectorial angular part (rank 1 tensor).
In the main text, we compare the performance of the ML-based

models to an EAM that is fitted to the same training data. In
addition, in the Supplementary Information, we also compare to a
reference-free MEAM in order to test whether there is any
improvement coming from the angular three-body terms. The
EAM and reference-free MEAM fitting is performed with MEAM-
fit66,67. Fitting weights for the energies, atomic forces and stresses
are 1=NðjÞ

at , 0.1, and 0.001, respectively.

Data set generation - DFT calculations
All DFT calculations are performed using VASP68,69, with projector
augmented wave (PAW) potentials70, within the generalized
gradient approximation (GGA)71–73, and in the spin-unpolarized
state. We use Methfessel-Paxton smearing of order 1 with σ= 0.1,
a 350 eV energy cutoff and an automatic k-mesh generation with
KSPACING = 0.12. The number of valence electrons is 11 for Ta
and V, and 12 for Cr and W.

Description of the data set
The training and test data set includes energies, atomic forces and
stresses from the DFT calculations. For the 0 K configurations with
small supercells (item 1 below), we perform structural relaxation
with DFT. For the 0 K configurations with large supercells (item 2
below), we have a combination of relaxed and unrelaxed
structures. All configurations sampled from MD (item 3 below)
are unrelaxed. We generate 2-, 3-, and 4-component BCC
configurations in the following categories:

1. 0 K configurations in small supercells (2–8 atoms):
These configurations are sampled with the enumlib

library74,75, which enumerates all possible symmetries to
obtain non-repetitive structures. We first pick 2500 binary

structures from enumlib, representing different atomic
combinations of each of the TaV, TaCr, TaW, VCr, VW, and
CrW subsystems on the BCC lattice. To obtain the
4-component structures, we take 8-atom binaries from
above and substitute the elements giving 248 equiatomic
quarternary structures.

2. 0 K configurations in medium to large supercells (16, 128,
432, 8192 atoms):
These configurations are designed to mimic the possible

low-temperature ordering in TaVCrW. For each of these
sizes, we create certain types of binaries and quaternaries.
Binary structures for each of TaV, TaCr, TaW, VCr, VW, CrW
subsystems include:

● B2 ordering
● B32 ordering
● random binary solid solution
● BCC interface: half of the cubic supercell is one unary,

and the other half is the other unary

Quaternary structures represent all possible phase separa-
tions on the TaVCrW BCC lattice, i.e., half of the cubic
supercell is one binary system (e.g., TaV) and the other half is
another binary system (e.g., CrW), and they include:

● B2/B2 ordering
● B2/B32 ordering
● B32/B32 ordering
● B2/random binary ordering
● B32/random binary ordering
● random binary/random binary ordering

3. High-temperature (2500 K) disordered structures (128 and
432 atom supercells):
We use the MTP from ref. 36 to run NPT MD at 2500 K.

From the obtained MD trajectories, we sample 983 and
48 structures with 128 and 432 atoms in the supercell,
respectively. Sampling is performed by employing active
learning designed for MTP models76,77, with MTP potentials
initialized by training on 0 K data. Thus, the selected data
may introduce some bias towards MTP performance.
However, a more thorough investigation may be required
to prove this hypothesis and is postponed to future works.
The energies, forces and stresses of the sampled structures
are calculated using DFT without relaxation.

4. Deformed structures (432 atoms):
Equiatomic TaVCrW can phase segregate at low tempera-

tures into: Ta+Cr/V+W (predicted by MTP in this work),
Ta+W/Cr+V (predicted in ref. 18), and Ta+V/Cr+W. Each
binary part undergoes certain strain in the [100] direction to
accommodate the same cross-section between the two parts.
Hence we also create deformed binaries as a part of the test
data set (whose RMS errors are in Table 1) to accurately
replicate such a phase-segregated B2/B2 quaternary struc-
ture. The strains applied along the [100] direction corre-
sponding to the different binaries are: TaV 3.7%, CrW −1.28%,
TaCr 0.27%, VW −0.14%, TaW 4.06% and VCr −4.71%.

In total, 6711 configurations are computed with DFT for usage
as training and validation sets. More precisely, there are 5680 0 K
structures: 4491 binary, 595 ternary, and 594 quaternary
structures, along with 1031 structures sampled from MD at 2500
K. The number of binary and ternary structures is more or less
equally distributed between the subsystems, and the difference
comes from the non-convergence of some DFT calculations for
some subsystems.

Testing the models
To assess the accuracy of the models, we compute the RMS error
in energies and atomic forces on every Ta-V-Cr-W in-distribution
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subsystem, including the TaVCrW alloy at 0 K and the equiatomic
TaVCrW disordered alloy sampled at 2500 K. The RMS errors are
obtained by the 10-fold cross-validation method. From each
subsystem and disordered alloy, 80% of the respective data set is
selected for training and 20% for testing the resulting models. The
selected training data is gathered into a final training set
consisting of 5373 configurations. Then the potentials are tested
on the selected test data set including 1336 configurations. We
perform ten such instances with different combinations of the
(80%, 20%) splitting to obtain a reasonable statistical averaging.
The RMS errors presented in Table 1 and Fig. 2 are averaged over
the 10 independent splits. We also train a single potential for each
MTP/GM-NN/EAM/MEAM model to the entire data set (100%) to
calculate the heat capacity of the disordered alloy.
While the above strategy applies to the in-distribution data, for

the out-of-distribution subsystems (Fig. 5), we generate nine
random ternary A17B17C66 structures with 54 atoms, for each
possible non-equiatomic ternary except for the Cr-rich ones to
avoid magnetism-related issues. For the 0 K case we take one
sample per composition, while for the MD case we sample
12 structures per composition using NPT MD at 2000 K.
It should be mentioned here that the NN-based models are

over-parametrized given a larger number of parameters than
MTPs. The possibility of overfitting is accounted for by, e.g.,
employing a separate holdout or a validation data set and the
early stopping technique54. For the GM-NN, we take 500 structures
from the resulting training data sets as validation data sets, i.e., the
GM-NNs are trained on fewer structures compared to the other
potentials. We make ten independent splits for each training set to
avoid any bias in the final models. Thus, the RMS errors for the
GM-NNs are averaged over 100 runs.
The normalized error (NE) in Fig. 7 is calculated as

NE ¼ 1
2

F� RMSE
max F� RMS E

þ E� RMSE
max E� RMSE

� 	
; (13)

where E-RMSE and F-RMSE are overall energy and force errors,
respectively, taken from Table 1.

Heat capacity simulations
The heat capacity of the TaVCrW HEA up to 2500 K is numerically
calculated as the second derivative of the Gibbs free energy with
respect to temperature. The Gibbs free energy is calculated by a
Legendre transformation of the Helmholtz energy. The Helmholtz
energy up to the level of the interatomic model is calculated using
thermodynamic integration using Langevin dynamics (TILD). For a
set of volume and temperature (V, T) points, we run TILD on a 128-
atom special quasi-random structure (SQS) of the TaVCrW alloy.
TILD is performed from a reference effective quasiharmonic
model78,79 (fitted to 2500 K MD forces) to the interatomic potential
to obtain the free energy difference. By summing the effective
quasiharmonic reference energy with the free energy difference,
we obtain the full Helmholtz energy for that (V, T) point. After
doing the same for the different (V, T) points, we parametrize the
Helmholtz energy surface using a fourth-order polynomial in V
and T, on which the transformation and numerical derivatives are
performed. Further details on the TILD methodology can be found
in ref. 36.

DATA AVAILABILITY
All data sets used in this study can be accessed via the link: https://doi.org/10.18419/
darus-3516.

CODE AVAILABILITY
MTPs can be used as a part of the MLIP package accessible through mlip.skoltech.ru/
download/. The GM-NN software employed in this work is implemented within the

TensorFlow framework55 and is published at gitlab.com/zaverkin_v/gmnn, including
examples of usage.
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