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Predicting electronic structures at any length scale with
machine learning
Lenz Fiedler1,2, Normand A. Modine3, Steve Schmerler 2, Dayton J. Vogel 3, Gabriel A. Popoola4, Aidan P. Thompson 5,
Sivasankaran Rajamanickam5 and Attila Cangi 1,2✉

The properties of electrons in matter are of fundamental importance. They give rise to virtually all material properties and
determine the physics at play in objects ranging from semiconductor devices to the interior of giant gas planets. Modeling and
simulation of such diverse applications rely primarily on density functional theory (DFT), which has become the principal method
for predicting the electronic structure of matter. While DFT calculations have proven to be very useful, their computational scaling
limits them to small systems. We have developed a machine learning framework for predicting the electronic structure on any
length scale. It shows up to three orders of magnitude speedup on systems where DFT is tractable and, more importantly, enables
predictions on scales where DFT calculations are infeasible. Our work demonstrates how machine learning circumvents a long-
standing computational bottleneck and advances materials science to frontiers intractable with any current solutions.
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INTRODUCTION
Electrons are elementary particles of fundamental importance.
Their quantum mechanical interactions with each other and with
atomic nuclei give rise to the plethora of phenomena we observe
in chemistry and materials science. Knowing the probability
distribution of electrons in molecules and materials—their
electronic structure—provides insights into the reactivity of
molecules, the structure and the energy transport inside planets,
and how materials break. Hence, both an understanding and the
ability to manipulate the electronic structure in a material propels
technologies impacting both industry and society. In light of the
global challenges related to climate change, green energy, and
energy efficiency, the most notable applications that require an
explicit insight into the electronic structure of matter include the
search for better batteries1,2 and the identification of more
efficient catalysts3,4. The electronic structure is furthermore of
great interest to fundamental physics as it determines the
Hamiltonian of an interacting many-body quantum system5 and
is observable using experimental techniques6.
The quest for predicting the electronic structure of matter dates

back to Thomas7, Fermi8, and Dirac9 who formulated the very first
theory in terms of electron density distributions. While computa-
tionally cheap, their theory was not useful for chemistry or
materials science due to its lack of accuracy, as pointed out by
Teller10. Subsequently, based on a mathematical existence proof5,
the seminal work of Kohn and Sham11 provided a smart
reformulation of the electronic structure problem in terms of
modern density functional theory (DFT) that has led to a paradigm
shift. Due to the balance of accuracy and computational cost it
offers, DFT has revolutionized chemistry—with the Nobel Prize in
1998 to Kohn12 and Pople13 marking its breakthrough. It is the
reason DFT remains by far the most widely used method for
computing the electronic structure of matter. With the advent of
exascale high-performance computing systems, DFT continues
reshaping computational materials science at an even bigger

scale14,15. However, even with an exascale system, the scale one
could achieve with DFT is limited due its cubic scaling on system
size. We address this limitation and demonstrate that an approach
based on machine learning can predict electronic structures at any
length scale.
In principle, DFT is an exact method, even though in practice

the exchange-correlation functional needs to be approximated16.
Sufficiently accurate approximations do exist for useful applica-
tions, and the search for ever more accurate functionals that
extend the scope of DFT is an active area of research17 where
methods of artificial intelligence and machine learning (ML) have
led to great advances in accuracy18,19 without addressing the
scaling limitation.
Despite these initial successes, DFT calculations are hampered

inherently due to their computational cost. The standard
algorithm scales as the cube of system size, limiting routine
calculations to problems comprised of only a few hundred atoms.
This is a fundamental limitation that has impeded large-scale
computational studies in chemistry and materials science so far.
Lifting the curse of cubic scaling has been a long-standing

challenge. Prior works have attempted to overcome this challenge
in terms of either an orbital-free formulation of DFT20 or
algorithmic development known as linear-scaling DFT21,22. Neither
of these paths has led to a general solution to this problem. In
recent years, researchers have delved into the potential of ML
techniques to overcome the limitations of the DFT algorithm23. ML
has proven to be a valuable tool in learning property mappings of
both chemical systems24 and materials25. For example, it has been
successfully employed to develop chemical descriptors enabling
high-throughput screening of catalytic reactions26, investigate the
relationship between the structure and properties of crystals27,
and even discover stable materials28. While learning property
mappings is computationally less expensive, it typically concen-
trates on specific properties relevant to particular applications,
rather than providing a deep understanding of electronic
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structures. Another established area where ML has proven useful
in predicting the properties of chemical and material systems is
the development of interatomic potentials for classical molecular
dynamics (MD) simulations. In this approach, ML effectively
parametrizes the Born-Oppenheimer potential energy surface of
molecules and solids by learning the mapping between the
descriptor representation of atomic positions and the correspond-
ing total energy and atomic forces. This enables large-scale MD
simulations at an accuracy close to first-principles methods, such
as DFT, while the computational overhead is still moderate.
Gaussian approximation potentials29, spectral neighborhood
analysis potentials30, moment tensor potentials31, and deep
neural network potentials32,33 are among the most commonly
used ML interatomic potentials. Lastly, ML has been utilized to
learn the electronic structure itself, which is more computationally
demanding than other approaches but provides the highest
fidelity. Pioneering work in this area has focused on learning the
electronic charge density using kernel-ridge regression34 or neural
networks35,36. However, these works remain at the conceptual
level and are only applicable to model systems, small molecules,
and low-dimensional solids.
Despite all these efforts, computing the electronic structure of

matter at large scales while maintaining first-principles accuracy
has remained an elusive goal so far. We provide a solution to this
long-standing challenge in the form of a linear-scaling ML
surrogate for DFT. Our algorithm enables accurate predictions of
the electronic structure of materials, in principle, at any
length scale.

RESULTS
Ultra-large scale electronic structure predictions with neural
networks
In this work, we circumvent the computational bottleneck of DFT
calculations by utilizing neural networks in local atomic environ-
ments to predict the local electronic structure. Thereby, we
achieve the ability to compute the electronic structure of matter at
any length scale with minimal computational effort and at the
first-principles accuracy of DFT.

To this end, we train a feed-forward neural network M that
performs a simple mapping

~dðϵ; rÞ ¼ MðBðJ; rÞÞ; (1)

where the bispectrum coefficients B of order J serve as descriptors
that encode the positions of atoms relative to every point in real
space r, while ~d approximates the local density of states (LDOS) d
at energy ϵ. The LDOS encodes the local electronic structure at
each point in real space and energy. More specifically, the LDOS
can be used to calculate the electronic density n and density of
states D, two important quantities which enable access to a range
of observables such as the total free energy A itself37, i.e.,

A½n;D� ¼ A½n½d�;D½d�� ¼ A½d�: (2)

The key point is that the neural network is trained locally on a
given point in real space and therefore has no awareness of the
system size. Our underlying working assumption relies on the
nearsightedness of the electronic structure38. It sets a character-
istic length scale beyond which effects on the electronic structure
decay rapidly with distance. Since the mapping defined in Eq. (1)
is purely local, i.e., performed individually for each point in real
space, the resulting workflow is scalable across the real-space grid,
highly parallel, and transferable to different system sizes. Non-
locality is factored into the model via the bispectrum descriptors,
which are calculated by including information from adjacent
points in space up to a specified cutoff radius consistent with the
aforementioned length scale.
The individual steps of our computational workflow are

visualized in Fig. 1. They include combining the calculation of
bispectrum descriptors to encode the atomic density, training and
evaluation of neural networks to predict the LDOS, and finally, the
post-processing of the LDOS to physical observables. The entire
workflow is implemented end-to-end as a software package called
Materials Learning Algorithms (MALA)39, where we employ
interfaces to popular open-source software packages, namely
LAMMPS40 (descriptor calculation), PyTorch41 (neural network
training and inference), and Quantum ESPRESSO42 (post-proces-
sing of the electronic structure data to observables).
We demonstrate the effectiveness of our workflow by comput-

ing the electronic structure of a material sample comprising over

Fig. 1 Overview of the MALA framework. ML models created via this workflow can be trained on data from popular first-principles
simulation codes such as Quantum ESPRESSO42. The pictograms below the individual workflow steps show, from left to right, the calculation
of local descriptors at an arbitrary grid point (green) based on information at adjunct grid points (gray) within a certain cutoff radius (orange),
with an atom shown in red; a neural network; the electronic structure, exemplified here as a contour plot of the electronic density for a cell
containing Aluminum atoms (red).
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100,000 atoms. We selected a disordered system of Beryllium
atoms at room temperature as our model system, owing to its
suitability for accurately describing the system using DFT
calculations. This enables us to evaluate the performance of our
ML-based electronic structure prediction model. Despite the
inherent accuracy of DFT for such systems, Beryllium’s electronic
structure is still complex enough to be amenable to ML
techniques. The employed ML model is a feed-forward neural
network that is trained on simulation cells containing 256
Beryllium atoms. In Fig. 2, we showcase how our framework
predicts multiple observables at previously unattainable scales.
Here, we show an atomic snapshot containing 131,072 Beryllium
atoms at room temperature into which a stacking fault has been
introduced, i.e., three atomic layers have been shifted laterally,
changing the local crystal structure from hcp to fcc. Our ML model
is then used to predict both the electronic densities and energies
of this simulation cell with and without the stacking fault. As
expected, our ML predictions reflect the changes in the electronic
density due to the changes in the atomic geometry. The energetic
differences associated with such a stacking fault are expected to
follow a behavior � N�1

3, where N is the number of atoms. By
calculating the energy of progressively larger systems with and
without a stacking fault, we find that this expected behavior is
indeed obeyed quite closely by our model (Fig. 2b).
Our findings enable the development of models tailored to

specific applications on scales previously unattainable with
conventional DFT methods. Our ML predictions for the 131,072-
atom system require just 48 min on 150 standard CPUs. The
computational cost of our ML workflow is orders of magnitude
lower than conventional DFT calculations, which scale as ~ N3. This

renders simulations like the one presented here entirely infeasible
using conventional DFT (see Fig. 3).
Common research directions for utilizing ML in the realm of

electronic structure theory either focus on predicting energies and
forces of extended systems (ML interatomic potentials43) or
directly predicting observables of interest such as polarizabil-
ities44. MALA models are not limited to singular observables and
even give insight into the electronic structure itself, from which a
range of relevant observables including the total free energy, the
density of states, the electronic density, and atomic forces follow.
The utility of our ML framework for chemistry and materials

science relies on two key aspects. It needs to scale well with
system size up to the 100,000 atom scale and beyond.
Furthermore, it also needs to maintain accuracy as we run
inferences on increasingly large systems. Both issues are
addressed in the following.

Computational scaling
The computational cost of conventional DFT calculations scales as
N3. However, improved algorithms can enable an effective N2

scaling in certain cases and over specific size ranges45. Regardless,
one encounters an increasingly formidable computational burden
for systems with more than a few thousand atoms. As depicted in
Fig. 3a, conventional DFT calculations (here using the Quantum
ESPRESSO42 software package) exhibit this scaling behavior.
Contrarily, the computational cost of using MALA models for

size extrapolation (as shown in Fig. 3b) grows linearly with the
number of atoms and has a significantly smaller computational
overhead. We observe speed-ups of up to three orders of
magnitude for atom counts up to which DFT calculations are
computationally tractable.

Fig. 2 Illustrating size transferability of our ML model. a Beryllium simulation cell of 131,072 atoms with a stacking fault, generated by
shifting three layers along the y-axis creating a local fcc geometry, as opposed to the hcp crystal structure of Beryllium. The colors in the upper
half correspond to the centrosymmetry parameter calculated by OVITO81, where blue corresponds to fcc and red-to-light-green to hcp local
geometries. The lower half of the image, generated with VMD82, shows the difference in the electronic density for 131,072 Beryllium atoms
with and without a stacking fault. b Energy differences due to introducing a stacking fault into Beryllium cells of differing sizes.

Fig. 3 Scaling behavior of MALA. a Comparison of CPU time between conventional DFT (QuantumESPRESSO) and the MALA framework as a
function of the number of atoms. Note that for consistency, slightly different computational parameters have been used for the DFT
calculations here compared to the DFT reference calculations in Fig. 4. Additional details on the timings can be found in Table 2. b General
workflow of size transferability in MALA.
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MALA model inference consists of three steps. First, the
descriptor vectors are calculated on a real-space grid, then the
LDOS is computed using a pre-trained neural network for given
input descriptors, and finally, the LDOS is post-processed to
compute electronic densities, total energies, and other observa-
bles. The first two parts of this workflow trivially scale with N, since
they strictly perform operations per grid point, and the real space
simulation grid grows linearly with N.
Obtaining linear scaling for the last part of the workflow, which

includes processing the electronic density to the total free energy,
is less trivial since it requires both the evaluation of the ion-ion
energy as well as the exchange-correlation energy, which for the
pseudopotentials we employ includes the calculation of non-linear
core corrections. While both of these terms can be shown to scale
linearly with system size in principle, in practice this requires the
addition of a few custom routines, as is further outlined in the
methods section.
To facilitate a transparent comparison of computational timings,

we present Table 2, which details the number of atoms, wall time,
number of CPUs for each calculation, and CPU time. CPU time is
defined as the product of the number of CPUs and wall time,
providing a suitable measure for the total computational cost of
different methods with varying levels of parallelization. Our MALA
model demonstrates a CPU time of 121 hours for our largest
calculation, which includes 131,072 atoms.
To contextualize our model’s timings, we compare them with

linear-scaling DFT methods that enable large-scale calculations46,
albeit relying on approximations in terms of the density matrix.
For this comparison, we consider linear-scaling DFT calculations
on bulk silicon46,47, which amount to a CPU time of approximately
500 hours for a system of comparable size. This comparison
underscores the competitiveness of our model, which is
significantly faster than linear-scaling DFT codes. Furthermore,
there is considerable potential for optimizing our ML model,
particularly in calculating bispectrum descriptors, where we
anticipate achieving substantial additional speed-ups.

Benchmarks at DFT scales (~103 atoms)
We tackle the first part of this problem by investigating a system
of Beryllium atoms at room temperature and ambient mass
density (1.896 g cm−1). Neural networks are trained on LDOS data
generated for 256 atoms. After training, inference was performed
for an increasing number of atoms, namely 256, 512, 1024, and
2048 atoms.
The total free energy and the electronic density were used to

assess the accuracy of MALA predictions for a total of 10 atomic
configurations per system size. In Fig. 4a we report the absolute
error of the energy and the mean absolute percentage error
(MAPE) of the density across system sizes. It is evident that the

errors stay roughly constant across system size and are well within
both chemical accuracy (below 43meV atom−1). Furthermore, the
error of the energy is within the 10meV atom−1 threshold which is
considered the gold standard for ML interatomic potentials.
Similarly, the error in the electronic density follows the trend
observed in the total energy. The MAPE of the electronic density is
consistently below 1%. To provide context for this value, we can
compare it with the variation in electronic densities across
different atomic configurations. Taking into account five distinct
atomic configurations per number of atoms and system sizes up
to 2048 atoms, the average percentage change in electronic
density within this set of atomic configurations surpasses 7%.
The accuracy of absolute total free energy predictions does not

suffice to assess model performance, since one is usually
interested in energy differences. Therefore, we relate the
predicted total free energy to the DFT reference data set in
Fig. 4b. The data points are drawn across all system sizes but are
given relative to the respective means per system size for the sake
of readability. Ideally, the resulting distribution would lie along a
straight line. In practice, both a certain spread around this line
(unsystematic errors) and a tilt of the line (systematic errors) can
be expected. We quantify our results by comparing MALA (red
circles) with an embedded-atom-method (EAM) interatomic
potential (blue squares)48,49 which is commonly used in molecular
dynamics simulations. It can clearly be seen that MALA outper-
forms the EAM model in both unsystematic as well as systematic
errors, and, therefore, delivers physically correct energies beyond
the system sizes it was trained on.

Accuracy at ultra-large scales (~105 atoms)
Finally, we tackle the second step of providing evidence that
MALA predictions on the ultra-large scale are expected to be as
accurate as conventional DFT calculations. This analysis is
grounded in the local nature of our workflow. Given that the
local environments are similar to those observed in training,
predictions for arbitrarily large cells boil down to interpolation, a
task at which neural networks excel. Accordingly, our ML model
performs a perceived size extrapolation by actually performing
local interpolations.
To verify the similarity of the atomic configurations in the

training set with those used for inference at ultra-large scales, we
employ the radial distribution function. It is a useful quantity that
distinguishes between different phases of a material, by giving
insight into how likely it is to find an atom at a given distance from
a reference point. Since the input to our workflow, B, is calculated
based on atomic densities drawn from a certain cutoff radius, a
matching radial distribution function up to this point indicates
that the individual input vectors B should on average be similar
between simulation cells. This comparison is shown in Fig. 5

Fig. 4 Accuracy of MALA. a Prediction errors when using MALA to calculate total free energies and electronic densities compared to DFT
data. b Correlation between DFT and predicted total energies for MALA and an EAM type interatomic potential for Beryllium (across all system
sizes).
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where the radial distribution functions g(r) of the training (256
atoms, green), inference test (2048 atoms, blue), and ultra-large
prediction (131,072 atoms, red and orange) data sets are
illustrated. Figure 5a illustrates the absolute values, whereas
Fig. 5b shows the difference of the radial distribution function to
the training data set. It should be noted that for the sake of
comparability, the radial distribution functions for 256 atoms and
2048 were averaged over 30 atomic configurations and 10 atomic
configurations, respectively. Furthermore, we do not show the full
radial distribution function for radii below 1.5Å, since it is zero
irrespective of the number of atoms, due to the average
interatomic distance for this system. Note also that we have
shifted these curves along the y axis by a constant value of 0.2
from each other to better illustrate how similar they are.
In Fig. 5, slight deviations between the radial distribution

functions of different system sizes can be seen, most notably for
the cells containing a stacking fault. Overall, these deviations are
small in magnitude, especially for the unperturbed cells, and
generally, all radial distribution functions agree very well up to the
cutoff radius (dotted black) from which information is incorpo-
rated into the bispectrum descriptors.
This analysis hence provides evidence that training, inference

test, and the ultra-large simulation cells possess, on average, the
same local environments. It indicates that our MALA predictions of
the electronic structure and energy are based on interpolations on
observed data. Therefore our models can be expected to be
accurate at ultra-large scales far exceeding those for which
reference data exists. By comparing the radial distribution
functions for 2048 and 131,072 atoms, we can deduce that errors
similar to those reported in Fig. 4 can be assumed for these ultra-
large scales.

DISCUSSION
We have introduced an ML model that avoids the computational
bottleneck of DFT calculations. It scales linearly with system size as
opposed to conventional DFT that follows a cubic scaling. Our ML
model enables efficient electronic structure predictions at scales
far beyond what is tractable with conventional DFT, in fact at any
length scale. In contrast to existing ML approaches, our workflow
provides direct access to the electronic structure and is not limited
to specific observables. Any physical quantity that can be
expressed as a functional of the electronic density, the funda-
mental quantity in DFT, can be predicted using the ML models
trained with the workflow presented here.

At system sizes where DFT benchmarks are still available, we
demonstrate that our ML model is capable of reproducing
energies and electronic densities of extended systems at virtually
no loss in accuracy while outperforming other ML models that are
based solely on energy. Furthermore, we demonstrate that our ML
workflow enables predicting the electronic structure for systems
with more than 100,000 atoms at a very low computational cost.
We underpin its accuracy at these ultra-large scales by analyzing
the radial distribution function and find that our ML models can
be expected to deliver accurate results even at such length scales.
We expect our ML model to set standards in a number of ways.

Using our ML model either directly or in conjunction with other
ML workflows, such as ML interatomic potentials for pre-sampling
of atomic configurations, will enable first-principles modeling of
materials without finite-size errors. Combined with Monte-Carlo
sampling and atomic forces from automatic differentiation, our ML
model can replace ML interatomic potentials and yield thermo-
dynamic observables at much higher accuracy. Another applica-
tion our ML model enables is the prediction of electronic densities
in semiconductor devices, for which an accurate modeling
capability at the device scale has been notoriously lacking.

METHODS
Density functional theory
DFT is the most widely used method for computing (thermo-
dynamic) materials properties in chemistry and materials science
because it strikes a balance between computational cost and
accuracy. Within DFT, one commonly seeks to describe a coupled
system of N ions of charge Zα at collective positions R ¼
ðR1;R2; :::;RNÞ and L electrons at collective positions r ¼
ðr1; r2; :::; rLÞ on a quantum statistical mechanical level5,50. Within
the commonly assumed Born–Oppenheimer approximation51, the
Hamiltonian

Ĥ ¼ T̂ þ V̂ee þ V̂ei ; (3)

represents a system of interacting electrons in the external field of
the ions that are simplified to classical point particles. Here, T̂ ¼PL

j �∇2
j =2 denotes the kinetic energy operator of the electrons,

V̂ee ¼
PL

i

PL
j≠i 1=ð2jri � rj jÞ the electron–electron interaction, and

V̂ei ¼ �PL
j

PN
α Zα=jrj � Rαj the external potential, i.e., the

electron–ion interaction. The Born–Oppenheimer Hamiltonian
separates the electronic and ionic problems into a quantum
mechanical and classical mechanical problem. Such an

Fig. 5 Analysis of size transferability. a Radial distribution functions for Beryllium simulation cells of differing sizes, within the radius in
which information is incorporated into bispectrum descriptors. For technical details on the radial distribution function, see the methods
section. Note that the curves of the inference test (blue) and prediction (red, orange) data sets have been shifted along the y-axis by a
constant value of 0.2 to better illustrate how similar they are. b Absolute difference Δg(r) of the radial distribution functions with respect to
the training data set.
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assumption is feasible since ionic masses far exceed the electronic
mass, leading to vastly different time scales for movement and
equilibration.
At finite temperatures τ > 0, the theoretical description is

extended to the grand canonical operator52

Ω̂ ¼ Ĥ � τŜ� μN̂; (4)

where Ŝ ¼ �kB ln Γ̂ denotes the entropy operator, N̂ the particle-
number operator, and μ the chemical potential. Here, we
introduced the statistical density operator Γ̂ ¼P

L;mwL;m ΨL;m

�� �
ΨL;m
� �� with the L-electron eigenstates ΨL,m of the

Hamiltonian Ĥ and wL,m as the normalized statical weights that
obey ∑L,mwL,m= 1. Any observable O is then computed as an
average

O½Γ̂� ¼ TrfΓ̂Ôg ¼
X
L;m

wL;m ΨL;m
� ��Ô ΨL;m

�� �
: (5)

Most importantly, finding the grand potential

Ω½Γ̂� ¼ TrfΓ̂Ω̂g; (6)

amounts to finding a Γ̂ that minimizes this expression. The exact
solution to this problem evades numerical treatment even with
modern hardware and software due to the electron-electron
interaction in the Born-Oppenheimer Hamiltonian of Eq. (3). It
dictates an exponential growth of complexity with the number of
electrons L, i.e., eL.
Based on the theorems of Hohenberg and Kohn5 and of

Mermin50, DFT makes solving this problem computationally
tractable by employing the electronic density n as the central
quantity. The formal scaling reduces to L3 due to the Kohn-Sham
approach11. Within DFT, all quantities of interest are formally
defined as functionals of the electronic density via a one-to-one
correspondence with the external (here, electron-ion) potential. In
conjunction with the Kohn-Sham scheme, which introduces an
auxiliary system of non-interacting fermions restricted to repro-
duce the density of the interacting system, practical calculations
become feasible. Rather than evaluating Eq. (6) using many-body
wave functions ΨL, the grand potential is evaluated as a functional
of density n as

Ω½n� ¼ TS½n� � kBτSS½n� þ EH½n�
þ EXC½n� þ Vei½n� � μL;

(7)

with the kinetic energy of the Kohn–Sham system TS, the entropy
of the Kohn–Sham system SS, the classical electrostatic interaction
energy EH (Hartree energy), the electrostatic interaction energy of
the electronic density with the ions Vei, and the exchange-
correlation (free) energy EXC. The Kohn–Sham system serves as an
auxiliary system that is used to calculate the kinetic energy and
entropy terms in Eq. (7). The Kohn–Sham equations are defined as
a system of one-electron Schrödinger-like equations

� 1
2
∇2 þ vSðrÞ

� �
ϕjðrÞ ¼ ϵjϕjðrÞ; (8)

with an effective potential, the Kohn–Sham potential vS(r), that
yields the electronic density of the interacting system via

nðrÞ ¼
X
j

f τðϵjÞ jϕjðrÞj2; (9)

where ϕj denotes the Kohn–Sham orbitals, ϵj the Kohn–Sham
eigenalues, and fτ(ϵj) the Fermi-Dirac distribution at temperature τ.
The Kohn–Sham potential is a single-particle potential defined as
vS(r)= vei(r)+ vH(r)+ vXC(r), where veiðrÞ ¼ �PN

α Zα=jr� Rαj
denotes the electron–ion interaction potential, vH½n�ðrÞ ¼
δEH½n�=δnðrÞ ¼

R
dr0 nðr0Þ=jr� r0j the Hartree potential, and

vXC[n](r)= δEXC[n]/δn(r) the exchange-correlation potential. Note
that within the Kohn-Sham framework at finite temperatures,
several quantities including vS(r), ϵj, ϕj, n, TS, SS, and EXC are

technically temperature dependent; we omit to label this
temperature dependency explicitly in the following for the sake
of brevity. The Kohn–Sham formalism of DFT is formally exact if
the correct form of the exchange-correlation functional EXC[n] was
known. In practice, approximations of the exchange-correlation
functional are employed. There exists a plethora of useful
functionals both for the ground state (such as the LDA11,53,
PBE54–56, and SCAN57 functionals) and at finite temperature58–61.
Such functionals draw on different ingredients for approximating
the exchange-correlation energy. Some rely only on the electronic
density (e.g., LDA), while others incorporate density gradients (e.g.,
PBE) or even the kinetic energy density (e.g., SCAN). Consequently,
functionals differ in their provided accuracy and application
domain like molecules or solids.
The calculation of dynamical properties is enabled in this

framework via the estimation of the atomic forces, which are then
used to time-propagate the ions in a process called DFT-MD. The
forces are evaluated via the total free energy as �∂A½n�ðRÞ=∂R,
where the total free energy A is obtained from Eq. (7) as
A½n�ðRÞ ¼ Ω½n� þ μL. While this framework can be employed to
calculate a number of (thermodynamic) materials properties62, the
treatment of systems of more than roughly a thousand atoms
becomes computationally intractable due to the L2 to L3 scaling
typically observed when running DFT calculations for systems in
this size range. Therefore, current research efforts are increasingly
focused on the combination of ML and DFT methods23.

DFT surrogate models
ML comprises a number of powerful algorithms, that are capable
of learning, i.e., improving through data provided to them. Within
DFT and computational materials science in general, ML is often
applied in one of two settings, as shown in ref. 23. Firstly, ML
algorithms learn to predict specific properties of interest (e.g.,
structural or electronic properties) and thus bypass the need to
perform first-principles simulations for investigations across vast
chemical parameter spaces. Secondly, ML algorithms may provide
direct access to atomic forces and energies, and thus accelerate
dynamical first-principles simulations drastically, resulting in ML
interatomic potentials for MD simulations.
We have recently introduced an ML framework that does not

fall in either category, as it comprises a DFT surrogate model that
replaces DFT for predicting a range of useful properties37. Our
framework directly predicts the electronic structure of materials
and is therefore not restricted to singular observables. Within this
framework, the central variable is the local density of states (LDOS)
defined by

dðϵ; rÞ ¼
X
j

jϕjðrÞj2δðϵ� ϵjÞ: (10)

The merit of using the LDOS as a central variable is that it
determines both the electronic density as

nðrÞ ¼
X
j

f τðϵjÞ jϕjðrÞj2 ¼
Z

dϵ f τðϵÞdðϵ; rÞ; (11)

and the density of states (DOS) as

DðϵÞ ¼
X
j

δðϵ� ϵjÞ ¼
Z

dr dðϵ; rÞ: (12)

As opposed to related work63, we use these two quantities to
calculate the total free energy drawing on a reformulation of Eq.
(7), which expresses all energy terms dependent on the KS wave
functions and eigenvalues in terms of the DOS. More precisely, by
employing the band energy

Eb ¼
Z

dϵ f τðϵÞϵDðϵÞ; (13)
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and reformulating the electronic entropy in terms of the DOS, i.e.,

SS ¼ �P
j

f τj ðϵjÞ ln f τj ðϵjÞ
h

þ 1� f τj ðϵjÞ
� �

ln 1� f τj ðϵjÞ
� �i

¼ � R
dϵ f τðϵÞ ln f τðϵÞ½ �ð

þ 1� f τðϵÞ½ � ln 1� f τðϵÞ½ �ÞDðϵÞ;

(14)

the total free energy A can be expressed as

A½d� ¼ Eb½D½d�� � τSS½D½d�� � EH½n½d�ðrÞ�
þ EXC½n½d�ðrÞ� �

R
dr vXCðrÞn½d�ðrÞ;

(15)

where D and n are functionals of the LDOS and vXC(r)= δEXC[n[d]
(r)]/δn[d](r).
In our framework, the LDOS is learned locally. For each point in

real space, the respective LDOS (a vector in the energy domain) is
predicted separately from adjacent points. Non-locality enters this
prediction through the descriptors that serve as input to the ML
algorithm. Here, we chose bispectrum descriptors30 denoted as B.
In contrast to their usual application as a basis for interatomic
potentials, these descriptors are employed to encode local
information on atomic neighborhoods at each point in space.
This is done by evaluating the total density of neighbor atoms via
a sum of delta functions

ρðrÞ ¼ δð0Þ þ
X
rk<R

νk
cut

f cðjrk j; RνkcutÞwνkδðrkÞ: (16)

In Eq. (16), the sum is performed over all k atoms within a cutoff
distance Rνkcut using a switching function fc that ensures smooth-
ness of atomic contributions at the edges of the sphere with
radius Rνkcut. These atoms are located at position rk relative to the
grid point r, while the chemical species νk enters the equation via
the dimensionless weights wνk . The thusly defined density is then
expanded into a basis of 4D hyperspherical harmonic functions,
eventually yielding the descriptors B(J, r) with a feature dimension
J (see refs. 37,30). Constructing descriptors in such a way introduces
two hyperparameters, Rνkcut, which determines the radius from
which information is incorporated into the descriptors and Jmax,
which determines the number of hyperspherical harmonics used
for the expansion, i.e., the dimensionality of the descriptor vectors.
Each of the hyperparameters must be precisely calibrated to
adequately represent the underlying physical properties of the
system, resulting in useful models. Inappropriate selections for
these hyperparameters can lead to poorly performing models. If
Rνkcut is set to a small value, the descriptors generated may not
accurately capture non-local effects. On the other hand, if it is set
to a large value, the descriptors may encode information from the
entire simulation cell, resulting in an overly complex learning task.
Similarly, a small value of Jmax produces low-dimensional
descriptor vectors that may not capture all features of the atomic
density, while a large value introduces additional noise, thereby
complicating the training process.
One can identify suitable values for these hyperparameters

using traditional grid search methods. However, as the optimal
values are linked to the system’s physics, similarities and
differences in the local electronic structure should be adequately
resolved by the descriptors. Recently, we demonstrated an
algorithm for identifying such optimal values in ref. 64.
A mapping from B(J, r) to d(ϵ, r) is now performed via a neural

network (NN), M, i.e.,

~dðϵ; rÞ ¼ MðBðJ; rÞÞ; (17)

where ~d is the approximate LDOS. After performing such a
network pass for each point in space, the resulting approximate
LDOS can be post-processed into the observables
mentioned above.

We employ NNs, because they are, in principle, capable of
approximating any given function65. In the present case, we
employ feed-forward NNs66 which consist of a sequence of layers
containing individual artificial neurons67 that are fully connected
to each neuron in subsequent layers. Each layer is a transforma-
tion of the form

xℓþ1 ¼ φðWℓxℓ þ bℓÞ; (18)

that maps x from layer ℓ to ℓ+ 1 by addition of a bias vector b,
matrix multiplication with a weight matrix W, and an activation
function Φ. For the DFT surrogate models discussed here, the input
to the first transformation x0 is B(J, r) for a specific point in space r;
the output of the last layer xL is d(ϵ, r) for the same r. The number
of layers L and activation function Φ have to be determined
through prior hyperparameter optimization, among other hyper-
parameters such as the width of the individual layers. In ref. 64 we
show how such a hyperparameter optimization can be drastically
improved upon in terms of computational effort, while the
hyperparameters employed for this study are detailed in “Machine
learning computational details”. For each architecture of the NN,
the weights and biases have to be optimized using gradient-based
updates in a process called training based on a technique called
backpropagation68 which is carried out using gradients averaged
over portions of the data (so-called mini-batches); other technical
parameters include stopping criteria for the early stopping of the
model optimization and the learning rate for the gradient-based
updates69.
Unlike DFT, the great majority of operations in our DFT

surrogate model have a computational cost that naturally scales
linearly with system size: (1) the descriptors are evaluated
independently at each point on the computational grid using
algorithms in LAMMPS that take advantage of the local
dependence of the descriptors on the atomic positions in order
to maintain linear scaling; (2) the NN is evaluated independently at
each grid point in order to obtain the LDOS at each point; (3) the
DOS is evaluated by a reduction over grid points, the Fermi level is
found, and Eb and SS are evaluated; (4) the density is calculated
independently at each grid point; and (5) three-dimensional Fast
Fourier transforms, which are implemented efficiently in Quantum
ESPRESSO, are used to evaluate EH from the density. The
remaining terms are EXC, vXC, and the ion-ion interaction energy.
The exchange-correlation terms can almost be evaluated inde-
pendently at each point (using Fast Fourier transforms to evaluate
gradients if necessary), but the pseudo-potentials that we use
include non-linear core corrections, which require the addition of
a “core density” centered on each atom to the density used to
calculate EXC and vXC. Likewise, the ion-ion interaction energy can
be evaluated efficiently using Fast Fourier transforms if we can
compute the sum of non-overlapping charge distributions
containing the appropriate ionic charge centered on each atom.
The key to calculating these terms with a computational cost that
scales linearly with system size is an efficient algorithm to evaluate
the structure factor.
If F(r) is some periodic function represented by its values on the

computational grid, its Fast Fourier transform ~FðGÞ gives its
representation in the basis of plane-waves expðiG � rÞ, where the
reciprocal lattice vectors G form a reciprocal-space grid with the
same dimensions as the computational grid. The structure factor is
defined as

~SðGÞ ¼
X
α

expðiG � RαÞ; (19)

where the summation over atom positions Rα runs over all atoms
within one copy of the periodically repeated computational cell.
The structure factor is very useful because

FSðrÞ �
X
α

Fðr� RαÞ; (20)

L. Fiedler et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   115 



can be efficiently evaluated as the inverse Fourier transform of
~F
S ¼ ~SðGÞ~FðGÞ. Thus, the structure factor can be used to evaluate

the non-linear core correction density and the ion-ion interaction
energy when evaluating the DFT total energy. However, the
straightforward evaluation of ~SðGÞ on the grid of G vectors scales
as the square of the system size. We circumvent this bottleneck by
taking advantage of the real-space localization properties of the
Gaussian function G(r) in order to efficiently evaluate GS(r) within
the LAMMPS code40. Then, within Quantum ESPRESSO, we use a
fast Fourier transformation to calculate ~G

SðGÞ, and the structure
factor is obtained as

~SðGÞ ¼
~G
SðGÞ
~GðGÞ : (21)

A suitable choice of the Gaussian width for G(r) allows us to
minimize aliasing errors due to Fourier components beyond the
Nyquist limit of the computational grid, while also maintaining
good precision in the above division.

Data analysis
We assess whether our models are employed in an interpolative
setting when applied to larger cells. To that end, we analyze the
radial distribution function, which is defined as

gðrÞ ¼ 1
ρN VðrÞ

XN
i¼1

XN
j¼1
j≠i

δðr � ri � rj
�� ��Þ: (22)

It is the average ion density in a shell [r, r+ dr] of volume V(r)
around a reference ion at r= 0, relative to an isotropic system of
density ρ= N/V70. The radial distribution function is often used to
identify different phases of a material and, in our case, it can be
used to verify that simulation cells with differing numbers of
atoms are equivalent in their ion distribution up to a certain cutoff
radius. For technical reasons, there exists an upper radius up to
which g is well-defined, which is a result of the minimum image
convention71 and which amounts to half the cell edge length in
case of cubic cells. For small cells, the employed cutoff radius lies
slightly beyond this radius, but this does not affect model
inference, since periodic boundary conditions are applied for the
calculation of the bispectrum descriptors.

Training data
Increasingly larger DFT-MD simulations at 298 K have been
performed to acquire atomic configurations for simulation cells
containing 256 to 2048 Beryllium atoms. DFT-MD calculations up to
512 atoms have been carried out using Quantum ESPRESSO, while
simulations for 1024 and 2048 atoms have been performed using
VASP45,72,73. In either case, DFT-MD simulations have been performed
at the Γ-point, using a plane-wave basis set with an energy cutoff of
40 Ry (Quantum ESPRESSO) or 248 eV (VASP), and an ultrasoft
pseudopotential74 (Quantum ESPRESSO) or a PAW pseudopoten-
tial75,76 (VASP). The resulting trajectories have been analyzed with a
method akin to the equilibration algorithm outlined in prior work77,
although here equilibration thresholds have been defined manually.
Thereafter, snapshots have been sampled from these trajectories
such that the minimal euclidean distance between any two atoms
within the last sampled snapshot and potentially next sampled
snapshots lies above the empirically determined threshold of
0.125Å. The resulting data set of Beryllium at room temperature
includes ten configurations per system size, except for 256 atoms,
where a larger number of configurations is needed to enable the
training and verification of models. For all of these configurations,
DFT calculations have been carried out with Quantum ESPRESSO,
using the aforementioned cutoff and pseudopotential. The Brillouin

zone has been sampled by Monkhorst–Pack78 sampling, with the
number of k-points given in Table 1.
The employed calculation parameters have been determined

via a convergence analysis with a threshold of 1 meV atom−1,
except for Beryllium systems with 2048 atoms, where only Γ point
calculations have been performed due to computational
constraints.
The values in Table 1 refer to those DFT calculations that were

performed to gather reference energies and densities. To calculate
the LDOS, one has to employ larger k-grids, as the discretiatzion of
k-space with a finite number of points in k-space can introduce
errors and features into the (L)DOS that are unphysical. As
discussed in prior work37,64, such features can be removed by
employing a larger number of k-points than for typical DFT
simulations. The correct k-grid has to be determined through a
convergence test such that no unphysical oscillations occur in the
(L)DOS. By applying an established analysis37,64, we have
determined 12 × 6 × 6 as a suitable k-grid for 256 Beryllium
atoms. Again, Monkhorst–Pack sampling has been used.
In order to assess the scaling of DFT for Fig. 3a of the main

manuscript, we kept a constant k-grid were possible, in comparison
to the adapted k-grids used for the reference data calculation used
for Fig. 4. More specifically, in order to reflect realistic simulation
settings, we employed a 3 × 3 × 3 grid, i.e., a k-grid consistent with
1024 atoms, the largest number of atoms for which k-point
converged simulations could be performed. The same number of
k-points was used for 128, 256, and 512 atoms. Performing a DFT
calculation for 2048 atoms was impossible due to the large memory
demand and the computational resources available. We, therefore,
performed a singular 2048 atoms calculation with a 4 × 2 × 2k-grid,
utilizing more k-points in the x-direction, since the 2,048 atom cells
are extended in that direction compared to the 1024 atom cells.
Overall, this change in k-grid leads to only a small deviation of the
observed ~N3 behavior.

Machine learning computational details
For all ML experiments, the architecture and hyperparameters
discussed in the original MALA publication37 have been employed.
One training and one validation snapshot have been used in the
256-atom case. Training was performed on a single Nvidia Tesla
V100, and five models were trained using different random
initializations to assess the robustness of the approach. The
average duration of model training was 51.40 min. It is worth
noting that data generation time, namely the time required to
perform DFT calculations, must also be taken into account. For the
models trained in this study, two training snapshots were needed,
each calculated on 144 Intel Xeon CPUs, with a respective
calculation time of 20.17 and 19.20 h. This relatively high
computational cost can be attributed to the large k-grids required
for accurate LDOS sampling as previously specified. These DFT
calculations can be executed in parallel, resulting in a total training
time of 21.02 h for a size-transferable model of this magnitude.
The timings for inference, i.e., utilizing the ML model to perform

predictions, are detailed in Table 2. These timings complement the
data presented in Fig. 3.

Table 1. Overview over the k-grids used for the various DFT
calculations.

Number of atoms k-grid

256 8 × 4 × 4

512 4 × 4 × 2

1024 3 × 3 × 3

2048 Γ-point
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DATA AVAILABILITY
Training data of the Beryllium system is publicly available79. Please note that this
published data set79 includes a larger data set of the Beryllium system as it has been
used in multiple publications. In this manuscript, only a subset of Beryllium
configurations has been used (256 atoms: 0–30; 512 atoms: 5–14; 1024 atoms: 0–9;
2048 atoms: 0-9).

CODE AVAILABILITY
All calculations described within this work have been carried out with the freely
available MALA code39 version 1.1.0. Benchmark models of the Beryllium system are
publicly available79, as are the corresponding input scripts80.
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