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An AI-driven microstructure optimization framework for
elastic properties of titanium beyond cubic crystal systems
Yuwei Mao1, Mahmudul Hasan2, Arindam Paul1, Vishu Gupta 1, Kamal Choudhary 3,4, Francesca Tavazza 3, Wei-keng Liao1,
Alok Choudhary1, Pinar Acar 2 and Ankit Agrawal 1✉

Materials design aims to identify the material features that provide optimal properties for various engineering applications, such as
aerospace, automotive, and naval. One of the important but challenging problems for materials design is to discover multiple
polycrystalline microstructures with optimal properties. This paper proposes an end-to-end artificial intelligence (AI)-driven
microstructure optimization framework for elastic properties of materials. In this work, the microstructure is represented by the
Orientation Distribution Function (ODF) that determines the volume densities of crystallographic orientations. The framework was
evaluated on two crystal systems, cubic and hexagonal, for Titanium (Ti) in Joint Automated Repository for Various Integrated
Simulations (JARVIS) database and is expected to be widely applicable for materials with multiple crystal systems. The proposed
framework can discover multiple polycrystalline microstructures without compromising the optimal property values and saving
significant computational time.
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INTRODUCTION
Understanding the relationship between processing, structure,
properties, and performance (PSPP) is critical in material
science1–7. The relationships from processing to performance are
the cause-effect relationships, which are forward problems, e.g.,
property prediction. The relationships from performance to
processing are goals-means relationships, that are inverse
problems, e.g., microstructure optimization. Variation in micro-
structure leads to a wide range of material properties, which in
turn impacts the performance. Thus, optimization of the micro-
structure can significantly improve the materials’ performance,
accelerate materials discovery, and help us design new materials
with target engineering properties.
Titanium (Ti) alloys are widely used in many engineering fields,

such as aerospace, chemical, biomedical and marine applications.
Optimizing the property of Ti is necessary for improving the safety
and performance of associated devices and machinery8–11.
Generally, pure Ti can crystallize in two crystal systems: α titanium
and β titanium. When it crystallizes at low temperatures (room
temperature), the hexagonal close-packed (HCP) structure of alpha
titanium is formed. While it crystallizes at high temperatures, the
body-centered cubic (BCC) structure of beta titanium is formed. In
this study, we use the pure Ti datasets in the Joint Automated
Repository for Various Integrated Simulations (JARVIS) database12

as an application. The JARVIS is an integrated infrastructure to
accelerate materials discovery and design using density functional
theory (DFT), classical force-fields (FF), and machine learning (ML)
techniques, that are publicly available at the website: https://
jarvis.nist.gov. The Ti dataset used in this work includes one cubic
material and six hexagonal materials.
One of the challenges of microstructure optimization is multi-

objective design. The microstructure that provides the maximum
value of the desired property (e.g., stiffness C11) may not be an
optimal solution for another property (e.g., C12). One of the major
goals of materials design optimization is the trade-off of

properties based on prioritizing one design goal over others13,14.
Selection of preferred orientations of various crystals constituting
the polycrystalline materials is a popular technique, which allows
tailoring of properties of polycrystalline alloys15–17. A polycrystal-
line material is made up of many crystals, each of which has its
unique crystallographic orientation, which determines the micro-
structural texture. The Orientation Distribution Function (ODF) is
used to characterize the microstructure in this work, which
describes the volume density of each unique crystal orientation. In
this work, we aim to discover the optimum (maximum and
minimum) elastic property values along with the corresponding
microstructures defined in terms of the ODFs.
The desired properties of this work are the elastic properties

stiffness (C11) and Young’s modulus (E11), which can be computed
using the microstructure homogenization expression (for example,
C11 ¼ PT11A, where P11 is the property matrix of the single-crystal
values for C11, A is the column vector of the ODF values assigned
to the independent nodal points of the microstructure mesh). The
Young`s modulus (E11), on the other hand, is inversely related to
the stiffness when upper bound averaging is used as it is given by
E11 ¼ 1

S11
, where S11= S(1, 1) while S is the compliance matrix

defined as S= C−1. Therefore, the relationship between Young’s
modulus and ODF is non-linear because Young’s modulus is found
by inverting the homogenized stiffness matrix obtained with the
linear homogenization expression. More details can be found in
supplementary material. Moreover, the ODF should satisfy the
normalization constraint, which is defined as: qTA= 1. The
normalization constraint is mathematically equivalent to the fact
that the sum of the probabilities for having all crystallographic
orientations is one. Here, q is a constant column vector that is
obtained from the finite element discretization. The present study
describes the microstructure modeling briefly. Interested readers
are referred to ref. 18 for more information.
Researchers have developed and used different techniques to

discover microstructures with optimal material properties. A linear
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programming algorithm was used to discover microstructural
textures with optimal properties using the idea of building a
reduced-order design space, called the property closure3,18,19. Acar
et al.18 used this approach to find the best microstructure design
of an airframe panel for obtaining the maximum buckling
temperature. This process was extended to find the maximum
yield strength of the Galfenol alloy while considering the
constraints for the vibration19. This approach was able to save
significant computational time but can only discover one optimal
solution and most discovered solutions are single crystals or near
single crystals (only one dimension has a significant non-zero
value). However, the polycrystalline microstructures are known to
be advantageous over single-crystal designs in terms of cost,
performance, ease of manufacturing, homogeneity and good
control over composition20. Moreover, multiple microstructures
could improve the manufacturability of the microstructures. Paul
et al.21 designed two data sampling algorithms to sample the
entire microstructure space with vibrational tuning constraints for
galfenol alloy. This method could discover multiple microstruc-
tures and may discover polycrystals. But these data sampling
algorithms are time-consuming, and they are not effective for
discovering maximum and minimum properties.
With the rapid development of artificial intelligence and

machine learning (AI/ML) techniques22–28, and the increasing
availability of data from the first three paradigms of science
(experiments, theory, and simulations), the fourth paradigm of
science, i.e., data-driven science and discovery, is playing an
important role in materials science2. Many machine learning and
deep learning techniques have been extensively used in materials
science22,29–33 to enhance materials property prediction, discov-
ery, and design. Recent research has demonstrated the potential
of machine learning (ML) techniques to predict and optimize the
properties of titanium (Ti) alloys. McElfresh et al.34 used a set of
machine learning techniques to develop predictive tools relating
the yield strength and hardening rate of Ti-6Al-4V alloys to a set of
input parameters covering extensive ranges. Liu et al.35 proposed
a machine learning method to predict microstructures and
Young’s moduli of biomedical β-Ti alloys, which can accelerate
the design process of such alloys with low moduli, and
successfully develops a Ti-13Nb-12Ta-10Zr-4Sn alloy with desired
properties. Zou et al.36 use data mining and machine learning
approaches to reveal the atomic and electronic insights of the
composition-structure-property relationships to improve the
strength and ductility of Titanium (Ti) alloys.
There are several works on the application of machine learning

methods for microstructure optimization. Liu et al.37,38 used four
random data sampling algorithms and combined them with
machine learning methods for the optimization of five design
objectives. Paul. et al.39 used a machine learning-based feedback-
aware data generation algorithm to discover optimal microstruc-
tures for HCP Ti alloy with constrained design objectives stiffness
and compliance. Hasan et al.40 used gradient-based and ML-based
methods to enhance homogenized linear and non-linear proper-
ties of cubic microstructures. These ML-based methods used data
sampling algorithms to randomly generate data for the machine
learning model. Then random forest is used for microstructure
search space reduction to identify a minimal subset of ODF
dimensions. However, these ML-based methods are time-
consuming and need more human knowledge because they are
not providing an end-to-end framework, and there are many
hyperparameters in different steps. Inadequate choice of hyper-
parameters and insufficient run time may not get optimal
solutions.
In this work, an end-to-end AI-driven optimization framework is

proposed to explore the microstructure optimization problems for
elastic properties of materials with multiple crystal systems. We
take Ti as an application, which includes two crystal systems, cubic
and hexagonal in the JARVIS database. The desired properties are

stiffness C11 and Young’s modulus E11. Single crystal solutions
could provide optimal properties, but polycrystalline designs are
advantageous over single crystals in terms of better manufactur-
ability. The gradient-based method could provide optimal
solutions but could only find one solution for one material, and
some solutions are near-single crystal solutions (only one
dimension has a significant non-zero value) for some materials.
Although previous ML-based methods40 were able to discover
multiple polycrystalline solutions, the running time was very high
and the solutions were usually not optimal solutions. Compared to
these methods, the proposed end-to-end AI-driven framework
could discover multiple polycrystalline solutions without compro-
mising the optimal property values. The present work builds upon
the previous ML-based methods for microstructure design, and
could be implemented end-to-end for multiple materials with
different crystal systems. And the running time of the proposed
framework is significantly less than the previous ML-based
methods40 while getting better properties.

Example application of microstructure design for a rotating
beam
Ti alloys with hexagonal crystal structures have applications in
aerospace systems, such as in turbine blades. In this application, a
blade is modeled as a rotating cantilever beam. The rotation
causes an in-plane axial load (P) as demonstrated in Fig. 1. The
effects of this axial load can be included with the geometric
stiffness. Accordingly, the effective stiffness (ke) of the beam is
given by [ke]= [kb]− [kg], where kb denotes bending (flexural)
stiffness and kg is the geometric stiffness under the axial
(compression) load. In this formulation, the effective stiffness is
a function of Young’s modulus and the axial load. The critical
buckling load is solved as equal to the axial load (Pcr= P) when the
following condition is satisfied: det[ke]= 0. As demonstrated in the
previous work of the authors41, the critical buckling load (Pcr) is
maximized when Young’s modulus, E11, is maximized. Therefore,
the presented formulation in this work for the maximization of
Young’s modulus can also be used to improve the buckling
performance of engineering systems, such as aerospace
components.

RESULTS
Overview of AI-driven microstructure optimization framework
Figure 2 presents the flow-diagram for the proposed optimization
framework. The framework inputs include constant column vector
(i.e., q vector) and a nodal point property matrix (i.e., Pmatrix). The
framework is composed of three data sampling algorithms. These
data sampling algorithms’ objective is to generate instances of
microstructure representations, i.e., the multidimensional ODFs.
Here, the ODF could be represented by the vector x= [x1, x2, . .
. , xD]⊆ RD and needs to satisfy the constraints

PD
i¼1 xi ´ qi ¼ 1

and x≥0. The details of the proposed framework are introduced in
the Method section.

Fig. 1 Schematic of the rotating beam. The rotation of the beam
translates into a compressive axial force that can cause the failure of
the system due to buckling. E denotes Young’s modulus (equal to
E11), I is the moment of inertia, ω is the rotation frequency, L is the
length of the beam, and d is the diameter of the circular cross-
section of the beam.
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The goal of the proposed end-to-end AI-driven microstructure
optimization framework is generating multiple optimal and near-
optimal polycrystalline solutions. Ti data in JARVIS is used as an
application in this study, which includes two crystal systems, cubic
and hexagonal. There are one cubic Ti material and seven
hexagonal Ti materials. The cubic Ti has 76 independent ODF
values, and the hexagonal Ti has 50 independent ODF values. The
objective properties are linear property value stiffness (C11) and
non-linear property value in-plane Young’s modulus (E11).
We use best-of-∣ODF∣ method, gradient-based optimization and

the previous ML-based optimization method40 for comparison.
The best-of-∣ODF∣ method calculates every single crystal solution’s
properties. Then, the maximum and minimum properties and the
corresponding single crystal microstructures are selected as the
optimal solutions. The gradient-based method uses the sequential
quadratic programming (SQP) algorithm and is applied to solve
the optimization problem. We use the fmincon function in Matlab
to implement it. The hyperparameters of the previous ML-based
method are the same as in ref. 40, and it has a running time of
about one week. In comparison, the proposed AI-driven frame-
work takes only a couple of days to discover more optimal
solutions, as described next.

Optimality and polycrystallinity
Table 1 shows the solutions discovered by different methods with
optimal values boldfaced. Different font styles in the tables
represent the crystallinity (underline represents single crystal and
italic represents polycrystal). We consider the values within 0.01%
of the numerically optimal value to also be optimal for practical
purposes. Thus bolditalic values are desirable.
Table 1 shows the optimal Emin

11 and Emax
11 solutions obtained

from different methods. The gradient-based method discovers the

optimal property values in this table. The best-of-∣ODF∣ method,
gradient-based method, and the proposed AI-driven framework
could all discover the optimal Emin

11 . However, the solutions of the
best-of-∣ODF∣ and the gradient-based method for all materials are
single crystal solutions. Both the proposed AI-driven framework
and the previous ML-based method could discover polycrystalline
solutions for all materials. As mentioned before, polycrystals are
better because they are advantageous for manufacturing. How-
ever, the property values of ODFs discovered using the previous
ML-based method are less optimal than those from the proposed
AI-driven method. The proposed AI-driven framework thus can
discover solutions that are both optimal as well as polycrystalline.
Similar to what was observed for Emin

11 optimal target, the gradient-
based method discovers the optimal property values, and both
the best-of-∣ODF∣ method and the proposed AI-driven framework
could also discover the optimal Emax

11 value. The optimal Emax
11

solutions for JARVIS IDs 14732 and 84837 are single-crystal
solutions as discovered by the gradient-based method, while
others are polycrystal solutions. Both the proposed AI-driven
framework and the previous ML-based method could discover
polycrystalline solutions for all materials, but the ones from the AI-
driven framework are significantly higher, i.e., more optimum.
Additional observations for optimal Cmin

11 and Cmax
11 solutions are

offered in Supplementary Table 1. Both the best-of-∣ODF∣ method
and the gradient-based method discover the optimal properties
values, and the proposed AI-driven framework could also discover
the optimal solutions within an error of 0.001%. The solutions of
the gradient-based method for all materials are single crystal
solutions, just like those from the best-of-∣ODF∣ method. These
tables demonstrate that the proposed AI-driven framework could
consistently discover optimal polycrystalline solutions.

Fig. 2 Flow-diagram for the proposed AI-driven end-to-end optimization framework. The framework inputs include constant column
vector (i.e., q vector) and a nodal point property matrix (i.e., P matrix). The framework is composed of three data sampling algorithms, whose
objective is to generate instances of microstructure representations, i.e., the multidimensional ODFs.
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Multiple polycrystalline solutions
Table 2 shows the number of solutions for E11 with different
number of real non-zero dimensions (two and three) within
different neighborhood thresholds of the numerically optimal
value (Supplementary Table 2 shows the number of solutions for
C11). To calculate the number of real non-zero dimensions for an
ODF x= [x1, x2, . . . , xD], we first normalize it to get
xnorm ¼ ½xnorm1 ; xnorm2 ; :::; xnormD �, where xnormi ¼ xi

maxðxÞ. Then for
every dimension i, if xnormi>0:0001, we consider it to be a real non-
zero dimension. This is done since some of the dimensions of the
obtained ODF solutions can be infinitesimally small (e.g. of the
order of 1e-20 or lower), which is practically insignificant to be
counted as a real non-zero dimension.
As represented by these tables, the proposed AI-driven frame-

work successfully discovers multiple near-optimal polycrystalline
solutions for all materials, especially for two real non-zero
dimensions. And when the number of non-zero dimensions is
larger than three, we still can discover several solutions within
0.01% error for many material-property combinations. As men-
tioned earlier, it is important to discover multiple near-optimal
solutions for improving the efficiency of manufacturing. The
traditional low-cost manufacturing processes can only generate a
limited set of microstructures. Multiple near-optimal solutions can
increase the variability of optimal designs, and accelerate
materials development efforts further.

Parameter and running time analysis
In the proposed end-to-end framework, the parameter T
represents the number of iterations used in data sampling to
generate orientation distribution function (ODF) vectors. Larger T
can generate more ODF vectors and increase the number of
microstructures with desired material properties. We select
material ID=15716 to analyze the effect of T on the number of
microstructures with the desired property value and the running
time of the proposed end-to-end framework. Figure 3a–d show
the number of solutions of Emin

11 for different values of parameter T
and neighborhood thresholds. For example, Fig. 3a we plot the
number of microstructures with the property values within 0.01%
error of the optimal Emin

11 . As T increases from 100 to 10,000,000,
the number of microstructures satisfying the desired property
value increases from zero to ten. This figure shows that as T

increases, the number of solutions increases significantly, which is
expected. It also demonstrates that knowledge-based data
sampling is better than the random data sampling method
because of using single-crystal knowledge. ML-based data
sampling algorithm is better than random data sampling and
knowledge-based data sampling because it builds upon these two
data sampling information.
Figure 3e–h show the number of solutions of Emax

11 for different
values of parameter T and neighborhood thresholds. We could get
similar conclusions as from the previous figure. Interestingly, we
can observe that the proposed end-to-end framework could
discover more optimal Emax

11 solutions than optimal Emin
11 solutions

for this material.
Figure 4a shows the running time of different steps. Step 1a

needs to be run only once for all crystal systems and all materials.
Step 1b needs to be run only once for all materials with a given
crystal system. Thus, the running time of these two steps could be
saved when there are multiple crystal systems and multiple
materials. The running times of steps 2a and 3a are close to 0%
compared to the whole running time. ML-based data sampling is
the most powerful and takes the longest time because it includes
interval generation and assignment twice. Given its contribution
to discovering multiple optimal solutions as demonstrated earlier,
it is valuable to run ML-based data sampling for a relatively long
time.
Figure 4b shows the number of solutions for different thresh-

olds with different running times. Here y-axis represents the
number of solutions. Clearly, by running longer, we can discover
more solutions. It is also observed that the number of solutions
increases rapidly when we switch to knowledge-based data
sampling, and again increases rapidly when we switch to ML-
based data sampling.

Optimized microstructures
Figure 5a–f show optimized microstructures in orientation space
for Emax

11 of cubic material ID=15716. Figure 5a–c show ODFs
discovered by best-of-∣ODF∣ method, gradient-based method and
previous ML-based method. Figure 5d–f show some example
ODFs discovered by the proposed framework. The optimal Emax

11
value is 130.9160 GPa discovered by the gradient-based method
and the proposed framework. The proposed framework can
discover multiple solutions that provide properties that are close

Table 1. Optimal E11 obtained using different methods.

Optimal target Crystal System ID Best-of-∣O D F∣method Gradient-based
method

Previous ML-based40

method
Proposed AI-driven
framework

Emin
11 Cubic 15716 50.2676 50.2676 60.5366 50.2697

Hexagonal 1028 145.2473 145.2473 146.6405 145.2479

1029 134.1967 134.1967 135.3297 134.1969

1030 146.3204 146.3204 147.3352 146.3208

14732 88.9550 88.9550 88.9552 88.9551

14815 134.1967 134.1967 135.3297 134.1970

84837 148.0852 148.0852 149.5147 148.0854

84936 140.5261 140.5261 141.8266 140.5265

Emax
11 Cubic 15716 130.4218 130.9160 127.0722 130.9160

Hexagonal 1028 192.4707 192.4747 176.4714 192.4747

1029 181.6082 181.6254 165.3472 181.6254

1030 199.4137 199.4209 181.0323 199.4209

14732 116.5855 116.5855 106.4076 116.5850

14815 181.6082 181.6254 165.3472 181.6254

84837 197.7685 197.7685 181.1660 197.7682

84936 187.4975 187.5048 171.4899 187.5048
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to the optimal property, such as Emax
11 value equal to 130.2197 GPa

and 129.5569 GPa in Fig. 5e, f. These results demonstrate that the
proposed framework could discover multiple polycrystals that are
advantageous for manufacturing.
Similar insights could be observed from Fig. 5g–l, which shows

the solutions for hexagonal Ti ID=14815. Figure 5g–i show ODFs
discovered by best-of-∣ODF∣ method, gradient-based method and
previous ML-based method. Figure 5j–l show some example ODFs
discovered by the proposed framework. The optimal Emax

11 value is
181.6254 GPa discovered by the gradient-based method and the
proposed framework. And the proposed framework can discover
multiple solutions that provide properties that are close to the
optimal property, such as Emax

11 value equal to 180.2922 GPa and
178.4170 GPa in Fig. 5k, l.

DISCUSSION
Microstructure optimization is vital for material design. Existing
state-of-the-art methods can either discover one microstructure
with optimum property rapidly or discover multiple polycrystalline
microstructures with less optimum properties slowly. In this study,
we proposed an end-to-end AI-driven microstructure optimization
framework to identify two optimal properties (stiffness C11 and
Young’s modulus E11) for Ti, which includes two crystal systems
(cubic and hexagonal). Compared to the single crystal solutions,
gradient-based optimization method, and the previous ML-based
method40, the proposed AI-driven end-to-end framework could
efficiently discover multiple polycrystalline microstructures with-
out compromising the optimal properties. The ability to discover
multiple near-optimal polycrystal solutions is greatly advanta-
geous for enhancing manufacturability. Furthermore, it is worth
noting that the proposed framework has several significant
advantages over previous ML-based methods40, as demonstrated
by our experimental results. Specifically, our approach incorpo-
rates three data sampling algorithms and provides an end-to-end
automated framework, which sets it apart from existing methods.
In addition, we have shown that by leveraging the results of the
other two data sampling techniques, our ML-based data sampling
method can achieve better optimization and faster runtime.
Overall, these improvements have resulted in a more efficient and

effective approach to microstructure optimization. The proposed
framework could thus accelerate the manufacturing of materials
by increasing the variability of optimal design solutions.
This framework of microstructure optimization only considers

the crystallographic orientations of the grains using ODF to
represent microstructure and does not account for other
microstructural features such as grain size, shape, and boundary
characteristics, which can also have some impact on material
properties. Therefore, in the future, we will incorporate additional
microstructural features into the optimization process to develop
a more comprehensive model. This framework could also be used
for other materials with multiple crystal systems as well as to
optimize microstructures for other properties. In the future, this
framework could be further developed to discover optimal
microstructures with improved or maximized polycrystallinity
according to different applications. Moreover, we plan to explore
more diverse polycrystallinity solutions. Another potential area of
future work is to investigate the impact of manufacturing and
processing conditions on the optimized microstructures. This
would involve incorporating manufacturing constraints, such as
grain growth and recrystallization, into the optimization process to
ensure the feasibility of the optimized microstructures. The
proposed framework can also be integrated with other tools
and methodologies, such as experimental testing and process
simulation, to further refine the design and optimization of
materials for specific applications.

METHODS
Random data sampling
Random data sampling is the first data sampling algorithm and it
consists of three steps. The first step is random intervals
generation. In this step, the unit length 1 is randomly divided
into K random intervals to generate an interval vector y=
[y1, y2, . . . , yK] ⊆ RK, where

PK
j¼1 yj ¼ 1. We traverse every integer

from 2 to 10 as K and repeat T times for each K to generate 9 × T
interval vectors. These vectors are saved as an interval vectors list
for the following framework steps for all materials. We can
reduce the running time by reusing the generated interval
vectors list for all materials of multiple crystal systems.

Table 2. Number of multiple polycrystalline solutions of E11 with different number of real non-zero dimensions.

No. of non-zero dimensions ≥2 ≥3

Optimal target Crystal System ID Threshold Threshold

0.01% 0.1% 0.2% 0.5% 0.01% 0.1% 0.2% 0.5%

Emin
11 Cubic 15716 10 112 227 559 0 0 0 5

Hexagonal 1028 253 2378 4858 14488 0 68 332 2292

1029 302 3013 6340 18668 1 83 401 2923

1030 315 3809 8119 24225 0 100 519 3865

14732 5937 59897 121391 319939 0 133 665 7284

14815 679 6152 12819 37890 1 181 833 6046

84837 813 6662 13567 39069 1 169 795 5587

84936 998 8762 18054 54057 1 285 1301 9448

Emax
11 Cubic 15716 15785 26578 38765 58515 12 540 1511 8320

Hexagonal 1028 459 1773 3061 6530 5 51 131 571

1029 621 2372 4008 8223 1 52 170 761

1030 789 2898 4958 10390 1 69 209 955

14732 98 2115 4399 11568 0 24 135 819

14815 1455 5431 8999 18657 1 115 401 1797

84837 424 4216 7979 19230 0 67 308 1666

84936 2125 7162 11805 24658 7 176 581 2487
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Fig. 3 Number of solutions for different number of iterations T. The neighborhood threshold is set to a 0.01%, b 0.10%, c 0.20%, d 0.50% for
Emin
11 and e 0.01%, f 0.10%, g 0.20%, h 0.50% for Emax

11 .
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The second step is the random intervals assignment. The
constant column vector (i.e., vector q= [q1, q2, q. . . , qD]⊆ RD) of
the current crystal system, and the interval vectors list obtained by
the previous step are inputs of this step. We generate one
corresponding ODF vector x for each interval vector y. Specifically,
the dimension of x is D, which is the same as that of q. We traverse
every value yj (1 ≤ j ≤ K) in interval vector y, and randomly assign it
to ith dimension in x to calculate xi by using formula xi ¼ yj

qi
.

Because K < D, only K interval values are randomly assigned to K
random dimensions in ODF vector x, and the values of the
remaining D− K dimensions are zero. The formula xi ¼ yj

qi
is to

make sure the ODF vector x satisfies the constraint
PD

i¼1 xi ´ qi ¼ 1. This step can be reused for any material in the
same crystal system, thus can also reduce the time consumption
for all materials in the same crystal system.
Finally, the corresponding property of the generated ODFs

could be calculated using the nodal point property matrix (i.e., P
matrix). The (ODF, property) solutions generated in this algorithm
are saved as candidates DATAR, where only THIGH (ODF, property)
pairs with the highest properties and TLOW with the lowest
properties are saved for the following steps in order to save
storage space.

Knowledge-based data sampling
Knowledge-based data sampling is the second data sampling
algorithm, which is an improvement of the random data sampling
method. The random interval vectors list generated in the first
data sampling method is also reused here. Instead of random
intervals assignment, here we want to make use of single-crystal
solutions’ knowledge to assign intervals.
Different dimensions will have different importance for getting

optimal properties. The data sampling method would be more
effective if we could assign intervals to more important dimensions
to get optimal properties. Single-crystal ODF is a vector that only
has one non-zero dimension. The values of other dimensions are

zero. There are D single-crystal ODFs for each material. They are
easy to obtain and could provide some knowledge about the
dimensions’ importance. We assume that if one single-crystal ODF
could get more optimal properties, the corresponding non-zero
dimension of this vector is more important even in polycrystal
solutions. Thus, after ranking the properties of these single-crystal
solutions, we could get an ordered list. Single-crystal ODFs at the
top of the list could provide higher properties, and single-crystal
ODFs at the bottom of the list could provide lower properties. We
generate a vector z= [z1, z2, . . . , zD] according to this list, where zi is
non-zero dimension of the ith ODF in the list. We call it knowledge-
based features.
After that, we reuse the interval vectors obtained by the first

step of random data sampling and randomly assign each interval
vector twice according to the knowledge-based features. The first
one is assigning K intervals to K random dimensions from the first
DKB values of knowledge-based features. The second one is
assigning K intervals to K random dimensions from the last DKB

values of knowledge-based features. Finally, we calculate the
corresponding properties and save (ODF, property) pairs with the
highest properties and lowest properties as the knowledge-based
(ODF, property) candidates DATAKB.

ML-based data sampling
The third data sampling is the machine learning (ML)-based data
sampling algorithm, which builds upon random data sampling
and knowledge-based data sampling. In this method, we generate
ML-sorted features first. Then, we randomly generate intervals and
assign them to ODF dimensions simultaneously. We combine the
ML-based features and knowledge-based features for assignment
in order to make use of both single-crystal knowledge and ML-
based knowledge.
First, the ML-sorted features list is generated using the ML method.

The candidates DATAR and DATAKB from previous data sampling could
be combined as the inputs of the ML model. Each (ODF, property)
pair is a sample, where the ODFs are considered as the features. We

Fig. 4 Running time analysis. a The running time for different steps of the proposed AI framework (Steps 2a and 3a take negligible time).
b Log(number of solutions)-time curves for different neighborhood thresholds.
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labeled the sample with the higher property as “1" and the sample
with the lower property as “-1". This creates a two-class classification
problem. Random forest-based42 model could be used for classifica-
tion problems to learn the feature importance. In this study, we use
the random forest model to rank ODF dimensions in the order of their

importance. The purpose of this step is to select the ODF dimensions
that are more important for generating optimal properties. We call
the obtained list that includes the order of ODF dimensions according
to the importance as ML-sorted features list, where features at the top
of the list are more important for predicting optimal property.

Fig. 5 Optimized Emax
11 microstructures (ODFs) in the orientation space for an example of cubic material and an example of hexagonal

material discovered by different methods. An example of cubic material ID= 15716 discovered by a Best-of-∣ODF∣, b Gradient-based
method, c Previous ML-based method, d–f AI-driven framework. An example of hexagonal material ID= 14815 discovered by g Best-of-∣ODF∣,
h Gradient-based method, i Previous ML-based method, j–l AI-driven framework.
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Then, we randomly generate K intervals and assign the intervals
twice. The first one is assigning K intervals to K random
dimensions from the first DML values of ML-sorted features and
not in the first DKB values of knowledge-based features. We want
to generate solutions that have minimum properties for this
assignment. The second one is assigning K intervals to K random
dimensions from the first DML values of ML-sorted features and not
in the last DKB values of knowledge-based features to generate
solutions that have maximum properties. This step could be
repeated T times.
After that, we could calculate the corresponding properties to

generate (ODF, property) solutions and save solutions with the
highest properties and the lowest properties as the ML-based
(ODF, property) candidates DATAML. This data sampling algorithm
is expected to be more effective because it not only makes use of
single-crystal knowledge but also the ML method to find the
dimensions that are more important to generate optimal
solutions.

End-to-end optimization framework
We combine all (ODF, property) candidates dataset DATAR, DATAKB,
and DATAML and save (ODF, property) pairs with the highest and
lowest properties as the final solutions. We observed that different
hyper-parameters could affect the results and running time. Larger
K may discover ODFs with more non-zero dimensions but less
optimal properties. Larger T increases the time of sampling, which
may lead to better results. ML-based data sampling method could
generate data in a reduced and effective space, thus can reduce
the time while getting optimal properties.
After getting the results of one material, we could go to the

inner loop for the next material of the same crystal system. In this
inner loop, we do not need to repeat the first and second steps of
random data sampling again. Thus we could reduce the time
consumption significantly. If all materials of the same crystal
system are done, we can go to the next crystal system, i.e., go to
the outer loop to run the whole framework except for the first step
of random data sampling.

Experimental settings
The parameter T equals 10,000,000 in the proposed end-to-end
framework to discover these solutions. Both parameters THIGH and
TLOW equal 100, 000. THIGH is the number of (ODF, property) pairs
with the highest properties, and TLOW is the number of (ODF,
property) pairs with the lowest properties in Random Data
Sampling. The parameter DKB is equal to 15. DKB is the number
of values of knowledge-based features that is used for assignment
in Knowledge-based Data Sampling and ML-based Data Sampling.
The parameter DML is equal to 10. DML is the number of values of
ML-sorted features that is used for assignment in ML-based Data
Sampling.

Nomenclature

A Column vector of the ODF values at the independent nodes in the
ODF mesh

P Property matrix of the single-crystal values

q Constant column vector that is obtained from the finite element
discretization

xnorm Normalized ODF vector, xnorm ¼ ½xnorm1 ; xnorm2 ; :::; xnormD �, where
xnormi ¼ xi

maxðxÞ
x ODF vector, x= [x1, x2, . . . , xD]⊆ RD

y Interval vector y= [y1, y2, . . . , yK]⊆ RK, where
PK

j¼1 yj ¼ 1 in
random data sampling

z Knowledge-based features vector z= [z1, z2, . . . , zD], where zi is
non-zero dimension of the ith ODF in the list

C11 Stiffness

Table continued

DKB The number of first and last values of knowledge-based features
selected.

DML The number of first and last values of ML-sorted features selected.

DATAKB The (ODF, property) candidates solutions generated in
knowledge-based data sampling algorithm

DATAML The (ODF, property) candidates solutions generated in ML-based
data sampling algorithm

DATAR The (ODF, property) candidates solutions generated in random
data sampling algorithm

E11 Young’s modulus

K The number of random intervals in random data sampling

S11 S(1, 1), while S is the compliance matrix defined as S= C−1

T The parameter T represents the number of iterations to generate
orientation distribution function (ODF) vectors.

THIGH (ODF, property) pairs with the highest properties

TLOW (ODF, property) pairs with the lowest properties

D The dimension of x

DATA AVAILABILITY
The data generated by the proposed AI-driven end-to-end microstructure optimiza-
tion framework in this study is available at https://github.com/MaoYuwei/AI-Driven-
Microstructure-Optimization-Framework/tree/main/data.

CODE AVAILABILITY
The codes of the proposed AI-driven end-to-end microstructure optimization
framework used in this study is available at https://github.com/MaoYuwei/AI-
Driven-Microstructure-Optimization-Framework.
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