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Sparse representation for machine learning the properties of
defects in 2D materials
Nikita Kazeev 1,2,6, Abdalaziz Rashid Al-Maeeni 3,6, Ignat Romanov 3, Maxim Faleev4, Ruslan Lukin4, Alexander Tormasov 4,
A. H. Castro Neto1,5, Kostya S. Novoselov1✉, Pengru Huang 1✉ and Andrey Ustyuzhanin1,2✉

Two-dimensional materials offer a promising platform for the next generation of (opto-) electronic devices and other high
technology applications. One of the most exciting characteristics of 2D crystals is the ability to tune their properties via controllable
introduction of defects. However, the search space for such structures is enormous, and ab-initio computations prohibitively
expensive. We propose a machine learning approach for rapid estimation of the properties of 2D material given the lattice structure
and defect configuration. The method suggests a way to represent configuration of 2D materials with defects that allows a neural
network to train quickly and accurately. We compare our methodology with the state-of-the-art approaches and demonstrate at
least 3.7 times energy prediction error drop. Also, our approach is an order of magnitude more resource-efficient than its
contenders both for the training and inference part.
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INTRODUCTION
Atomic-scale tailoring of materials is one of the most promising
paths towards achieving new, both quantum and classical
properties. Controllable defect engineering, i.e., introduction of
vacancies or desired impurities, enables properties modifications
and new functionalities in crystalline materials1. The opportunities
for such controlled material engineering methods got a dramatic
boost in the past two decades with the development of the
methods for exfoliation of crystal into two-dimensional atomic
layer2. The reduced dimensionality in layered two-dimensional
materials makes it possible to manipulate defects atom by atom
and tune their properties down to quantum mechanics limits3.
Such atomic-scale preparation and fabrication techniques hold
promise for the continual development of the semiconductor
industry in the post-Moore age and the development of novel
technologies such as quantum computing4, catalysts5, and
photovoltaics6.
Despite decades of research efforts, knowledge of the structure-

property relation for defects in crystals is still limited. Only a small
subset of defects in the vast configuration space have been
investigated7. The properties of complexes of multiple point
defects, where quantum phenomena dominate, depend on the
composition and configuration of such defects in a strongly non-
trivial manner, making their prediction a very hard problem. The
diversity and complexity of the problem come from the exchange
interaction of defect orbitals separated by discrete lattices8. On
the other hand, the vast chemical and configuration space
prohibits a thorough exploration of such structures by traditional
trial and error experiments and even for computationally
expensive state-of-the-art quantum mechanic simulations.
The recent development of large materials databases has

stimulated the application of deep learning methods for atomistic
predictions. Machine learning (ML) methods trained on density
functional theory (DFT) calculations have been used to identify

materials for batteries, catalysts, and many other applications.
Machine learning methods accelerate the design of the new
materials by predicting material properties with accuracy compar-
able to ab-initio calculations, but with orders of magnitude lower
computational costs9,10. A series of fast and accurate deep
learning architectures have been presented during the last few
years. The most successful of them are graph neural networks,
such as MEGNet11, CGCNN12, SchNet13, GemNet14, etc.
In this work, we propose a method for predicting the energetic

and electronic structures of defects in 2D materials with machine
learning. Firstly, a machine learning-friendly 2D Material Defect
database (2DMD) was established employing high throughput
DFT calculations15. The database is composed of both structured
datasets and dispersive datasets of defects in represented 2D
materials such as MoS2, WSe2, h-BN, GaSe, InSe, and black
phosphorous (BP). We use the datasets to evaluate the
performance of the previously reported approaches along with
ours’ which was specially designed to provide accurate description
of materials with defects. Our computational experiments show
that our approach provides a significant increase in prediction
accuracy compared to the state-of-the-art general methods. The
high accuracy allows to reproduce the nonlinear non-monotonic
property-distance correlation of defects which is a combination of
the quantum mechanic effect and the periodic lattice nature in 2D
materials. The general methods, on the other hand, mostly fail to
predict such property-structure functionals, as we show in
subsection “Aggregate performance”. Most importantly, our
method shows great transferability for a wide range of defect
concentrations in the various 2D materials we studied.
Machine learning offers two principal approaches to predicting

atomistic properties: graph neural networks (GNN) and physics-
based descriptors. Graph neural networks have several valuable
properties that make them uniquely suitable for modeling atomic
systems: invariance to permutations, rotations, and translation;
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natural encoding of the locality of interactions. In the recent Open
Catalyst benchmark5, GNNs solidly outperform the physics-based
descriptors. Therefore, in this section, we only focus on GNNs.
Xie et al.12 is one of the first works to propose applying a

convolutional GNN to materials. Wolverton et al.16 improves on it,
by incorporating Voronoi-tessellated atomic structure, 3-body
correlations of neighboring atoms, and chemical representation of
interatomic bonds. Schütt et al.13 (Schnet) proposes continuous-
filter convolutional layers. Chen et al.11 (MEGNet) uses a more
advanced GNN: message-passing, instead of convolutional.
Klicpera et al.14,17 (GemNet) redresses an important shortcoming
of the previous message-passing GNN’s: loosing of geometric
information due to considering only distances as edge features.
Zitnick et al.18 improves handling of angular information.
Cloudhary et al. presents an Atomistic Line Graph Neural Network
(ALIGNN)19, a GNN architecture that performs message passing on
both the interatomic bond graph and its line graph corresponding
to bond angles. Ying et al.20,21 introduces Graphormer, a hybrid
model between Transformers and GNNs allows for more
expressive aggregation operations.
Even though the described models are not evaluated on

crystals with defects - they are in-principle capable of handling
any atomistic structures, and thus we use the most established
ones as baselines. Moreover, we demonstrate our approach using
one of the most renowned GNN architectures for materials:
MEGNet (see details in subsection “General message-passing
graph neural networks for materials”).
The introduction of a defect site in general creates disturbed

electronic states and the wave function associated with such
states fluctuates over a distance of a few lattice constants
depending on the localization of the electrons in the host lattice,
Fig. 1. This results in some localized defect levels in the energy
spectrum of the solid. From a quantum embedding theory point
of view22, the defects could be seen as the active region of interest
embedded in the periodic lattice. Accordingly, the defect levels
are governed by the interactions of the unsaturated electrons in
the background of the valence band electrons. The properties of a
defect complex composed of more than one defect sites are
governed by the interference of the wave functions of such

electrons23. As the result, the formation energy, positions of defect
levels, and the HOMO-LUMO gap are non-trivially dependent on
the defect configurations. As schematically shown in Fig. 1, two
defect states interfere with each other, and the separation of the
bonding and antibonding states is governed by the exchange
integral of the two states in the screening background of valence
electrons. The exchange integral is subtly dependent on the
positions of defect components, and such a HOMO-LUMO gap is a
complex functional of the defect configuration. It is still a
challenge for machine learning to precisely predict such nonlinear
quantum mechanic behavior of defects.
Machine learning methods have been proposed for prediction

of the formation energies of single point defects24–26 across
different materials, but the authors didn’t consider configurations
with multiple interacting defects. In a recent preprint27, the
authors use a model based on CGCNN12 to conduct a large scale
screening of single-vacancy structures for diverse energy applica-
tions. In ref. 4, the authors use MEGNet architecture for prediction
of the properties of pristine 2D materials and choosing the ones
that make optimal hosts for engineered point defects. Then they
use matminer28 combined with Random Forest29 for predicting
the properties of structures with point defects. A similar
descriptor-based approach is used in ref. 30. We evaluate the
descriptor-based approach for our data, as described in subsection
“Physics-based descriptors”.
ReaxFF31 potential has been developed for dichalcogenides,

and is used for studying defect dynamics32,33. The potential is very
computationally efficient, and thus allows to probe dynamics on a
larger time scale. However, it is not as precise as DFT, and doesn’t
offer a way to predict the electronic properties.
The paper is structured as follows. Section “Sparse representa-

tion of crystals with defects” presents our proposed method for
representing structures with defects to machine learning algo-
rithms. Section “Dataset” provides the description of the dataset
we use for evaluation. Sections “Aggregate performance”,
“Quantum oscillations prediction” present the computational
experiments, where we compare performances of different
methods. Finally, section “Discussion” summarizes our work.

Fig. 1 The quantum mechanic nature of defects. a DFT-simulated defect wave function centered at a single Mo site of MoS2 crystal lattice.
Red and green colors represent the opposite phases of the wave function isosurfaces. The dash circles are an illustration of the electronic
orbital shells. b A schematic representation of the wave function interference of two defect sites in a crystal lattice. c The defect levels are
governed by the exchange interaction of defect components, and hence the separation of the defect levels is dominated by the exchange
integral according to the valence bond theory.
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RESULTS
Sparse representation of crystals with defects
For machine learning algorithms, an atomic structure is a so-called
point cloud: a set of points in 3D space. Each point is associated
with a vector of properties, which at the least contains the atomic
number, but may also include more physics-based features, such
as radius, the number of valence electrons, etc.
The structures with defects present a challenge to machine

learning algorithms. The neighborhoods of the majority of the
atoms are not affected by the point defects. In principle, this
shouldn’t be an obstacle for a perfect algorithm. In practice,
however, this comparatively small difference in the full structures
is hard to learn. As we demonstrate in section “Aggregate
performance” with our computational experiments, state-of-the-
art algorithms underperform on crystal structures with defects.
We propose a way to represent structures with defects that

makes the problem of predicting properties easy for the ML
algorithms leading to better performance. The core idea is
presented in Fig. 2: instead of treating a crystal structure as a
point cloud of atoms, we treat it as a point cloud of defects. To
obtain it, we take the structure with defects, remove all the atoms
that are not affected by substitution defects, and add virtual
atoms on the vacancy sites.
Each point has two parameters in addition to the coordinates:

the atomic number of the atom on the site in the pristine structure
and the atomic number of the atom in the structure with the
defect. Vacancies are considered to have atomic number 0.
The structure of the pristine unit cell is encoded as a global

state for each structure using a vector with the set of atomic
numbers of the pristine material, e.g. (42, 16) for MoS2. This simple
approach is sufficient on our structures. As a future direction, in
case generalization between materials is desired, graph embed-
ding would be a logical choice: pristine material unit cell as an

input to a different GNN, which outputs a vector of fixed
dimensionality.
Secondly, we propose an augmentation specific to graph neural

networks and 2D crystals: adding the difference in z coordinate
(perpendicular to the material surface) as an edge feature.
Normally, such a feature would break the rotational symmetry.
But in the case of a 2D crystal, the direction perpendicular to the
material surface is physically defined and thus can be used.
In a crystal, the replacement of an atom or the introduction of a

vacancy causes a major disruption of the electronic states. Given
the wave nature of electrons, the introduction of a localized defect
creates oscillations in the electronic wave functions at the atomic
level similar to a rock thrown into a pond. In the case of crystals,
the wave function oscillations may involve one or several
electronic orbitals, and the amplitude of those oscillations decays
away from the defect at a rate that depends on the nature of
those orbitals. This oscillatory nature of the electronic states away
from a defect leads to the formation of electronic orbital shells
(EOS). We ascribe an EOS index to such shells, that labels the
amplitude of the wave function in decreasing order, the S atom
labeled 1 filling the largest amplitude, as we show in Fig. 1.
Formally we define EOS orbitals as follows. Firstly, we project all
atoms on the x-y plane, making a truly 2D representation of the
material. For binary crystals, for each atom, we draw circles
centered on it and passing through the atoms of the other
species, numbering them in the order of radius increase. For unary
materials (BP in our dataset), the circle radii are multiples of the
unit cell size. The circle number is the EOS index of the site with
respect to the central atom. The intuition behind those indices is
described in the paper34, which claims that the atomic electron
shells’ interaction strength is not monotonic with respect to atom
distance, but it oscillates in a way such that minima and maxima
coincide with the crystal lattice nodes. To represent those
oscillations, we also add parity of the EOS index as a separate
feature, which we call EOS parity.

Fig. 2 The transition from full to sparse representation for an example MoS2 supercell. a A full MoS2 structure with one Mo→W, two
S→ Se substitutions, and two S vacancies; b sparse representation, containing only defects types and coodrinates; c intermediate point of the
graph construction: cutoff radius centered on the metal substitution defect; d the final graph with sparse representation. A dashed green line
indicates a virtual graph edge that effectively connects one node with another via a periodic boundary condition.
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Incorporating sparse representation into a graph neural
network
Our proposed representation fits into the graph neural networks
(GNN) framework (described in subsection “General message-
passing graph neural networks for materials” as follows:

1. Graph nodes correspond to point defects, not to all the
atoms in a structure;

2. Threshold for connecting nodes with edges is increased;
3. Node attributes contain the atomic number of the atom on

this site in the pristine structure, and the atomic number of
the atom in the structure with defect, with 0 for vacancies;

4. Edge attributes contain not only the Euclidean distance
between point defects corresponding to the adjacent
vertices, but also EOS index, EOS parity index, and Z plane
distance;

5. Input global state contains the chemical composition of the
crystal as a vector of atomic numbers.

Dataset
We established a machine learning friendly 2D material defect
database (2DMD)15 for the training and evaluation of models. The
datasets contain structures with point defects for the most widely
used 2D materials: MoS2, WSe2, hexagonal boron nitride (h-BN),
GaSe, InSe, and black phosphorous (BP). The types of point defects
are listed in the Table 1. Supercell details are available in
Supplementary Table 1 and example defect depictions in
Supplementary Fig. 1.
The datasets consist of two parts: low defect concentration of

structured configurations and high defect concentration of
random configurations. The low defect concentration part consists
of 5933 MoS2 structures and 5933 WSe2 with all possible
configurations in the 8x8 supercell for defect types depicted in
Fig. 3. We used pymatgen35 to find the configurations, taking
into account symmetry. The high-density dataset contains a
sample of randomly generated substitution and vacancy defects
for all the materials. For each total defect concentration 2.5%, 5%,
7.5%, 10%, and 12.5% 100 structures were generated, totaling 500
configurations for each material and 3000 in total. Overall, the
dataset contains 14866 structures with 120–192 atoms each. The
datasets as designed could provide training data for AI methods
both the fine features of quantum mechanic nature and those
features associated with different elements, crystal structures, and
defect concentrations. We used Density Functional Theory (DFT)
for computing the properties, the details are described in the
subsection “DFT computations”
We use two target variables for evaluating machine learning

methods: defect formation energy per site and HOMO–LUMO gap.
Formation energy, i.e., the energy required to create a defect is

defined as

Ef ¼ ED � Epristine þ
X

i

niμi (1)

where ED is the total energy of the structure with defects, Epristine is
the total energy of the pristine base material, ni is the number of
the i-th atoms removed from (ni > 0) or added to (ni < 0) the
supercell to/from a chemical reservoir, and μi is the chemical
potential of the i-th element, computed with the same DFT
settings. Finally, to make the results better comparable across
examples with different numbers of defects, we normalize the
formation energy by dividing it by the number of defect sites:

E0f ¼ Ef=Nd; (2)

where Nd is the number of defects in the structure.
The electronic properties of defects are characterized by the

energy spacing between the highest occupied states and the
lowest unoccupied states. For the sake of representation, we
adopt the terminologies of HOMO-LUMO gap for the separation of
defect levels. Defects in some of the materials (BP, GaSe, InSe, h-
BN) have unpaired electrons and hence non-zero magnetic
momentum. Therefore, DFT was computed taking into account
two channels of spin-up and spin-down bands, resulting in the
majority and minority HOMO-LUMO gaps. For evaluating the
machine learning algorithms, we took the minimum of those gaps
as the target variable.

Aggregate performance
We split the dataset into 3 parts: train (60%), validation (20%), and
test (20%). The split is random and stratified with the respect to
each base material. For each model, we use random search for
hyperparameter optimization; we generate 50 hyperparameter
configurations, train the model with each configuration on the
train part, and select the best-performing configuration by
evaluating quality on the validation part. The search spaces and
optimal configurations are present in Supplementary Discussion 1.
To obtain the final result, we train each model with the optimal
parameters on the combination of train and validation parts and
evaluate the quality on the unseen test part. We do this 12 times
to estimate the effects of the random initialization. We use
unrelaxed structures as inputs and predict the energy and
HOMO–LUMO gap after relaxation. To account for the material
class imbalance, we use weighted mean absolute error (MAE) as
the quality metric during both training and evaluation:

MAE ¼
PN

i¼1 jyi � yijwiPN
i¼1 wi

; (3)

where wi is the weight assigned to each example; yi is the
predicted value; yi is the true value; N is the number of the
structures in the dataset. The purpose of using weights is to
prevent the combined error value from being dominated by the
low defect density dataset part, as it’s 4 times more numerous
compared to the high defect density part. The weights are
computed as follows:

wpart ¼ Ntotal

CpartsNpart
; (4)

where wdataset is the weight associated with each example in a
dataset part, Ntotal= 14866 is the total number of examples,
Cparts= 8 is the total number of dataset parts (2 low-density and 6
high-density), Npart∈ {500, 5933} is the number of examples in the
part (500 for low defect density parts, 5933 for the high defect
density parts).
We compare the performance of our sparse representation

combined with MEGNet11 to several baseline methods: MEGNet,
SchNet13, and GemNet14 on full representation, and CatBoost36

with matminer-generated features 4.3. The results are presented
in Table 2. For energy prediction, our model achieves 3.7× less
combined MAE compared to the best baseline, with 2.2×–6.0×
difference in individual dataset parts. For HOMO-LUMO gap, using
sparse representation doesn’t lead to an increase in overall

Table 1. Point defect types present in the 2DMD datasets.

Material Substitutions Vacancies

MoS2 S→Se; Mo→W Mo; S

WSe2 Se→S; W→Mo W; Se

h-BN B→C; N→C B; N

GaSe Ga→In; Se→S Ga; Se

InSe In→Ga; Se→S In; Se

BP P→N P
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prediction quality. The prediction quality for MoS2 and WSe2 is
improved by a factor of 1.3–4.8, but this is outweighted by a factor
of 1.06–1.15 increase in MAE for the other materials. Coinciden-
tally, the combined MAEs are similar, being averaged over the
absolute error values.
In terms of computation time, when trained on a Tesla V100

GPU, MegNet with sparse representation took 45 minutes; MegNet
with full representation 105 minutes; GemNet 210 minutes;
SchNet 100 minutes; CatBoost 0.5 minutes. Low memory footprint
and GPU utilization allow to fit 4 simultaneous runs with sparse
representation on the same GPU (16 GiB RAM) without loosing
speed, this is not possible for the GNNs running on full
representation. Computing matminer features can’t be done on
a GPU, and costs 7.5 CPU core-minutes per structure and 1860
core-hours for the whole 2DMD dataset. Model configurations are
listed in Supplementary Discussion 1.

Quantum oscillations prediction
In addition to the overall performance, we specifically evaluate the
models with the respect to learning quantum oscillations. We use
the MoS2 with one Mo and one S vacancy as the test dataset, and
the rest of the 2DMD dataset as the training dataset. No sample
weighting is used. We train every model 12 times with both
optimal hyperparameters found via random search and the
default parameters.

As seen in the Table 2, sparse representation performs
especially well on the low-density data. This behavior extends
nicely to the 2-vacancy data, as shown in Fig. 4. The baseline
approaches fail to meaningfully learn the dependence, while
sparse representation succeeds perfectly, including the non-
monotonous reduction at 5Å.
As shown in the Supplementary Discussion 3, the result is

similar for untuned hyperparameters.

Ablation study
The ablation study investigates how much each proposed
improvement contributes to the final result. The performance
values are presented in Table 3.
To conduct the ablation study, we took the optimal configura-

tions for MEGNet with sparse and full representations found by
random search. We then took the configuration for the sparse
representation turned off our enchantments one-by-one, trained
and evaluated the resulting models. We use a value averaged over
12 experiments, same as in Table 2 to estimate training stability.
For formation energy, just enabling the z coordinate difference

in sparse representation edges allows the Sparse-Z model to
outperform the Full model everywhere except h-BN; adding
pristine atom species (Sparse-Z-Were) as the node features
contributes the most of the remaining gain. The most likely
explanation for the importance of the pristine species for h-BN is

Fig. 3 Defect types in low density dataset. The ‘Mo’ and two ‘S’ columns denote the the type of site that is being perturbed either by
substituting the listed element, or a vacancy (vac). ‘Num’ column contains the number of structures with defects of the type in the dataset.
Finally, ‘Example’ column presents a structure with such defect. Note that the actual supercell size is 8 × 8, here we draw 4 × 4 window centred
on the defects to conserve space. Drawings of example structures with 8 × 8 supercells are available in Supplementary Fig. 1.
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that both atoms can be substituted to C, without this additional
information, the model can’t distinguish between B and N
substitutions. Adding EOS improves expected prediction quality
and stability by a small amount for the low-density datasets.
For HOMO–LUMO gap, Sparse-Z-Were and Sparse-Z-Were-EOS

perform similarly to Full in terms of the combined metric,
outperform it by a factor of 4 for low-density data. EOS again
improves prediction quality and stability by a small amount for the
low-density datasets.

DISCUSSION
2D crystals present an incredible potential for the future of
material design. Their two-dimensional nature makes them prone
to chemical modification, which further increases their tunability
for a variety of applications. However, the search space for
possible configurations is vast. Thus, the ability to predict the
properties of such crystals efficiently becomes a vital task. In this
paper, we focus on predicting the properties of such crystals
blended with defects, substitutions, and vacancies. State-of-the-art
machine learning algorithms struggle to learn the properties of
crystals’ defects accurately. We propose using a sparse represen-
tation combined with graph neural network architectures like
MEGnet and show that it dramatically improves energy prediction
quality. Our studies demonstrate that the prediction error drops
3.7 times compared to the nearest contender. Moreover, the
representation is compatible with any machine learning algorithm
based on point clouds. Computationally the training of a graph

neural network using sparse representation takes at least 4x less
memory and 8x less GPU operations compared to the full
representation. Thus, we conclude that our approach gives a
practical and sound way to explore a vast domain of possible
crystal configurations confidently.
We see two principal directions for future work. Firstly, 3D

materials. Sparse representation can be used as is for ordinary 3D
crystals with point defects. Secondly, generalization to unseen
materials. In our paper, we consider setup where each base
material is present in the training dataset. Combining sparse
defect representation with advanced base material representa-
tion24,25,27 opens up an enticing possibility for predicting proper-
ties of defect complexes in new materials, without having to
prepare a training dataset with defects in those new materials.

METHODS
DFT computations
Our calculations are based on density functional theory (DFT) using
the PBE functional as implemented in the Vienna Ab Initio
Simulation Package (VASP)37–39. The interaction between the
valence electrons and ionic cores is described within the projector
augmented (PAW) approach40 with a plane-wave energy cutoff of
500 eV. The initial crystal structures were obtained from the
Material Project database, and the supercell sizes and the
computational parameters for each material can be found in
Supplementary Table 1. Since very large supercells are used for the
calculation of defects, the Brillouin zone was sampled using Γ-point

Table 2. Performance of the different methods in terms of the mean absolute error (MAE).

Formation energy per site MAE, meV; lower is better

Material Density SchNet GemNet MEGNet (Full) CatBoost Sparse (MEGNet)

Combined Both 631 ± 31 483 ± 91 158 ± 47 164 ± 5 43 ± 5

BP High 2088 ± 72 1490 ± 429 198 ± 211 382 ± 30 80 ± 10

GaSe High 245 ± 12 230 ± 41 107 ± 25 103 ± 4 48 ± 7

InSe High 268 ± 19 247 ± 26 95 ± 27 137 ± 5 35 ± 2

MoS2 High 321 ± 100 535 ± 206 136 ± 22 136 ± 5 23 ± 5

WSe2 High 536 ± 123 575 ± 181 112 ± 33 162 ± 6 23 ± 4

h-BN High 1442 ± 68 697 ± 315 496 ± 229 363 ± 17 127 ± 16

MoS2 Low 65 ± 5 44 ± 14 58 ± 11 12.6 ± 0.4 4 ± 1

WSe2 Low 85 ± 22 42 ± 9 65 ± 16 16.3 ± 0.8 6 ± 1

HOMO – LUMO gap MAE, meV; lower is better

Material Density SchNet GemNet MEGNet (Full) CatBoost Sparse (MEGNet)

Combined Both 224 ± 111 166 ± 42 112 ± 3 117 ± 1 112 ± 3

BP High 208 ± 20 176 ± 10 170 ± 4 174 ± 2 187 ± 9

GaSe High 309 ± 83 196 ± 11 178 ± 8 173 ± 4 194 ± 11

InSe High 214 ± 69 178 ± 22 156 ± 7 155 ± 1 167 ± 15

MoS2 High 204 ± 121 174 ± 111 54 ± 4 71 ± 4 39 ± 4

WSe2 High 186 ± 177 268 ± 182 47 ± 3 106 ± 6 38 ± 4

h-BN High 244 ± 24 227 ± 6 233 ± 4 208 ± 3 260 ± 14

MoS2 Low 187 ± 180 46 ± 42 30 ± 2 26.7 ± 0.8 5.7 ± 0.2

WSe2 Low 236 ± 224 64 ± 46 32 ± 5 18.3 ± 0.6 8.1 ± 0.6

Sparse (MEGNet) is our representation implemented in the MEGNet model with all the improvements enabled. SchNet, GemNet, MEGNet (full) have full
structures as their input with no additional features. CatBoost uses matminer featurizers. All the models were trained on the same dataset, containing stratified
samples of all the parts of 2DMD dataset. The dataset splitting strategy is described in detail in subsection “Aggregate performance”. Combined refers to the
whole test sample, with the error contributions weighted according to equation (4). The individual material/density combinations refer to the subsets of the
combined test dataset. Error indicates the standard deviation of the results obtained from 12 experiments with the same datasets and model parameters, but
different random initialization. Bold font indicates the best results for each dataset, taking the uncertainty into account.

N. Kazeev et al.

6

npj Computational Materials (2023)   113 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



only Monkhorst-Pack grid for structural relaxation and denser grids
for further electronic structure calculations. A vacuum space of at
least 15 Å was used to avoid interaction between neighboring
layers. In the structural energy minimization, the atomic coordi-
nates are allowed to relax until the forces on all the atoms are less
than 0.01 eV/Å. The energy tolerance is 10−6 eV. For defect
structures with unpaired electrons, we utilize standard collinear
spin-polarized calculations with magnetic ions in a high-spin
ferromagnetic initialization (the ion moments can of course relax to
a low spin state during the ionic and electronic relaxations).
Currently, we are focusing on basic properties of defects at the
level of single-particle physics and did not include spin-orbit
coupling (SOC) and charged states calculations. Since the materials
we considered are normal nonmagnetic semiconductors and none
of them are strongly correlated systems, we did not employ the
GGA+U method. A comparison of a few selected the computed

values to the ones available in the literature is available in
Supplementary Table 2.

General message-passing graph neural networks for materials
There are many types of graph neural networks (GNN). In this
section, we outline the message-passing neural network proposed
by Battaglia et al.41. Those became rather popular for analyzing
material structure11.
To prepare a training sample, a graph is constructed out of a

crystal configuration: atoms become graph nodes, and graph
edges connect nodes at distances less than a predefined
threshold. The connections respect periodic boundary conditions,
i.e., for a significantly large threshold, an edge can connect a node
to its image in an adjacent supercell. Specific property vectors also
characterize nodes and edges. A node contains the atomic

Fig. 4 Predicted and DFT formation energy as a function of the distance between the defects for MoS2 with one Mo and one S vacancy.
Error bars represent the standard deviation across 12 models trained from different random initialisation.
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number, and an edge contains the Euclidean distance between
the atoms it connects.
A layer of a message-passing neural network transforms a

graph into another graph with the same connectivity structure,
changing only the nodes, edges, and global attributes. The
layers are stacked to provide an expressive deep architecture.
Let G= (V, E, u) be a crystal graph from the previous step, the
nodes are represented by vectors V ¼ fvigjV ji¼0, where vi 2 Rdv

and ∣V∣ is the number of atoms in the supercell. The edge states
are represented by vectors fekgjEjk¼0, where ek 2 Rde . Each edge
has a sender node index vs ∈ {0,⋯ , ∣V∣− 1}, a receiver node
vr ∈ {0,⋯ , ∣V∣− 1} and a vector of edge attributes. An edge is
represented by a tuple ðvsk ; vrk; ekÞ, where the superscripts s, r
denote the sender and the receiver nodes respectively. The
global state vector u 2 Rdu represents the global state of the
system. In the input graph, the global state is used to provide
the algorithm with information about the system as a whole, in
the case of our sparse representation, the composition of the
base material. In the output graph, the global state contains the
model predictions of the target variables. A message-passing
layer is a mapping from G= (V, E, u) to G0 ¼ ðV 0; E0;u0Þ, this
mapping is based on update rules for nodes, edges, and global
state. Edge update rule operates on the information from the
sender vsk , receiver nodes v

r
k , edge itself ek, and the global state

u. We can represent this rule by a function φe:

e0k ¼ ϕe vsi ; v
r
i ; ek ;u

� �
: (5)

Node update rule aggregates the information from all the edges
Evi ¼ fe0k je0k 2 neighbors ðviÞg connected to the node vi, the
node itself vi and the global state u. We can represent this rule by

function ϕv :

ei ¼ 1
jEvi j

X

neighborsðviÞ
e0k (6)

v0i ¼ ϕvðei; vi;uÞ (7)

Finally, the global state u is updated based on the aggregation of
both nodes and edges alongside the global state itself and
process them with ϕu:

uv ¼ 1
jV j

XjV j�1

i¼0

v0i (8)

ue ¼ 1
jEj

XjEj�1

k¼0

e0k (9)

u0 ¼ ϕuðuv;ue;uÞ (10)

The functions ϕv, ϕe, ϕu are fully-connected neural networks.
The model is trained with ordinary backpropagation, minimizing
the mean squared error (MSE) loss between the predicted values
in u of the output graph, and the target values in the training
dataset.

Physics-based descriptors
To make a complete comparison, we also evaluate a classic setup,
where physics-based descriptors are combined with a classic
machine learning algorithm for tabular data, CatBoost36. The
numerical features we extract from the crystal structures using the
matminer package28 are outlined in Table 4.

Table 3. Performance of various combinations of our proposed features.

Formation energy per site MAE, meV; lower is better

Material Density Full Sparse Sparse-Z Sparse-Z-Were Sparse-Z-Were-EOS

Combined Both 158 ± 47 432 ± 29 404 ± 24 42 ± 4 43 ± 5

BP High 198 ± 211 116 ± 18 104 ± 16 75 ± 9 80 ± 10

GaSe High 107 ± 25 76 ± 9 66 ± 10 48 ± 7 48 ± 7

InSe High 95 ± 27 81 ± 8 69 ± 8 34 ± 3 35 ± 2

MoS2 High 136 ± 22 223 ± 21 96 ± 15 23 ± 4 23 ± 5

WSe2 High 112 ± 33 147 ± 27 63 ± 11 23 ± 2 23 ± 4

h-BN High 496 ± 229 2741 ± 202 2792 ± 184 123 ± 14 127 ± 16

MoS2 Low 58 ± 11 37 ± 15 19 ± 4 5 ± 2 4 ± 1

WSe2 Low 65 ± 16 30 ± 9 21 ± 5 7 ± 2 6 ± 1

HOMO – LUMO gap MAE, meV; lower is better

Material Density Full Sparse Sparse-Z Sparse-Z-Were Sparse-Z-Were-EOS

Combined Both 112 ± 3 148 ± 5 121 ± 2 114 ± 7 112 ± 3

BP High 170 ± 4 197 ± 10 192 ± 9 188 ± 18 187 ± 9

GaSe High 178 ± 8 237 ± 12 205 ± 16 207 ± 16 194 ± 11

InSe High 156 ± 7 170 ± 8 172 ± 14 160 ± 9 167 ± 15

MoS2 High 54 ± 4 110 ± 10 45 ± 2 40 ± 5 39 ± 4

WSe2 High 47 ± 3 173 ± 13 66 ± 4 39 ± 6 38 ± 4

h-BN High 233 ± 4 265 ± 16 271 ± 11 267 ± 21 260 ± 14

MoS2 Low 30 ± 2 12 ± 1 7.2 ± 0.4 6.0 ± 0.7 5.7 ± 0.2

WSe2 Low 32 ± 5 19 ± 1 11.7 ± 0.6 8.4 ± 0.6 8.1 ± 0.6

Full—full structure is used as MEGNet input. Sparse—sparse structure used as MEGNet input; Sparse-Z adds z coordinate differences in edges; Sparse-Z-Were
adds the atomic species of the pristine material on the defects site as a node feature; Sparse-Z-Were-EOS add EOS index and EOS parity as edge features. Bold
font indicates the best results for each dataset, taking the uncertainty into account.
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