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Non-adiabatic approximations in time-dependent density
functional theory: progress and prospects
Lionel Lacombe1 and Neepa T. Maitra2✉

Time-dependent density functional theory continues to draw a large number of users in a wide range of fields exploring myriad
applications involving electronic spectra and dynamics. Although in principle exact, the predictivity of the calculations is limited by
the available approximations for the exchange-correlation functional. In particular, it is known that the exact exchange-correlation
functional has memory-dependence, but in practise adiabatic approximations are used which ignore this. Here we review the
development of non-adiabatic functional approximations, their impact on calculations, and challenges in developing practical and
accurate memory-dependent functionals for general purposes.
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INTRODUCTION
Over the past almost 40 years, time-dependent density functional
theory (TDDFT) has enabled the calculation of electronic spectra
and dynamics in systems that would have been otherwise out of
reach to treat quantum-mechanically1–6. While ground-state
density functional theory (DFT) is the mainstay of electronic
structure, being itself the most widely-used method for materials
and molecules as well as the starting point of almost all other
treatments of materials, it does not give excitations, or more
generally the response to a time-dependent external field whether
weak or strong. DFT-flavored methods that do provide excitation
energies include ΔSCF7 which, while originally justified only for the
lowest state of a given symmetry, was later shown to have a
rigorous basis through the generalized adiabatic connection
approach of ref. 8; the method however is usually used in a very
approximate way with ground-state DFT functionals replacing
approximations to the orbital-dependent excited state functionals
appearing in the theory. Ensemble-DFT9–11, recently extensively
reviewed in ref. 12, provides another in-principle exact route to
excitation energies, but existing formulations of either ensemble-
DFT or ΔSCF do not give access to other response properties such
as spectral oscillator strengths. Alternative methods based on
approximations to the true wavefunction, or on other reduced
quantities such as the one-body Green’s function or reduced
density-matrices, require more computational resources. There are
simply no computationally feasible alternatives to TDDFT for some
of the applications on complex systems particularly when driven
away from their ground states. Some examples over the past 5
years are described in recent reviews5,6,13, and range from
simulations of electronic stopping power14, charge transport in
complex molecules15, across nano-junctions16 and in light
harvesting systems17, attosecond electron dynamics and high-
harmonic generation in solids13,18–20, laser-driven dynamics in
nanogaps of thousand-atom systems21, angle-resolved photo-
emission from large clusters22, ultrafast spin transfer23, Floquet
engineering24, and conductivity in a disordered Al system that
treated almost 60,000 electrons explicitly25. On the other hand, in
the vast majority of cases, TDDFT is applied in the linear response
regime, where weak perturbations of the ground-state formulated

in the frequency-domain provide excitation spectra and oscillator
strengths26–30; the favorable system-size scaling of TDDFT has
been further enhanced with the use of embedding methods31–36

or stochastic orbitals37,38.
The computational efficiency of TDDFT is all the more

appreciated considering the climate crisis we face today. Instead
of simulating the many-electron interacting TDSE, the
Runge–Gross theorem1–3 assures us that we can, in theory, find
the exact time-dependent density and all observables from
solving the time-dependent Kohn–Sham (KS) equation:

�∇2=2þ vSðr; tÞ
� �

ϕiðr; tÞ ¼ i∂ϕiðr; tÞ=∂t (1)

(in atomic units) where the KS potential is:

vSðr; tÞ ¼ vextðr; tÞ þ vH½n�ðr; tÞ þ vXC½n;Ψ0;Φ0�ðr; tÞ (2)

Here:

vH½n�ðr; tÞ ¼
Z

d3r0wðjr� r0jÞnðr0; tÞ (3)

is the Hartree potential,

nðr; tÞ ¼ N
P

σ;σ2::σN

Z
d3r2::rNjΨðrσ; r2σ2::rNσNÞj2

¼
PN
i
jϕiðr; tÞj2

(4)

is the one-body density, and wðjr� r0jÞ the electron-electron
interaction. The last term in Eq. (2) is the time-dependent
exchange-correlation (xc) potential, vXC[n; Ψ0,Φ0](r, t): a func-
tional of the density, the initial interacting wavefunction Ψ0 and
initial choice of KS wavefunction Φ0. Solving for N single-particle
orbitals scales far better with system-size than solving for Ψ, the
correlated wavefunction of N electrons. In linear response
applications, a perturbative limit of these equations gives the
density response, from which excitation spectra can be
extracted; there, instead of vXC, its functional derivative, the xc
kernel f XC½n0�ðr; r0; t � t0Þ is required. What makes this reformula-
tion of many-electron dynamics possible is the Runge–Gross
theorem proving the one-to-one mapping between the density
and potential for a fixed initial state1, and the assumption of non-
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interacting v-representability39. (We note that the rigorous
mathematical foundations of both aspects are somewhat
unsettled40,41).
The Runge–Gross theorem guarantees that all observables,

beyond just the time-dependent density, can be accessed with
knowledge of the corresponding functional of the density and
initial KS state. However, the identification of these functionals for
observables not directly expressed in terms of the density is a
challenging problem that has only been examined in a limited
number of studies42–44. In practice, an approximation is made by
using the KS wavefunction directly. We also note that the theorem
holds for the density, but can be generalized to spin-densities, and
in practice spin-densities are often used especially when proper-
ties related to magnetization are of interest.
A key element in these calculations is the xc potential,

vXC[n;Ψ0,Φ0](r, t), which is unknown and needs to be approximated.
Almost all the calculations today use an adiabatic approximation;
that is, a ground-state xc potential evaluated on the instantaneous
density. Digging into the theory however reveals that the exact xc
potential has memory-dependence: it depends on the history of the
density, nðr; t0 � tÞ as well as the initial interacting and KS states, Ψ0

and Φ0. In the linear response regime, memory-dependence
endows the xc kernel with a frequency-dependence. Ever since
the early days of TDDFT, researchers have been striving to build
approximations which include this memory-dependence. Here, we
review these efforts and their successes, reasons for why they are
not widely used, and discuss prospects of future developments.
Before doing so, we demonstrate, using an exactly-solvable model
system, the implications of memory-dependence for both dynamics
and excitations, and discuss some exact conditions related to
memory dependence.

SIGNIFICANCE OF MEMORY-DEPENDENCE
The lack of memory-dependence in adiabatic TDDFT has been
held responsible for errors in their predictions for many real
systems, and sometimes significant failures, e.g. refs. 44–57. In
practise, an adiabatic approximation has two sources of error:
one coming from the choice of the ground-state approximation,
and one from making the adiabatic approximation itself. In
some cases, the spatial non-local property of the xc functional is
more important, and is lacking in the commonly used local or
semi-local approximations, e.g., for excitons58, and some
charge-transfer excitations59,60, and including long-range
dependence yields good results even within an adiabatic
approximation. But in other cases, memory-dependence is
essential in both real-time non-perturbative dynamics and in
linear response, as in refs. 22,44–57. In the real-time regime,
adiabatic functionals cannot describe resonantly-driven
dynamics, or dissipation and relaxation from electron-electron
interaction in large systems, for example. To isolate the effect of
the lack of memory-dependence alone, a useful tool is to
consider the adiabatically-exact approximation4,61,62, which
consists of using the exact ground-state (g.s.) approximation:

vA�ex
XC ½n;Ψ0;Φ0�ðr; tÞ ¼ vexact g:s:XC ½nðtÞ�ðrÞ (5)

The “best” adiabatic approximation possible is then to propagate
with vA�ex

XC ðr; tÞ, which would require finding the exact g.s. xc
potential at each instant in time. This is numerically quite
demanding for all but the simplest systems but very instructive
when carried out62–66, especially when the resulting density and
xc potential can be compared with the exact time-dependent
density and xc potential. Finding the latter for a given target
density can be generally achieved through iteration proce-
dures40,67–71, or more simply for two-electron cases with only
one doubly-occupied KS orbital, e.g. refs. 72–76. Section “Example:
asymmetric Hubbard dimer” gives an example on a very simple

system, comparing propagation with the adiabatically-exact xc
potential against the exact propagation.
In the linear response regime, the KS spectrum is corrected

toward that of the true spectrum through the xc kernel which is
the density-functional-derivative of the xc potential26,27 (section
“Non-adiabatic approximations in TDDFT”). The adiabatic approx-
imation yields a frequency-independent kernel, but the frequency-
dependence of the exact xc kernel is crucial to capture certain
properties: for example, states of double-excitation character in
molecules45,77, corrections to the band gap in semiconductors to
which the mere KS gap gives an underestimate78,79 unless hybrid
functionals within generalized KS are used, and the excitonic
Rydberg series in semiconductors80. The exact xc kernel has been
found by inversion in a few works81–83, and recently, the general
pole structure of the kernel was related to zeros in the density
response from counterbalancing behavior of neighboring oscilla-
tory modes, allowing a parametric reconstruction of the kernel80.

Example: asymmetric Hubbard dimer
To demonstrate the impact of the adiabatic approximation, we
consider one of the simplest interacting two-electron systems, the
Hubbard dimer:

H ¼ �t
X
σ¼";#

ðay1σa2σ þ ay2σa1σÞ þ U
X
i

n̂i"n̂i# þ
X
i

vi n̂i (6)

where t is a site-to-site hopping parameter, U is an on-site
interaction strength, and Δv= ∣v1− v2∣ controls the asymmetry of
the two-site system. This has been thoroughly studied in the
ground state, see ref. 84 for a review which also provides a
parametrization of the exact ground-state xc potential for this
system, tuning the correlation, and examines limiting cases such
as the symmetric limit, and the weakly- or strongly-correlated
limits. As emphasized in ref. 84, while the study of lattice models is
insightful and shares features similar to real-space systems, it is
not representative of most TDDFT applications which are done in
real-space. Depending on the physical system at hand, the
reduction of dimensionality and local nature of the interaction
may be valid approximations85. The key parameter in determining
the degree of correlation is the ratio of the asymmetry to the on-
site interaction, Δv/U84,86; even for large interaction strengths U,
the system is weakly correlated (meaning, the next lowest energy
determinants to the KS ground-state determinant are not
“nearby”) if the asymmetry Δv is large enough that two electrons
essentially sit on the same site in the ground state. Ref. 86 focuses
on the exact features of the xc kernel in the same system.
Since only three singlet states span the Hilbert space, the

ground-state Levy constrained search over all wavefunctions can
be readily performed numerically given a target density64–66,87–101.
This means that, at each time-step, it is straightforward to find the
adiabatically-exact xc potential and use it to propagate to the next
time-step. In this way, we can directly isolate the effect of making
the adiabatic approximation on the dynamics, without any
approximation to the ground-state functional.
Figure 1 shows the dynamics driven out of the ground-state by

a π-pulse resonant with the lowest excitation, for parameters
t= 1/2, Δv=− 15, and either U= 10, or U= 20 in the strong
correlation case. In either case, this excitation has a charge transfer
character with respect to the ground state: for U= 10 the ground
state has close to two electrons sitting on the lower site, while the
lowest excitation has one electron transferred to the other site,
while for U= 20 (Mott–Hubbard regime), the ground-state has
close to one electron on each state while the lowest excitation has
close to two electrons on the lower site. Driving the Hubbard
dimer initially in its ground state with a weak π-pulse at this lowest
excitation energy thus shows a large change in the site occupation
Δn= n1− n2 as shown in the left panels of Fig. 1. In both cases,
the adiabatically-exact evolution shows only a small partial charge
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transfer (particularly small in the strongly correlated case) before
returning to oscillate around the ground state density. This failure
can be traced to the inability of the adiabatically-exact xc potential
to capture dynamical step features72, in particular, a non-adiabatic
step feature associated with charge-transfer59,65,66,73, evident in
the oscillations and large change in the xc potentials shown on
the right-hand-side; a full discussion of the xc potentials and
densities in similar dynamics (using a continuous wave flat
envelope driving instead of a π-pulse) can be found in refs. 65,66.
The dynamics seen here is very similar to that found in real
molecules47 where adiabatic approximations also began to charge
transfer and then appeared to give up (see also Fig. 3) shortly; the
fact that even the adiabatically-exact fails indicates it is an issue
with memory-dependence.
As mentioned above, the problem can be traced to the lack of

dynamical steps and peaks in the xc potential, and this appears
to especially drastically affect resonant-driving because it leads
to spurious pole-shifting: when driven away from its ground-
state, the resonant frequencies of a system predicted by
adiabatic TDDFT are detuned from the values predicted from
linear response of the ground-state50,102 but excitation energies
of a system should not shift with the instantaneous state (see
also Fig. 3 shortly). The density-dependence of the KS potential
results in the response of a general state having spuriously
shifted poles, while the exact generalized xc kernel acquires a
frequency-dependence that corrects this shift102,103. Adiabatic
TDDFT is trying to predict resonantly-driven dynamics but keeps
being driven out of resonance by the density-dependence. In
fact, one could obtain a larger charge-transfer by instead
applying a “chirped” laser that has a time-dependent frequency
that adjusts to the instantaneous resonant frequency of the
adiabatic approximation during the driving103. In general, the
spurious pole-shifting can muddy the interpretation of the
underlying dynamics of molecules when properties of the time-
resolved dynamics are measured by a probe; the shifts of peaks
in the experimental time-resolved spectrum correspond to
different nuclear configurations, while in an adiabatic TDDFT
simulation it would be hard to disentangle this from the spurious
peak-shifting.
Ref. 104 argued for the case of using the linear-response TDDFT

formulation of Ehrenfest dynamics rather than a real-time

formulation due to this problem when simulating coupled
electron-nuclear dynamics. This was demonstrated using a model
system to compute the errors in predicting the underlying nuclear
dynamics when the spectra are calculated in either formulation.
An analog of this molecular dynamics situation for the Hubbard
molecule is demonstrated in Fig. 2, where the system under the
same π-pulse as in Fig. 1 is probed at various times during the
pulse by a weak pulse that measures the spectrum at that time.
Note that the field is off during the probe measurement, so the
exact absorption spectrum should have peaks at the same
frequency each time, albeit with different oscillator strength. This
condition is not respected by the adiabatically-exact propagation,
as evident in the middle panel. The table gives the values of the
peak frequencies at the times indicated during the evolution,
exact and predicted from the adiabatically-exact evolution, and
the external potential vext(ωAE) whose linear response from the
ground-state lies at the dominant peak in the exact and
adiabatically-exact calculations. At T ¼ 0, there is a small
difference between the adiabatically-exact and exact transition
frequency. Even though the targeted single excitation is far from
the doubly-excited state, a small amount of mixing still occurs and
its contribution is hidden in the frequency-dependent part of the
xc kernel that is neglected in the adiabatic propagation.
Leaving now the Hubbard playground and returning to real

systems, Fig. 3 shows a sampling of results on molecular or solid-
state systems where errors due to the adiabatic approximation
lead to significant errors in their predictions of dynamics or
spectra.
The results here appear to paint a bleak picture for the adiabatic

approximation, and yet the TDDFT calculations in e.g. refs.
5,6,13–23,25 have been accurate enough to reveal useful information
about electron dynamics. Why this is so, is only partially
understood; it is likely that few-electron, few-state systems are
the most challenging cases for TDDFT and that often real systems
are complex and large enough that e.g., peaks have significant
widths and blur some of the problems discussed here. It is also
true that in some applications the dominant effect driving the
dynamics is the external potential, and the essential role of the xc
potential is to partially counter self-interaction in the Hartree-
potential and that a ground-state description of this is adequate.
Further, often the observables of interest in real systems involve

Fig. 1 Hubbard dimer driven by a π-pulse resonant with the lowest excitation: adiabatically-exact (AE) dynamics compared with the
exact, in the weak correlation (top panels) and strong correlation (lower panel) cases. The left-hand side shows the analog of the dipole,
the site-occupation difference, Δn= n1− n2 while the right-hand-side shows the xc potential difference ΔvXC.
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averaged quantities (e.g., the dipole moment rather than the
spatially-resolved electron density) that can forgive even relatively
large local errors in the density105. In situations where the system
does not begin in a ground-state, it has been argued that the
adiabatic approximation is likely to work best when the KS initial
state is chosen to have a similar configuration as that of the true
initial state105–107, and that if, in the true problem the natural
orbital occupation numbers do not significantly evolve even as
the natural orbitals themselves may evolve significantly, then the
adiabatic approximation can be justified to do a reasonable job
even for strongly perturbed dynamics105. A final consideration is
that the adiabatic approximation, by virtue of not having any
memory-dependence, in fact satisfies a number of exact condi-
tions that are related to memory (section “Memory-related exact
conditions”).

Memory-related exact conditions
We note that some insight into the structure of the exact xc
potential can be gained from an exact expression resulting from
equating the Heisenberg equation of motion for the second time-
derivative of the density of the KS system to that of the interacting
system39,67,69,105,108:

vXC ¼ vWXC þ vTC (7)

where the interaction component vWXC satisfies:

∇ � ðnðr; tÞ∇vWXCðr; tÞÞ ¼ ∇ � nðr; tÞ
Z

nXCðr0; r; tÞ∇wðjr0 � rjÞd3r0
� �

; (8)

and the kinetic component vTC satisfies:

∇ � ðnðr; tÞ∇vTCðr; tÞÞ ¼ ∇ � Dðρ1ðr0; r; tÞ � ρ1;Sðr0; r; tÞÞjr0¼r

� �
; (9)

Fig. 2 Time-resolved spectroscopy in the Hubbard dimer (U= 10 case): at the times T indicated during the dynamics in the top panels of
Fig. 1, the field is turned off and the system is probed to measure its absorption spectrum. The top figure shows the exact, the middle
shows the predictions from the adiabatically-exact approximation demonstrating the peak-shifting, while the table shows the predictions of
the external potential values that would be deduced by comparing the peak position to frequencies predicted from linear response.
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with D ¼ 1
4 ð∇

0 � ∇Þð∇2 � ∇02Þ;∇ ¼ ∇r and ∇0 ¼ ∇r0 . Here nXC is
the time-dependent xc hole defined as:

nXCðr; r0Þ ¼ ρ2ðr; r0; r; r0Þ=nðr0Þ � nðrÞ; (10)

where the two-body reduced density-matrix (2RDM) is:

ρ2ðr1; r2; r01; r02Þ ¼ NðN � 1Þ
Z

dr3::drNΨ
�ðr01; r02; r3; ::; rNÞΨðr1; r2; r3; ::; rNÞ:

(11)

The one-body reduced density matrix (1RDM) is:

ρ1ðr; r0Þ ¼ N
Z

dr2::drNΨ
�ðr0; r2; ::; rNÞΨðr; r2; ::; rNÞ; (12)

and ρ1,S is the 1RDM of the KS system.
Through Eqs. (7)–(9), the dependence on the history of the

density nðt0< tÞ and the full interacting and KS initial states Ψ(0)
and Φ(0) is transformed into a more time-local dependence on the
KS 1RDM, the true 1RDM, and the xc hole. It has been argued that
adiabatic approximations tend to make less error on vWXC because
the spatial integral appearing there is somewhat forgiving, while
vTC is responsible for the dominant non-adiabatic effects, including
the dynamical steps and peak structures69,74,105,109. Further, the

choice of initial KS state has a key effect on the size of vTC, as
evident from its dependence on the difference between the
interacting and KS 1RDMs; as mentioned earlier, a judicious choice
can ease the job of the xc functional approximation. Attempts to
build a memory-dependent functional based on this decomposi-
tion will be discussed in the section “Density-matrix coupled
approximations”.
Several of the known exact conditions for the ground-state xc

functional have analogs in the time-dependent case, e.g., one-
electron self-interaction-free conditions (vX[n](r, t)=− vH(r, t), vC[n]
(r, t)= 0), while others are nested in the energy-minimization
principle and cannot be extended to the time-dependent case
(e.g., Lieb-Oxford bound). But there are also exact conditions that
are inherently associated with the time-dependence of the
system, and these typically have implications for memory-
dependence of the functional. Here we briefly discuss two of
the conditions that have been key ingredients in the development
of non-adiabatic approximations, and refer the reader to
refs. 110,111 and Fig. 4 for discussion of others. As in the ground-
state112,113, including the ingredients sketched in Fig. 4 in
functional approximations leads to increased accuracy and
reliability of the TDDFT predictions: Although their importance
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Fig. 3 Examples of errors in predictions of dynamics in real systems due to the adiabatic approximation. a Charge transfer dynamics in the
LiCN molecule driven by a π-pulse, from ref. 47: time evolution of the dipole moment and energies computed with different methods. The
frequency and strength of the pulse are adjusted to represent a resonant single-photon absorption in each case. The adiabatic LDA and PBE
functionals are not able to transfer a significant amount of the charge in contrast to the configuration-interaction singles (CIS) and CIS-
doubles (CISD) calculations. Analysis on a model system showed that the exact xc potential develops non-adiabatic step and peak features
essential in the charge-transfer process73; the lack of these is further related to the spurious pole-shifting49,50,102, demonstrated explicitly in
the next panel. Reprinted (adapted) with permission from Raghunathan and Nest47, Copyright 2011 American Chemical Society. b Spurious
pole-shifting in the electronic structure when LiCN is left in different superposition states after a pulse is applied, from ref. 49: a sequence of
short pulses excite the system and the dipole moment between each pulse is recorded whose spectrum is obtained through Fourier
transform. The position of the peaks should not change in the exact system, but peak shifting happens due to the adiabatic nature of LDA and
X3LYP functionals. (see also section “Significance of memory-dependence”) Reprinted (adapted) with permission from Raghunathan and
Nest49, Copyright 2012 American Chemical Society. Predictions of the optical response of non-metallic systems underestimate the onset of
continuous absorption (i.e., underestimate the gap) as illustrated here from ref. 223 in (c) and ref. 219 in (d), via the imaginary part of the
dielectric function of bulk silicon. The onset of absorption is at a too low frequency in both the random phase approximation (RPA) calculation
in which the xc kernel is put to zero and the adiabatic LDA (labeled TDLDA), and both miss the excitonic structure evident here in the two-
peak shape of the experiment, correctly reproduced by the Bethe–Salpeter equation (BSE) approach216,217. Although the excitonic feature can
be captured by long-range-corrected (LRC) kernels (see also section “Bootstrapping many-body perturbation theory”), the opening of the gap
requires a frequency-dependent kernel79,212 and is related to the derivative discontinuity. Often this is effectively hiding in a “scissors shift”240

using quasiparticle energies from GW, as done in the “DFT-T1-T2” of ref. 219, but ref. 223 derived a “Pure” approximation for the discontinuity,
obtained entirely from ground-state KS and TDDFT quantities, with an underlying frequency-dependent kernel. Reprinted figure with
permission from Cavo et al.223, Copyright 2020 by the American Physical Society. Reprinted figure with permission from Sottile et al.219,
Copyright 2003 by the American Physical Society. e Relaxation dynamics of the dipole moment in a doped GaAs/Al0.3Ga0.7As quantum well,
from ref. 166: an initial uniform electric field (0.01 mV/nm in the top subpanel, and 0.5 mV/nm lower subpanel) is turned off at t= 0. Damping is
only present when memory is included, via the Vignale–Kohn (VK) functional (section “Time-dependent current-density functional theory”)
shown in solid lines, in contrast to the adiabatic LDA in dashed lines. Reprinted figure with permission from Wijewardane and Ullrich166,
Copyright 2005 by the American Physical Society.
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depends on the type of system of interest (e.g., finite-sized
molecule versus extended solid) and the type of dynamics (mere
spectra versus far from equilibrium), they can be responsible for
errors in functionals that do not satisfy them, and can lead to
violation of basic quantum principles e.g., unphysical self-
excitation114, spurious pole-shifting in non-equilibrium
spectroscopy102,103.

Zero force theorem. The zero force theorem111,115–117 (ZFT)
ensures that the xc potential does not exert a net force:Z

nðr; tÞ∇vXC½n;Ψ0;Φ0�ðr; tÞd3r ¼ 0: (13)

Since the net force exerted by the Hartree potential vanishes, Eq.
(13) ensures that the inter-electron Coulomb interaction does not
exert any force on the system (as in Newton’s third law of classical
mechanics). This also holds in the ground-state, but in the time-
dependent case violation of this condition has a particularly
severe consequence, leading to numerical instabilities due to the
system self-exciting over time114,118,119. The linear response limit
of Eq. (13) reveals a deep connection between spatial- and time-
non-local density-dependence, which we will return to in the
section “Finite-frequency LDA”.
A related theorem is the net torque theorem111,116,117,120:Z
nðr; tÞr ´∇vXCðr; tÞd3r ¼

Z
r ´ ∂tjXCðr; tÞd3r (14)

where jXC= j− jS is the difference in the current-density of the
true system and the KS system75,121–124.

Generalized translational invariance. Translational invariance
requires the wavefunction in an accelerated, or “boosted“, frame
to transform as:

Ψbðr1:::rN; tÞ
�� 	

¼
YN
j¼1

e�irj � _bðtÞ Ψðr1 þ bðtÞ:::rN þ bðtÞ; tÞj i (15)

where b(t) is the position of the accelerated observer and bð0Þ ¼
_bð0Þ ¼ 0 such that the accelerated and inertial systems coincide
at the initial time. The boosted density transports rigidly:

nbðr; tÞ ¼ nðrþ bðtÞ; tÞ: (16)

Ref. 117 proved that in order to fulfill Eq. (16) the xc potential must
transform as:

vbXC½n;Ψ0;Φ0�ðr; tÞ ¼ vXC½n;Ψ0;Φ0�ðrþ bðtÞ; tÞ : (17)

In fact, a vXC that fulfills Eq. (17) automatically fulfills the ZFT Eq.
(13)117. The generalized translational invariance (GTI) and ZFT are
closely related, particularly in the linear response regime125. A
special case of Eq. (17) is the harmonic potential theorem (HPT),
which states that for a system confined by a harmonic potential
and subject to a uniform time-dependent electric field, the density
transforms rigidly following Eq. (16) where b(t) is the position of
the center of mass2,111,117,126.

NON-ADIABATIC APPROXIMATIONS IN TDDFT
From soon after the birth of TDDFT to today, non-adiabatic
approximations have been derived and tested. We review these, in
roughly chronological order, below. The earliest ones focussed on
the linear response regime, where instead of needing an
approximation for the full xc potential vXC[n;Ψ0,Φ0](r, t), an
approximation for the xc kernel f XC½n0�ðr; r0; t � t0Þ ¼ δvXCðr;tÞ

δnðr0;t0Þ , or
its frequency Fourier transform is needed26,27,127. The TDDFT linear
response formalism is based on the density-density response
function, χðr; r0;ωÞ which describes the linear density response of
the system at frequency ω to a perturbation δv:
δnðr;ωÞ ¼

R
dr0χðr; r0;ωÞδvðr0;ωÞ. In TDDFT:

χðr; r0;ωÞ ¼ χSðr; r0;ωÞ

þ
Z

dr1dr2χSðr; r1;ωÞfHXCðr1; r2;ωÞχðr2; r0;ωÞ
(18)

where χS is the KS density-response function, giving the density-
response to a perturbation of the KS potential vS, and
fHXCðr1; r2;ωÞ ¼ 1

jr1�r2j þ f XC½n0�ðr1; r2;ωÞ. Being evaluated at the
ground-state density eliminates the initial-state dependence, due
to the Hohenberg–Kohn theorem of ground-state DFT128, and
memory-dependence corresponds to frequency-dependence of
the xc kernel, since δvXCðr;tÞ

δnðr0;t0Þ is not merely proportional to a delta-
function in the time-difference which gives a constant in the
frequency Fourier transform. The instantaneous dependence of
the xc potential with respect to the density in the adiabatic
approximation yields a frequency-independent kernel.

Finite-frequency LDA
The Gross–Kohn (GK) approximation127,129 is a straightforward first
attempt to extend the LDA into the dynamical regime, retaining
the spatially-local dependence on the density while introducing
time-nonlocal dependence via the finite-frequency response of a
uniform electron gas. That is, the xc kernel is approximated by:

fGKXC ½n0�ðr; r0;ωÞ ¼ δðr� r0Þf unifXC ½n0ðrÞ�ðq ¼ 0;ωÞ (19)

where f unifXC ½n�ðq;ωÞ ¼
R
f unifXC ½n�ðr; r0;ωÞeiq�ðr�r0Þdr0 is the xc kernel

of a uniform electron gas of ground-state density n at wavevector
q and frequency ω. The time-nonlocal dependence of the GK
approximation is explicit when considering the response xc
potential in the linear response regime corresponding to Eq. (19):
vGKXC ½n�ðr; tÞ ¼

R
f unifXC ½n0ðrÞ�ðt � t0Þδnðr; t0Þdt0.

The uniform electron gas xc kernel, f unifXC ½n�ðq;ωÞ is known
exactly for a range of densities in some limits, e.g., in the long-
wavelength limit q= 0,ω ≠ 0 in refs. 127,130, and the static limit
q ≠ 0, ω= 0 in refs. 131,132 where parameterizations based on
quantum Monte Carlo have been developed in ref. 133. An early
interpolation between the two limits was given in ref. 134

focussing on the metallic density range. More recently, ref. 135

developed an interpolation over a wide range of densities while

Fig. 4 Exact conditions in TDDFT. Ingredients for a wholesome
functional approximation are some known conditions satisfied by the
exact xc potential and xc kernel of TDDFT: the zero force condition
and generalized translational invariance111,116,117,126, symmetry and
reciprocity relations125, causality (with Kramers–Kronig relations for
the kernel)110,169, memory condition tying together initial-state
dependence and history-dependence75,241, scaling relations242, self-
interaction free property69, and the reduction to the ground-state
functionals in the adiabatic limit for systems with a gap110.
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incorporating first-principles constraints, with ref. 136 building
upon this, embracing even lower densities and more exact
conditions. We note that taking the limit ω→ 0 first then q→ 0 of
the kernel reduces to the adiabatic local density approximation
(ALDA). The order in which the limits q→ 0 and ω→ 0 are taken is
crucial, as the outcome depends on their order78,125. It should also
be noted that a fundamental difference between the uniform gas
kernel and that of inhomogenous systems is the long-wavelength
finite-frequency behavior as q→ 0, where f unifXC ðq ! 0;ωÞ tends to
a finite constant, while for non-metallic systems, the kernel
diverges as α(ω)/q2 which has important consequences for the
optical response of solids3,58,137 (see also section “Bootstrapping
many-body perturbation theory”). Finally, we note that ref. 138

tabulated f unifXC ½n�ðq;ωÞ for a wide range of wave-vectors and
frequencies through a correlated equations of motion approach
including single-particle-hole and two-particle two-hole excita-
tions, within a correlated basis functions formalism for computing
matrix elements. This revealed a double-plasmon excitation for
which such a non-adiabatic kernel is essential (c.f. section “Specific
cases”), and ref. 138 further showed the possibility of using these
results to obtain such features in spectra of inhomogeneous
systems.
Returning to the GK approximation, Eq. (19) can be viewed as a

“double LDA”, in that both the ground-state density of the system
n0(r) varies slowly enough in space that the density-functional
argument can be replaced by the local density considered as part
of a homogeneous system, and also that the response of the
system varies slowly enough that only the zero wavevector
component is used.
A question is whether an approximation may still be reasonably

accurate well beyond the situation for which it was derived, as is
the case for the ground-state LDA. In the ground-state case, a key
reason often given for why LDA gives useful results for non-
uniform densities of molecules and solids is its satisfaction of exact
conditions139,140 such as sum-rules on the xc hole. Unfortunately,
the GK approximation violates several of the exact conditions
discussed in the section “Memory-related exact conditions” that
are important for the time-dependent problem. Refs. 117,126

pointed out that it violates the HPT: instead of yielding a rigid
sloshing of the density in a uniform field-driven harmonic well
with a center that follows the classical center of mass motion, GK
results in a density-dependent shift in the frequency of this
motion, and a damping of the oscillations. The problem is that a
potential vXC(r, t) that sees only the density at that point r over
time cannot tell whether the change over time is from a sloshing
motion or a compression/expansion motion.
In fact, GK’s violation of the GTI condition, of which HPT is a

special case, was shown in refs. 116,117 to imply that the xc kernel
for a non-uniform system at finite frequency has a density-
dependence that is long-range in space such that a local-density
or gradient expansion approximation simply does not exist. The
ZFT also demonstrates this: taking the linear-response limit of Eq.
(13) by writing n(r,ω)= n0(r)+ n1(r, ω) and vXCðr;ωÞ ¼ vXC½n0�ðrÞþR
f XCðr; r0;ωÞn1ðr0;ωÞd3r0, one arrives at:Z
f XC½n0�ðr; r0;ωÞ∇n0ðr0Þd3r0 ¼ ∇vXC½n0�ðrÞ (20)

Inputting the GK kernel Eq. (19) yields ∇n0ðrÞf unifXC ½n0ðrÞ�ðq ¼ 0;ωÞ
on the left-hand-side, which is a clearly frequency-dependent
quantity, quite incompatible with the right-hand-side which is
frequency-independent! The argument can be generalized to
show that even a short-ranged xc kernel violates the condition
when applied to slowly-varying ground-state densities, and thatR
f XCðr; r0;ωÞd3r0 must diverge. In fact, Eq. (20) implies that spatial

and time non-local density-dependence are intimately related in
the exact xc kernel, since the spatial integral of the frequency-
dependence must yield a frequency-independent quantity. Thus

the ZFT, which is a seemingly natural statement embodying
simply a Newton’s third law type of physics leads to quite an
extraordinary result: time non-local density-dependence implies
spatially non-local dependence, and that a local-density approx-
imation, or gradient expansion, with memory simply does not
exist125,141. Since this is true even in the limit of slowly-varying
densities, the effect has been dubbed “ultra-nonlocality”.
The effect of the violation of the GTI and ZFT by the GK

approximation on dynamics was shown to yield unphysical
behavior on dynamics in sodium clusters in ref. 118, including
the appearance of spurious low-frequency modes and instabilities.
Ref. 118 also presented a way to directly impose these conditions
through constraints on the potentials, applicable in principle to
any xc kernel or potential approximation.

Time-dependent current-density functional theory
While ref. 126 pointed out GK’s violation of the HPT theorem, it
also suggested an avenue for a remedy: to separate out the
translational motion of the density from that of the compression/
expansion and to use the finite-frequency uniform-gas kernel
only for the latter. Ref. 142 further developed this notion that
memory resides with a “fluid element” and that, although there is
no spatially-local time-nonlocal description in terms of n(r, t), we
can search for such a description in terms of nðRðt0ÞÞ where
Rðt0Þ ¼ Rðt0jrtÞ is the position of the fluid element at time t0

which at t is at position r. In this way, the current-density
naturally enters the picture because this is what dictates the
trajectory R(t), through ∂t0Rðt0jr; tÞ ¼ JðR; t0Þ=nðR; t0Þ with the
boundary condition R(t∣r, t)= r. The Dobson–Bünner–Gross
functional thus applies the GK functional in a frame that moves
with the local velocity JðR; t0Þ=nðR; t0Þ, resulting in a functional
that satisfies the HPT and GTI142.
At around the same time (in fact the “received” date is earlier for

ref. 142 than for ref. 143 although the “published” date is after), the
Vignale–Kohn current-density functional was developed, which
elevated the current-density from simply assisting to actually
being the basic variable of the functional125,143,144. Time-
dependent current-density functional theory (TDCDFT) is based
on the one-to-one mapping between the current-density and the
vector potential acting on the system, for a given initial state,
which had been proven earlier in refs. 145,146. The KS equation has
the form:

ð�i∇þ aSðr; tÞÞ2

2
þ vSðr; tÞ

 !
ϕiðr; tÞ ¼ i∂tϕiðr; tÞ (21)

where there is a gauge-freedom between the longitudinal part of
the KS vector potential and scalar potential, e.g., putting all the
time-dependent external fields and xc fields into the vector
potential would yield aS(r, t)= aext(r, t)+ aXC(r, t), vS(r, t)=
vext,0(r)+ vH(r, t)+ vXC,0(r), but other gauge choices can be made.
Even if only a scalar potential is applied to an interacting system,
the resulting current-density is typically only reproducible by a
non-interacting system with a vector potential; the TDDFT KS
current-density usually differs from the physical current-density by
a rotational component, even when the exact xc functional is
used75,121–124.
A key motivation for using TDCDFT is that the current-density at a

given point in space contains spatially non-local density-dependence,
which can be seen from inverting the continuity equation:
∇ � jðr; tÞ ¼ �∂tnðr; tÞ ! jLðr; tÞ ¼

R
∂tnðr0; tÞ∇r

1
4πjr�r0 j d

3r0, which
implies that spatially local functionals of the current-density have
spatially non-local density-dependence. In fact a local approximation
in terms of the current-density does exist, and, when considered
through the linear current response of a slowly spatially-varying
electron gas, forms the basis of the Vignale–Kohn (VK) approxima-
tion125,141,143,144. The central role is played by the tensorial xc kernel

L. Lacombe and N.T. Maitra

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   124 



which is the functional derivative of the xc vector potential with
respect to the current-density, for the ground-state of a slowly-
varying periodically modulated electron gas. This functional is
constructed in the linear response regime, built up from both
longitudinal and transverse responses of the uniform electron
gas147–150 together with the imposition of several exact conditions:
the zero force and zero torque identities (section “Memory-related
exact conditions”), the Ward identity and symmetry/reciprocity
relations125. The resulting functional for the linear response xc vector
potential takes the following form125,143,144:

�iω
c

aXC1;i ¼ �∇iv
ALDA
XC1 ðrÞ þ 1

n0ðrÞ
X
j

∂σXC;ijðr;ωÞ
∂rj

(22)

where:

σXC;ij ¼ ~ηXC
∂ui
∂rj

þ ∂uj
∂ri

� 2
3
∇ � uδij


 �
þ ~ξXC∇ � uδij (23)

where u= j(r)/n0(r) is the velocity field, and ~η and ~ξXC are complex
viscosity coefficients, expressible in terms of the longitudinal and
transverse response kernels of the uniform electron gas, and
functions of the frequency and ground-state density125,143,144.
Although the original form looked more complicated, it was
shown to be equivalent to the form above in ref. 144, giving a
physical interpretation in terms of a Navier–Stokes form for the
current-density where a hydrodynamical viscoelastic stress tensor
has complex viscosity coefficients of the electron liquid. The VK
approximation becomes exact in the limit that the length scale of
the variations of the ground-state density q−1 and perturbing
potential k−1 are such that k, q < <ω/vF, kF where kF, vF are the
local Fermi momentum and velocity . Therefore, this theory is
applicable to the study of high frequency phenomena, but due to
its satisfaction of some exact conditions and spatially-non-local
density-dependence, it has also been successfully applied in the
static regime where long-range effects are important (more
shortly). It has also been extended to the non-linear regime in
ref. 144. Building on the VK approach, refs. 151,152 derived a GGA
and meta-GGA to move beyond the slowly spatially-varying
assumption.
The Vignale–Kohn approximation has memory-dependence and

spatially nonlocal density-dependence (local in current). Due to
these features, it has successfully predicted linewidths of collective
modes in two-dimensional quantum strips and quantum
wells153–155 absent in LDA or GGA, time-resolved dissipation from
electron-electron interaction in large or periodic systems156,157

missed in LDA or GGA or with any adiabatic functional, stopping
power in metals158, spin-Coulomb drag159, and static polarizabil-
ities in long polymer chains160,161 (routinely underestimated by
adiabatic LDA or GGA). However, it has been shown to generate
unphysical damping of excitations and dissipation in finite
systems162, does not provide a significant correction to the
band-gap, and does not work well for the optical response of
semiconductors unless either an empirical factor is used163,164 or it
is combined with other non-empirical polarization functionals
where it corrects for bound exciton widths in insulators and
semiconductors and Drude tails in metals165. Even if only applied
to metallic extended systems, some caution should be applied
since the longitudinal and transverse electron gas response
functions entering the Vignale–Kohn functional are not well-
known for all frequencies and wavevectors147,149. The non-linear
extension of the Vignale–Kohn approximation has also been used
to study decoherence and energy relaxation of charge-density
oscillations in quantum wells166. A different nonlinear non-
adiabatic functional based on Landau Fermi liquid theory was
presented in ref. 167 and was the precursor of deformation
functional theory which will be shortly discussed.

TDCDFT via an action functional
TDCDFT was also the framework for a general formulation where
memory is included through an action functional defined on the
Keldysh contour in order to preserve causality168: vXC should
depend only on the past-density, not the future, which means its
functional derivative f XC½n�ðr; t � t0Þ should be zero for t>t0169 and
this property would be violated if vXC was the functional derivative
of an action defined in physical time rather than on the Keldysh
contour. (We note that some caution is needed when using the
Keldysh contour in TDDFT: the Runge–Gross one-to-one mapping
on the Keldysh contour has not yet been proven120 but the
contour can be still be used rigorously in variational formulations
e.g., as demonstrated in ref. 170). Regarding a real-time resolution
of the causality paradox, we refer the reader to ref. 171.
The use of Lagrangian coordinates in the action functional

resulted in xc potentials that again preserve the GTI and ZFT172;
the Lagrangian description arises naturally when thinking of the
convective fluid element motion in TDCDFT. The same authors
developed a computationally simpler approach that avoids
Lagrangian frames, and instead constructs a family of translation-
ally invariant actions on the Keldysh contour which automatically
satisfy GTI and ZFT, and they derive a memory-correction to ALDA
built using the uniform electron gas kernel of refs. 127,130 in this
framework168. The effect of memory in this approximation was
highlighted in creating viscous effects in both the linear and non-
linear regime in plasmon dynamics and absorption in spherical
jellium gold clusters.

Time-dependent deformation functional theory
When TDCDFT is recast in the Lagrangian frame, the natural spatial
coordinate to use at time t becomes the initial point ξ= ξ(r, t) of
the trajectory which at time t is at position r. Refs. 170,173–175

showed that by separating the convective motion of the “electron
fluid elements” from their relative motion, the many-body effects
are contained in an xc stress tensor which depends on the time-
dependent metric tensor of the r→ ξ transformation; since this
tensor corresponds to Green’s deformation tensor of classical
elasticity theory, the approach is called time-dependent deforma-
tion functional theory (TDdefFT). This framework is fully non-linear
from the start and offers a distinct starting point for approxima-
tions. The local deformation approximation is based on uniform
time-dependent deformations of the uniform gas, giving a stress
tensor with spatially-local but time-non-local dependence on the
metric tensor; this does not violate the ZFT and GTI since the
convective non-locality is treated exactly through its dependence
on the Lagrangian coordinate ξ(r, t). Ref. 176 compared TDdefFT
and TDCDFT in both linear and nonlinear models of charge-
density oscillations. In the limit of small deformations, the local
approximation in TDdefFT reduces to the VK TDCDFT approxima-
tion174. Another limit is an elastic one, valid for very fast variations
of the deformation tensor. This is spatially-nonlocal and related to
the “antiadiabatic” limit of the xc kernel177. In “quantum
continuum mechanics”178–180, the hydrodynamic picture has been
applied directly to the many-body system without being propped
up by a KS system.

Orbital functionals
Hydrodynamic methods that are based on xc effects of uniform or
slowly-varying electron gases are problematic for finite systems,
since they introduce spurious dissipation. A consequence in the
linear response regime is that the predicted excitation energies of
atoms and molecules attain an unphysical lifetime162. A different
direction to incorporate memory and also spatial nonlocality is to
develop explicit functionals of the KS orbitals vXC[{ϕi}](r, t). Since
each orbital itself depends on the density in a spatially and time
non-local way, an explicit local functional of the orbital is an
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implicit non-local functional of the density. Some common orbital
functionals are meta-GGAs, which are have semi-local spatial
dependence on the orbitals, hybrids incorporating a fraction of
exact exchange, and self-interaction corrected LDA; the latter two
have non-local spatial dependence from Coulomb integrals
between orbitals and so are computationally more expensive.
The spatial non-locality enables various properties in TDDFT to be
better reproduced for reasons unrelated to memory, e.g.,
capturing the −1/r asymptotic decay of vXC which reclaims the
Rydberg series of excitations in the bound spectrum that are
otherwise lost in the continuum181, particle-number discontinu-
ities in the xc kernel that are important in capturing charge-
transfer excitations182, and ionization62. One advantage of these
approaches is that self-interaction error is more easily dealt with,
unlike in the hydrodynamic approaches in the section “Time-
dependent current-density functional theory”.
There are two fundamentally different but formally rigorous

ways in which to treat orbital functionals. In one, as in KS theory
with explicit density-functionals, the xc potential is the same
function for all orbitals, and, when the approximation enters
through an xc action AXC[{ϕi}], possibly on the Keldysh contour169,
vXC½fϕig�ðr; tÞ ¼

δAXC½fϕig�
δnðr;tÞ is obtained through the time-dependent

orbital effective potential equations (TDOEP)183. Exact exchange
has been computed in this way184–188 primarily in the linear
response regime for the computation of excitation energies. For
example, for long-range charge-transfer excitations between
closed-shell fragments, the importance of derivative discontinu-
ities of the xc kernel with respect to particle number was shown to
play a key role, and the exact exchange kernel, due to its orbital
dependence captures these, and yields the correct asymptotic
behavior of these excitation energies when used in its fully non-
adiabatic form182,189,190. A finite derivative discontinuity is related
to correcting the self-interaction from the Hartree functional191,
and self-interaction corrected LDA has also been applied within
TDOEP192.
The second way to treat orbital functionals resulting from an

action functional (or in the ground-state case an energy
functional), is through the so-called generalized KS
approach193–195, resulting in orbital-specific xc potentials. This
avoids having to solve the numerically challenging TDOEP
equation, and is the most common treatment of hybrid
functionals where a fraction of Hartree–Fock exchange is mixed
in. Hybrid functionals have some advantage in the ground-state in
that the delocalization error of semi-local functionals is partially
compensated by the localization error of Hartree–Fock196, but
perhaps most interesting for TDDFT is that the meaning of the
predicted excitations is fundamentally different for the pure KS
treatment than for the generalized KS treatment. In the former,
excitations are those of the neutral system, while in the latter, they
have a character in between neutral and addition (or affinity)
energies, depending on the amount of Hartree–Fock mixed in.
This has proved particularly useful for charge-transfer excitation
energies when range-separated hybrids are used59,190,197–202.
However, coming back to the theme of non-adiabaticity,

without frequency-dependence, a general treatment of charge-
transfer excitations in response and charge-transfer dynamics in
real-time, are out of reach for hybrid functionals whether treated
in generalized or pure KS. This can be most easily seen with the
two-electron example, where ground-state exact exchange and
Hartree–Fock exchange coincide, equaling minus half the Hartree
potential: a frequency-independent xc kernel cannot properly
describe excitations when there are KS determinants lying near
the ground-state (also section “Specific cases”) as in the case of a
stretched heteroatomic diatomic molecule203, and the non-
adiabatic dynamical steps and peaks mentioned in the section
“Significance of memory-dependence” necessary to achieve the
transfer of an electron in real time are missing59,73.

There have been far fewer applications of orbital functionals in
the nonlinear regime, largely because of the computational
expense51,192,204,205. Applying the KLI approximation206 simplifies
the TDOEP calculation183,207,208 but becomes problematic because
of its violation of the ZFT which can result in unphysical self-
excitation114.

Bootstrapping many-body perturbation theory
Noting that the density is the diagonal of the one-body Green’s
function in the equal-time limit, an exact integral expression for
the time-dependent xc potential can be found through the Dyson
equation for the interacting Green’s function when referred to the
KS Green’s function209. Taking place on a Keldysh pseudotime
contour, this is the time-dependent generalization of the
Sham–Schlüter approach210,211, and connects vXC(r, t) to the two-
point self-energy ΣXCðr; t; r0; t0Þ of many-body theory. Approxima-
tions derived from many-body diagrammatic expansions can thus
be transformed into equivalent approximations for the TDDFT xc
potential. These often result in orbital functionals with implicit
density-dependence (section “Orbital functionals”). The first order
in perturbation theory is the Hartree–Fock approximation for ΣXC
which, through the time-dependent Sham–Schlüter equation
yields the time-dependent exact exchange potential, while higher
order perturbation theory introduces correlation. A diagrammatic
expansion of the equation using the KS Green’s functions as the
bare propagators showed that the spatial nonlocality of the xc
kernel is strongly frequency-dependent, and related the long-
ranged divergence at frequencies of excitation energies to the
discontinuity of the xc potential212.
To ensure that the selection of diagrams respects fundamental

conservation laws such as particle number, energy, momentum,
and angular momentum conservations, instead a variational
formalism similar to many-body perturbation theory213,214 has
been developed215. One defines a universal functional of the
Green’s function for the non-classical electron interaction, of
which the self-energy is the functional derivative. The total action
(or energy, in the ground-state case) as a functional of the Green’s
function then has its stationary point at the Green’s function that
solves the Dyson equation with the consistent self-energy, and
restricting the functional domain to that of Green’s functions
arising from non-interacting Schrödinger equations with local
multiplicative potentials, results in a procedure to obtain TDDFT
approximations215. The linearized Sham–Schlüter equation, in
which the Green’s function is replaced by the KS Green’s function
everywhere, can be derived from such an approach.
Other work where TDDFT approximations have been derived

from connections with many-body perturbation theory have been
within the linear response regime, and largely focussed on non-
metallic extended systems, using Bethe–Salpeter formalism58,137.
The latter involves the four-point reducible polarizability which
needs to be contracted to the two-point density-response
function to relate to TDDFT; we refer the reader to ref. 58 for a
review on different ways in which this has been achieved by
different groups. In particular, for semiconductors, the exact xc
kernel can be considered as a sum of two terms216,217: one that
changes the KS band gap to the larger quasiparticle one, and the
other that accounts for the electron-hole interaction responsible
for excitonic effects. The first term is usually just accounted for by
using the quasiparticle gap, without explicitly finding the kernel
that opens the gap; non-adiabaticity is needed for the kernel to
achieve this (see an argument by Vignale described in ref. 79). For
the second term, an expression was derived involving contractions
over the quasiparticle polarizability, one-body interacting Green’s
function and screened Coulomb interaction, and various approx-
imations considered and tested58,216,218–221. From the point of
view of non-adiabaticity, frequency-dependence was shown to
arise out of the contractions over spatial indices, even when the
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many-body quantities being integrated over are frequency-
independent222. The calculation of the two-particle matrix
elements is expensive, and instead the separation has been
exploited to define a two-part procedure to calculate accurate
optical spectra of semiconductors and insulators from first-
principles without any empirical parameters and without any
calculations or input needed outside TD(C)DFT223: first, a modified
KS response function is defined through an implicit kernel that
accounts for the derivative discontinuity giving rise to gap-
opening and second, a polarization functional from TDCDFT is
applied for the part of the kernel that captures excitonic effects165.
While spatially long-ranged behavior is essential for the latter,
time-nonlocality (frequency-dependence) is implicitly contained in
the former to open the gap.

Density-matrix coupled approximations
Another approach focusses on building approximations to the
one-body and two-body reduced density-matrix (1RDM, 2RDM)
that appear in an exact expression for the xc potential, Eq. (7). If
the interacting 2RDM could be somehow modeled, it would
provide the two ingredients in the exact vXC of Eq. (7) that are not
directly accessible from the TDKS evolution, ρ1 and nXC. A
particular class of such approximations, denoted “density-matrix
coupled approximations”, couples the TDKS equations to the first
equation in the BBGKY density-matrix hierarchy67,105. Unlike most
of the previously-discussed approaches, this approach respects
initial-state dependence in the sense that the xc potentials for
identical density evolutions arising from different initial states will
differ.
The simplest approximation would be to replace ρ1 and nXC by

their KS counterparts69,74,107,109,204,224, an approximation that we
dub vSXC. Although vSXC generally approximates the exact vWXC well,
the kinetic component vTXC vanishes, but it is the kinetic
component that contains the large dynamical step and peak
features76 (section “Significance of memory-dependence”) that are
crucial to accurately capture dynamics in a number of situations,
e.g., electron scattering74,109, charge-transfer out of a ground
state73 (see the example in the section “Significance of memory-

dependence”), quasiparticle propagation through a wire225. Ref. 69

explored various “frozen” approximations, while ref. 67 presented
an approach based on coupling the KS evolution to the first
equation in the BBGKY hierarchy for the interacting 1RDM; the two
equations “pass” back and forth an approximation for a fictitious
~ρ2 as a functional of the 1RDM evolving from the BBGKY equation
and the KS 1RDM evolving from the KS equation. This was shown
to capture the dynamical steps and peaks, to satisfy the ZFT and
GTI, and be self-interaction-free, however it becomes numerically
unstable after too short times to be practical67,105. Whether
instead a paradigmatic system can be found from which the
interacting 1RDM can be obtained as a functional of KS-accessible
quantities remains an open exploration.
Even if the choices made so far for the 2RDM have led to a

numerically unstable approach, a question is whether they
capture non-adiabatic features in the linear response domain
related to phenomena such as double excitations. In particular,
whether the kernel resulting from the functional derivative of vTC
gives an approximation to the pole in the exact kernel77 that is
responsible for the interaction of the singly and doubly-excited KS
states underlying a state of double-excitation character (section
“Specific cases”). This can be answered by deriving the linear
response of the system starting with Eqs. (9) and (8) and
transforming to the frequency-domain. In the KS basis, this
creates a set of equations to solve to obtain a kernel fHXC(ω) that
can be used in Casida equations. Testing this approach on the
model studied in ref. 77, a one-dimensional harmonic oscillator
with delta-interacting electrons, with the choice of ~ρ2 as the time-
dependent KS one, yields mixed results as seen in Fig. 5. A pole
does indeed appear in the kernel, showing a strong non-
adiabaticity in the matrix element of fHXC associated with the
state of double excitation character (upper panel). However, it has
the wrong position, sign, and amplitude of the divergence.
Moreover, a spurious pole also appears in the matrix element
where the physical system only has a single excitation (lower
panel). This shows the limitations of using ~ρ2 ¼ ρ2S within the
density-matrix coupled scheme.

Fig. 5 Frequency-dependence of the diagonal part of fHXC in a model system (see ref. 77) for the exact (orange) and density-matrix
coupled approximation (blue). Upper panel shows the matrix element corresponding to a single excitation that couples to a double
excitation, leading to a pole in the exact fHXC. Lower panel the matrix element corresponding to an uncoupled single excitation in the exact
system.
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Specific cases
While the previous sections propose universal xc functional
approximations with memory, there have also been approxima-
tions derived for specific cases where memory is known to be
important. We briefly mention some of these here.
As just discussed, the adiabatic approximation in linear

response is unable to capture states with double excitation
character45,46,77,138,190,226–230. These states can enter the spectrum
even at low energies, e.g., in conjugated polyenes where they mix
with the single excitations46, and they are typically sprinkled
throughout the spectrum in geometries away from equilibrium.
This poses a problem for the general reliability of TDDFT
predictions of photoinduced dynamics where nuclei are driven
to sample a range of configurations due to their coupling to the
electronic motion. Inspired by the form of the exact xc kernel
when a double excitation lies near a (group of) single excitation,
ref. 77 derived a frequency-dependent approximation to be
applied for this case. This “dressed” kernel has a pole in a
frequency-range near the double excitation, and gave reasonable
predictions for these states in a range of molecules46,231,232. In a
related spirit, a frequency-dependent quadratic response kernel
was recently derived in ref. 233, which cures unphysical
divergences arising in adiabatic TDDFT when the difference
between two excitation energies equals another one234.
A non-adiabatic approximation was derived for the single-

impurity Anderson model95,235, capturing the dynamical step
feature missing in the adiabatic approximation, and applied to
quantum transport. This functional depended only on the site
occupation and its first time-derivative. Going from approxima-
tions on a lattice to real-space systems however is highly non-
trivial: as mentioned in the section “Significance of memory-
dependence” even the basic theorems and v-representability
issues are distinct on a lattice than in real-space, and whether the
former can be consistently converged to the latter is unclear.
Focussing on models where the ground-state is strongly-

correlated, refs. 236,237 derived an xc functional approximation
for the xc kernel of Hubbard model systems from dynamical mean
field theory; these could be applied to a real system with Hubbard
parameters chosen somehow from experiment. The non-adiabatic
part of the resulting kernel is completely local in space but has
memory-dependence, placing it at risk of violating the zero force
and Galilean invariance principles discussed earlier.

OUTLOOK
This review has focussed on non-adiabatic approximations to the
xc potential or kernel, but other ingredients needed in TDDFT are
functionals for the observables when the observables are not
directly related to the density itself. For example, ionization
probabilities42, momentum-distributions43, even simply the
current-density whose rotational component is not generally
reproduced by the TDKS system even if an exact xc functional is
used75,79,121,123,124. Usually these observables are extracted simply
by taking expectation values of their usual operators in the KS
state, which inherently entails an approximation additional to that
of the xc functional. Corrections to such observable-functionals
and their memory-dependent properties are largely unexplored.
The studies in the past years on the exact xc potential and its

properties, and the different efforts in development of memory-
dependent functionals summarized here show that the search for
an accurate and practical non-adiabatic approximation is a
challenging one. The search is on-going and creative: several recent
new directions not mentioned yet in this review have been
proposed for time-dependent functional development which are
still at a very preliminary stage, including coupling-constant integral
transforms105,184, re-casting TDDFT using the second-time-derivative
of the density as basic variable238, and extensions of the connector

theory approach138,239 to the time-domain. Whether one of these
will yield an elixir remains to be seen, but even if not, they reveal
interesting physics about the dynamics of electron correlation.
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