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Machine learning molecular dynamics simulation identifying
weakly negative effect of polyanion rotation on Li-ion
migration
Zhenming Xu 1, Huiyu Duan1, Zhi Dou1, Mingbo Zheng 1✉, Yixi Lin1, Yinghui Xia1, Haitao Zhao 2✉ and Yongyao Xia 1,3✉

Understanding the physical picture of Li ion transport in the current ionic conductors is quite essential to further develop lithium
superionic conductors for solid-state batteries. The traditional practice of directly extrapolating room temperature ion diffusion
properties from the high-temperature (>600 K) ab initio molecular dynamics simulations (AIMD) simulations by the Arrhenius
assumption unavoidably cause some deviations. Fortunately, the ultralong-time molecular dynamics simulation based on the
machine-learning interatomic potentials (MLMD) is a more suitable tool to probe into ion diffusion events at low temperatures and
simultaneously keeps the accuracy at the density functional theory level. Herein, by the low-temperature MLMD simulations, the
non-linear Arrhenius behavior of Li ion was found for Li3ErCl6, which is the main reason for the traditional AIMD simulation
overestimating its ionic conductivity. The 1μs MLMD simulations capture polyanion rotation events in Li7P3S11 at room temperature,
in which four [PS4]3− tetrahedra belonging to a part of the longer-chain [P2S7]4− group are noticed with remarkable rotational
motions, while the isolated group [PS4]3− does not rotate. However, no polyanion rotation is observed in Li10GeP2S12, β-Li3PS4,
Li3ErCl6, and Li3YBr6 at 300 K during 1μs simulation time. Additionally, the ultralong-time MLMD simulations demonstrate that not
only there is no paddle-wheel effect in the crystalline Li7P3S11 at room temperature, but also the rotational [PS4]3− polyanion
groups have weakly negative impacts on the overall Li ion diffusion. The ultralong-time MLMD simulations deepen our
understanding of the relationship between the polyanion rotation and cation diffusion in ionic conductors at room environments.
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INTRODUCTION
Solid-state electrolyte (SSE) materials replacing the traditional
flammable organic solvent electrolytes, can effectively combine
with lithium metal anode and increase the safety and energy
density of all-solid-state lithium ion batteries (ASSLIBs)1,2. For the
practical application, lithium ionic conductivity at room tem-
perature of an SSE material should be comparable to liquid
electrolytes, more than 1mS cm−1, and SSE materials are
superionic conductors. Thus, deeply understanding the physical
picture of ion transport in the current ionic conductors is the key
to further optimizing and developing lithium superionic con-
ductors as SSE materials. The current understandings of fast
lithium diffusion in ionic conductors are mainly from two
aspects: crystal structure3,4 (static mechanics) and ion-lattice
interaction dynamics5,6. Recently, some computational
researches by the ab-initio molecular dynamics (AIMD) simula-
tions show the coupled Li-ployanion dynamics between poly-
anion rotational motions and cation translational motions would
enhance cation diffusion, called the paddle-wheel effect7,8,
including 0.75Li2S-0.25P2S59 glass, Li3.25P0.75Si0.25S410, LiBF411

and Na11Sn2PX12 (X= S and Se)12 crystals. These AIMD simula-
tions for lithium or sodium ionic conductors were mainly
performed at elevated temperatures (>600 K) to enhance the
sampling of ion diffusion events and obtain sufficient diffusion
statistics at the time level of ~100 picoseconds (ps)10,12, because
the rare ion diffusion events in the low-temperature AIMD
simulation would result in high statistical error. On the other

hand, extrapolated room-temperature ionic conductivity and
diffusivity by the Arrhenius assumption usually have large
errors13. As these polyanion rotations and paddle-wheel effect
are typically observed in the high-temperature phases with large
free volumes and kinetic energies of atom, exploiting polyanion
rotation in lithium ionic conductors at low temperatures is still a
challenge. A question then naturally arises: whether polyanion
rotation and even the paddle-wheel effect can persist down to
the common ionic conductors at room temperature?
Today, the ab-initio calculation, molecular dynamics (MD)

simulation and machine learning (ML) method are widely utilized
for studying and developing advanced battery materials14–16.
Especially for ML combine the classical computational methods, it
is a powerful tool to efficiently predict properties and analyze the
complex structure-function relationships of battery materials17,18.
For example, Zhao et al. developed a ML prediction model
enabling rational design and optimization of Li-argyrodites solid-
state electrolytes based on the hierarchically encoding crystal
structure-based descriptors19,20, and Wang et al. combined the ab
initio calculation and ML method to identify chemical factors
affecting reaction kinetics in Li-O2 battery, demonstrating the
critical role of disorder degree of LiOH and solvent effect21. MD
simulation based on the machine learning interatomic potential,
so-called machine-learning molecular dynamics (MLMD) simula-
tion, where energies and forces are directly obtained by solving
the Schrödinger equation via the density functional theory (DFT)
calculation, is a very powerful tool to extend the simulation time
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scale from ps level to microsecond (μs) level and simultaneously
keeps accuracy at the DFT level22,23. In this work, we first
developed the machine-learning interatomic potentials for five
lithium ionic conductors, including Li7P3S11, Li10GeP2S12, β-Li3PS4,
Li3ErCl6 and Li3YBr6 (Fig. S1), and performed MLMD simulations at
the time level of μs to capture polyanion rotation event and
explore the paddle-wheel effect in above five lithium ionic
conductors at 300 K, providing us a direct physical picture of the
relationship between polyanion rotation and cation diffusion in
ionic conductors at room temperature. Moreover, by MLMD
simulations at low temperatures, we explored the non-Arrhenius
behavior in these five lithium ionic conductors, which bridges the
gap between experimental and simulated ionic conductivities.

RESULTS AND DISCUSSION
Performance of MTP potential
There are three major contradictions for reasonably and efficiently
applying ML in material community, including contradictions
between learning results and domain knowledge, between model
complexity and ease of use, between high dimension and small
sample data, which were firstly identified by Shi et al.17,18,24.
Embedding domain knowledge of material science inside ML
method to would effectively reconcile the above three contra-
dictions. In this work, the domain knowledge of crystal structure,
bond length and coordination environment of local atom is
chosen as the structure descriptors to establish the mapping
relationships between structure and energy (force). Fitting MTPs
with respect to different levmax values were considered, and the
performance of MTPs predicted lattice constant, volume, and
mean absolute errors (MAEs) in energies and forces are shown in
Figs. S2–S11 in Supporting Information. Comprehensively con-
sidering the accuracy of predicted lattice constant and volume,

MAEs in energies and forces are regarded to converge at levmax of
10, 12, 10, 18, and 18, respectively for five lithium ionic
conductors, as listed in Table 1, and MTPs for the following
MLMD were based on these five levmax values. In all cases, MAEs in
energy are between 1.02 meV atom−1 and 3.86 meV atom−1, while
MAEs in force are less than 0.12 eV Å−1. These MAEs are similar to
or less than those of other MTPs fitted in the previous work25,26,
showing a remarkable improvement over the traditional intera-
tomic potentials. Our MAEs in energy of the training and test data
of Li7P3S11 are larger than the previous work by S.P. Ong27, but our
MAEs in force are much close to them, 0.11 vs. 0.09. Additionally,
viewed from Table 1, MAEs of the training and test data are
generally very similar, demonstrating a little possibility of
overfitting potentials. Our fitted MTPs would consistently exhibit
high accuracy of reproducing DFT energies and forces at different
temperatures. Table 2 compares lattice parameters and volumes
for five lithium ionic conductors between MTP relaxations and
experimental values. It can be seen that MTPs are generally able to
reproduce lattice parameters and make absolute error less than
2.19% compared to experimental values, expect for Li7P3S11. On
the other hand, making comparison with the previous work of
Li7P3S11 by Ong27, our MTP predicted lattice parameters and
volume are much close to them. In all, our MTPs are reliable and
well reproduce DFT energies and forces, lattice parameters, and
local structures of these five lithium ionic conductors.

Non-linear Arrhenius behavior
Based on the fitted MTPs, we performed low temperature MLMD
simulations for five lithium ionic conductors. Figure 1 shows the
Arrhenius plots and a summary of the derived activation energies
(Ea) for Li ion diffusion. Viewed from the Arrhenius plots (filled
markers and solid lines), four lithium ionic conductors, including
Li7P3S11, Li10GeP2S12, β-Li3PS4 and Li3YBr6, exhibit the single linear
Arrhenius behaviors from 300 K to 500 K, which is the traditional
assumption made when extrapolating diffusivity from the high-
temperature (>500 K) AIMD simulations to room temperature.
While for Li3ErCl6, the non-linear Arrhenius behavior was observed,
and the transition between the high-temperature (HT) quasi-linear
regime with lower Ea (0.165 eV) and the low-temperature (LT)
quasi-linear regime with higher Ea (0.425 eV) occurs at ∼460 K.
Therefore, following the traditional assumption of linear Arrhenius
regime, directly extrapolating ionic conductivity at room tem-
perature (σ300K) from high-temperature (460–520 K) would cause a
significant overestimation from 1.37 to 48.48 mS cm−1. Our MLMD
predicted Ea and σ300K of 0.425 eV and 1.37 mS cm−1 for Li3ErCl6 is
much close to the experiment determined results of 0.416 eV and
0.31 mS cm−128, demonstrating that the near room temperature
MLMD simulations well capture the transitions between quasi-
Arrhenius regimes, and increase the accuracy of calculated σ300K.
To dig the reason behind the observed transitions between quasi-

Table 2. Lattice parameters and unit cell volumes of five lithium ionic conductors predicted by the trained MTPs at 0 K, in comparison with the
experimental data at room temperature for Li7P3S11

45, Li10GeP2S12
64, β-Li3PS4

65
, Li3ErCl6

28, and Li3YBr6
66.

Materials a (Å) b (Å) c (Å) Volume (Å3)

Li7P3S11 6.13 (1.72%) 12.63 (1.03%) 13.12 (4.70%) 837.33 (7.61%)

6.1927 12.6927 12.8627 832.2327

Li10GeP2S12 8.73 (0.15%) 8.73 (0.17%) 12.81 (1.62%) 976.06 (1.95%)

β-Li3PS4 6.20 (1.03%) 8.05 (0.01%) 13.22 (1.81%) 660.41 (2.85%)

Li3ErCl6 10.99 (1.59%) 10.99 (1.59%) 6.07 (0.56%) 634.94 (2.61%)

Li3YBr6 7.07 (2.19%) 11.94 (0.28%) 13.92 (1.42%) 1106.14 (3.34%)

Values in brackets are the percentage differences between the MTPs predicted values and the experimental measurements. For Li7P3S11, the previous work
predicted by MTPs are listed for comparison27.

Table 1. Mean absolute errors (MAEs) of energy and force predictions
for fitted MTPs of five lithium ionic conductors.

Materials levmax MAEs in energy
(eV atom−1)

MAEs in force (eV Å−1)

Training Test Training Test

Li7P3S11 10 3.86 (1.79) 3.81 (2.07) 0.12 (0.09) 0.11 (0.09)

Li10GeP2S12 12 2.50 2.26 0.07 0.07

β-Li3PS4 18 2.00 2.00 0.07 0.07

Li3ErCl6 10 2.67 2.64 0.05 0.05

Li3YBr6 18 1.02 1.05 0.05 0.05

Values in brackets for Li7P3S11 are listed for comparison, which are referred
from the previous work predicted by MTPs27.
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linear Arrhenius regimes of Li3ErCl6, Li trajectory lines from MLMD
simulations near the transition temperature were extracted, as
shown in Fig. S12. We noticed the order-disorder transition of Li
ion sublattice. Below the transition temperature, Li ions primarily
diffuse along c-axis direction, while additional Li ion diffusion
paths along a-b planes are enabled above the transition
temperature (500 K, Fig. S12b). These activated additional diffu-
sion paths above 500 K increase the dimensionality for Li ion
diffusion and decrease Ea from 0.425 eV to 0.165 eV.

Polyanion rotation
To capture sufficient Li diffusion and polyanion rotation events at
room temperature, MLMD simulations for five lithium ionic
conductors were performed at 300 K as long as 1μs. In Li7P3S11,
the maximum amplitude for Li vibration at room temperature is
~0.05 Å, and the mean amplitude is ~0.02 Å, as shown in Fig. S13.
Figure 1c shows the total MSD and x-, y-, and z-direction
projected MSD of Li ion diffusion in Li7P3S11 as a function of
simulation at 300 K. Total MSD of Li is about 10000 Å2 after 1μs
MLMD simulation, indicating considerable Li diffusion events in
Li7P3S11 at 300 K. The corresponding Li ion diffusion coefficient
and ionic conductivity at room temperature are calculated to be
1.40 × 10−7 cm2 s−1 and 14.96 mS cm−1, respectively, much close
to the experiment determined results of 1.65 × 10−7 cm2 s−1 and
11.6–17 mS cm−1 29,30 at 300 K. Due to the possible non-
Arrhenius behavior, extrapolating room-temperature ion diffu-
sivity and ionic conductivity by the Arrhenius assumption usually
may cause large error. However, directly calculating Li ion
diffusion coefficient and ionic conductivity from room tempera-
ture MLMD simulation would effectively reduce errors. Therefore,
the calculated diffusion properties from room temperature
MLMD simulation are more accurate and meaningful. We also
note that the deviation between experiment value and our
calculated Li ion diffusion coefficient of 2.3 × 10−7 cm2 s−1 from
1 ns MLMD simulation is higher than that from 1μs MLMD

simulation, demonstrating that extending simulation time to 1μs
would significantly reduce the statistical errors of Li ion diffusion.
Viewed from MSD data, Li ion diffusion along x-direction is more
preferred than y- and z-directions, but it cannot illustrate Li7P3S11
is a 1D ionic conductor at room temperature. In addition,
isosurfaces of Li probability density distribution (Fig. 1d) clearly
show 3D connected channels for Li ion diffusion. The good Li
diffusivity provides sufficient diffusion events for us to explore
the paddle-wheel effect in Li7P3S11 at 300 K.
Compared to initial structure (Fig. 2a), significant polyanion

rotations were noticed from last structure (Fig. 2b) of Li7P3S11 after
1μs MLMD simulations at 300 K, including P5, P6, P7 and P8. For
example, for central P8 atom, S4, S5 and S44 rotate about 120 or
240 degrees along P8-S28 bond axis (C3 local symmetry axis), as
depicted in Fig. 2c. During the whole MLMD simulation times,
isolated [PS4]3− group does not rotate, and all rotated [PS4]3−

tetrahedra belong to a part of the longer-chain [P2S7]4− group, in
which one [PS4]3− tetrahedron connects with its adjacent [PS4]3−

tetrahedron through a bridging S anion. This is different from the
traditional understanding of the presence of longer-chain [P2S7]4−

covalent network would impeding rotational behavior of [PS4]3−

tetrahedron and Li ion migration9,31. To further analyze the reason
why [PS4]3− tetrahedra from longer-chain [P2S7]4− group have
better rotation abilities than simple [PS4]3− group in Li7P3S11, P-S
bonding strengths were quantified by COHP and ICOHP analysis.
Viewed from Fig. S14, -ICOHP value of P8-S28 bond is smaller than
those of P8-S4 and P3-S11 bonds, demonstrating bonding
strength of P-S pair with a bridging S anion is weaker than those
P-S pairs with terminal S anions. On the other hand, bond lengths
of 2.14–2.17 Å for P8-S28 are larger than 2.00–2.05 Å for other P-S
bonds without bridge S atom. The longer bond length means the
weaker bonding strength, in good accordance with the results of
COHP calculations. These weak electronic interactions between P8
cation and S28 anion make P8-S28 bond effectively act as the
rotation axis for [PS4]3− tetrahedron.

Fig. 1 Temperature-dependent Li ion diffusion coefficients by MLMD simulations of five lithium ionic conductors. a Li7P3S11, Li10GeP2S12,
Li3YBr6 and β-Li3PS4 show the Arrhenius behaviors at low-temperature ranges of [300 K, 500 K], while b Li3ErCl6 exhibits the non-linear
Arrhenius behavior at low-temperatures, and the transition occurs at 460 K. 1μs MLMD simulations for Li7P3S11, c direction projected MSD
curves of Li ion at 300 K, and d isosurfaces of the Li+ probability density distribution P (light blue) at 300 K with P= 0.0005 a0

−3 (a0 is the Bohr
radius).
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Detailed analysis of atomic trajectories from 1μs MLMD
simulations were performed to gain more comprehensive under-
standing of polyanion rotation in five lithium ionic conductors. To
reduce computational expense for trajectory data analysis, here,
crystal structure snapshots every 50 ps were extracted from 1μs
MLMD simulations, and saved as atomic trajectory file. Figure S15
shows that P–S bond lengths in 5#, 6#, 7#, and 8# [PS4]3−

tetrahedron are fluctuating around 2.05 Å due to atomic vibrations
or rotations during the whole 1 μs simulation time, and P-S bonds
are well maintained even upon [PS4]3− polyanion rotations,
indicating that crystal structure is stable in dynamics at room
temperature. To expediently monitor polyanion rotation during
the whole MLMD simulation time, θ and φ angles were used as the
indicators for [PS4]3− and [MX6]3− (M is transition metal, X is
halogen) rotation, as depicted in Fig. 2d, e. Figure 3 shows the
evolutions of θ and φ angles of four P-S bonds in 5#, 6#, 7# and 8#
[PS4]3− polyanions in Li7P3S11 with respect to simulation time. It
can be clearly seen that the remarkable exchanges in θ and φ
angles occur at ~0.71 μs, ~0.71 μs, ~0.85 μs and ~0.92 μs for the
first time, respectively for 5#, 6#, 7# and 8# [PS4]3− polyanions. It
reveals substantive rotations of [PS4]3− polyanion in Li7P3S11 at
300 K. Because of the room-temperature [PS4]3− polyanion
rotations usually occurring at the last two thirds of our 1 μs
MLMD simulations, so it’ is no wonder that the traditional room-
temperature AIMD simulation at 300 ps level could not capture
polyanion rotation in Li7P3S1132. Figure 4 shows θ and φ angle
evolutions of four P-S bonds in 7# and 8# [PS4]3− tetrahedra from
918.05 ns to 918.20 ns with a time interval of 0.5 ps. It can be seen
that a half rotation of three S ligands in [PS4]3− polyanion over ~60
degrees occur within a very short time interval of ~3 ps, and a full
rotation over 120 degrees for [PS4]3− polyanion was finished in
~6 ps (from 918.137 ns to 918.143 ns), as Fig. S17 and video shown
in Supporting Information. According to Li-Li average distance
(Fig. S18) and Li diffusion coefficient (Fig. 1c), the estimated time
scale of ~10 ns for a complete Li hopping between two stable Li

sites at room temperature is much larger than a full [PS4]3−

rotation, indicating the correlation between [PS4]3− rotation and Li
ion translational motion is improbable at least on a time scale.
To quantitate the rotation dynamics, the Helmholtz free

energies of four S anion ligands in [PS4]3− polyanion (Fig. 5) were
calculated from 2D probability distribution ρ(θ,φ) by mapping four
S ligands in the spherical coordinates defined in Fig. 2d. The
Helmholtz free energy surface reflects rotation routes by the
coordinates of θ and φ, and rotational activation energy barriers
by height difference between the local minima and transition
states. It is worth noting that a remarkable [PS4]3− rotation needs
at least three S ligands simultaneously exchanging their spherical
coordinates of θ and φ angles and staying at their adjacent
minima, so at least three energy landscapes should be considered
for each [PS4]3− polyanion. It can be seen from Fig. 5 that for each
[PS4]

3− polyanion, although one shallow energy landscape
between two S ligands with a relatively low energy barrier
(0.34 eV, 0.25 eV, 0.27 eV and 0.30 eV for 5#, 6#, 7# and 8# [PS4]3−

polyanion, respectively) is noticed, the overall energy barriers for
5#, 6#, 7#, and 8# [PS4]3− polyanion rotational dynamics are in the
range of 0.60–0.68 eV, which are much higher than those of Li
diffusion in above lithium ionic conductors (Fig. 1), nonetheless
close to Li diffusion in some common cathode materials, such as
LiCoO2 (0.73 eV)33,34, LiFePO4 (0.60 eV)35,36, and LiMn2O4

(0.58 eV)37. In terms of such energy barrier magnitudes
(0.60–0.68 eV), although the occurrence probability of [PS4]3−

polyanion rotations in Li7P3S11 at room temperature is smaller
than the translational motion of Li ion, rotating [PS4]3− polyanion
by the thermal activation stills relatively easy to produce,
consistent with remarkable rotations in Figs. 3, 4, and S17 and
video in Supporting Information.
Furthermore, the elevated temperature MLMD simulations of

350 K beyond room temperature were performed to explore
enhanced [PS4]3− polyanion rotations in Li7P3S11, and the
corresponding total simulation times are as the same as those

Fig. 2 1μs MLMD simulations for Li7P3S11. a Initial crystal structure before MLMD simulations, b final structures with PS4 polyanion rotations
after 1μs MLMD simulations at 300 K, and c S4-S5-S44 in PS4 polyanion rotating along P8-S28 bond axis. Schematic diagrams of the definition
of angles θ and φ for d [PS4]

3− tetrahedron and e [ErCl6]
3− octahedron in the reference coordinate system. θ is defined as the angle between

P–S or Er-Cl bond and z-axis, while angle φ corresponds to angle between the y-axis and the projection of P–S or Er-Cl bond vector in the
xy plane.
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Fig. 3 Structural characteristic of PS4 polyanion rotations during the whole 1μs MLMD simulations for Li7P3S11 at 300 K. Angle θ and φ
evolutions of the four P-S bonds in a, b 5#, c, d 6#, e, f 7#, and g, h 8# [PS4]

3− tetrahedra, respectively. Here, two adjacent data points with a
time interval of 5 ps.
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for 300 K. Figure S16 shows P-S bond lengths are fluctuating
around 2.05 Å during the whole 1 μs simulation time, and all P-S
bonds are well maintained even upon intense [PS4]3− polyanion
rotations, demonstrating stable structure dynamics at elevated
temperature. Viewed from Fig. S20, for each 5#, 6#, 7#, and 8#
[PS4]3− tetrahedron, three S ligands continually exchange their
spherical coordinates of θ and φ and stay at their adjacent minima
during the whole 1 μs simulation time, indicating remarkable
[PS4]3− rotations in Li7P3S11 at 350 K. Additionally, for each 5#, 6#,
7# and 8# [PS4]3− tetrahedron, Helmholtz free energy surfaces
(Fig. S21) clearly show flat energy landscapes among three S
ligands, corresponding to the relatively low energy barriers
(0.16–0.21 eV) for intensive [PS4]3− rotations. Making a comparison
between MLMD simulation results at 300 K and 350 K, [PS4]3−

rotational event in Li7P3S11 is very sensitive to temperature change
and thermal activation, and the occurrence frequency of rotation
can be enhanced several times just by increasing 50 K. Therefore,
extrapolating polyanion rotational events from elevated tempera-
tures (>600 K) AIMD simulations to room temperature situation
may cause some underlying deviations.
For other lithium conductors, 1μs MLMD simulations at 300 K

were also performed, and the simulation results are shown in Figs.
S22–S26. During the whole MLMD simulations time, no anion
ligand exchanges its spherical coordinates of θ and φ, and no
rotation at room temperature is observed for [PS4]3− and [GeS4]4−

tetrahedron Li10GeP2S12, [PS4]3− tetrahedron in β-Li3PS4, [ErCl6]3−

octahedron in Li3ErCl6, and [YBr6]3− octahedron in Li3YBr6,
respectively. It should be noted that our MLMD simulations just
demonstrate no remarkable polyanion rotation at room tempera-
ture during the 1μs simulation time, and polyanion rotations
beyond 1μs cannot be completely ruled out for Li10GeP2S12, β-
Li3PS4, Li3ErCl6, and Li3YBr6 at 300 K. But certainly, the probability
of occurrence of polyanion rotation in Li10GeP2S12, β-Li3PS4,

Li3ErCl6, and Li3YBr6 at room temperature is relatively much lower
than Li7P3S11.

The weakly negative effect of polyanion rotation on Li ion
migration
To answer the question of whether [PS4]3− polyanion rotation
would effectively facilitate Li ion diffusion in Li7P3S11 at 300 K, we
further explored the relationships between [PS4]3− polyanion
rotation and Li ion translational motion. Figure 6a–d show 2D
probability density distributions (ρ2Dr;θ) of P-S-Li angles θ and
distance r between S ligands and their adjacent Li ions for
rotational 5#-, 6#-, 7#- and 8#-[PS4]3− polyanions. It is seen that ρ2Dr;θ
of four rotational [PS4]3− polyanion systems are quite delocalized
and dispersed in the most space of (r, θ), signifying the quite weak
polyanion-cation dynamical couplings. On the other hand, if there
is a strong polyanion-cation coupling dynamics, ρ2Dr;θ would be
localized in an agminated spot. Li ions in Li7P3S11 are divided into
two groups, that is Li ions in group-I are close to rotational [PS4]3−

polyanions, and Li ions in group-II are far away from rotational
polyanions. Figure 6e shows e diffusion trajectories of Li ion in
group-I near rotational 5#- and 6#-[PS4]3− polyanions from
711.207 ns to 711.212 ns. During the rotation time of 5 ps, two
[PS4]3− polyanions successfully rotate 120 degrees, and Li ions in
group-I close to these two polyanions also dramatically hop rather
than vibration at their equilibrium sites, whose hopping distances
are more than 1 Å. A similar phenomenon is observed for Li ion
diffusion around rotational 7#- and 8#-[PS4]3− polyanions from
918.137 ns to 918.143 ns, as depicted in Fig. 6g.
To quantitatively determine the correlations between [PS4]3−

polyanion rotation and Li ion translational diffusion, the Pearson
correlation coefficients38 between angular velocity vectors of S
ligands in rotational 5#-, 6#-, 7#-, and 8#-[PS4]3− polyanions and
their adjacent Li ions were calculated, as shown in Fig. 6f, h. Here,

Fig. 4 Angle evolutions of P-S bonds. θ and φ evolutions of the four P-S bonds in a–c 7# and b–d 8# [PS4]
3− tetrahedra for Li7P3S11 during

300 K MLMD simulations from 918.05 ns to 918.20 ns. Here, two adjacent data points with a time interval of 0.5 ps.
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only those Li ions staying within the first shell of [PS4]3− during
the whole rotation time are considered for the Pearson correlation
coefficient calculations, whose P-Li distances are less than 4 Å,
referred from RDF of P-Li in Fig. S18. All the absolute values of
calculated Pearson correlation coefficient are less than 0.25. Given
that a Pearson correlation coefficient smaller than 0.5 is generally
regarded as weak in statistics39, so Li ion translational diffusion is
quite weakly correlated to rotational [PS4]3− polyanions. Further-
more, diffusion coefficients of Li group-I near and Li group-II far
away from rotational polyanions were determined to get detailed
diffusion events, as shown in Fig. 6i–l. It is found that diffusion
coefficients of Li group-II far away from [P2S7]4− are smaller than
those of Li group-I near [P2S7]4−. As Fig. S27 shows that the
calculated anion charges of S ligands in [P2S7]

4− are smaller than
those of isolated [PS4]3− groups, especially for the bridging S
anion with a charge of −0.57 e, so the electrostatic attractions
between [P2S7]4− polyanion group and Li+ cation are relatively
weaker40–42, eventually leading to higher diffusion diffusivities.
On the other hand, most importantly, diffusion coefficients of

both Li groups near and far away from rotational 5#-, 6#-, 7#-, and
8#-[PS4]3− polyanions unanimously exhibit downtrends within

[PS4]3− rotation time. Because the Li-anion electrostatic interac-
tions are long-ranged, rotational [PS4]3− polyanions also have
impacts on those Li ions far away from them. In other words, the
rotation of [PS4]3− polyanion groups would lower the instanta-
neous Li ion diffusivities of all ions in unit cell, which may be due
to the contingent inconsistency of direction between Li ion
translational motion and polyanion rotation disturbing the
potential energy surface of Li with respect to [PS4]3− polyanion
rotation. It is fully consistent with our previous results of
anharmonic phonon calculations for crystalline Li7P3S1143, that is
the low-frequency [PS4]3− rotational modes anharmonically
couple with high-frequency Li modes, which vibrate toward S-S
edge or along Li-S apex and are not Li diffusion pathways. The
phenomenon of decoupled [PS4]3− rotational motion from Li jump
is also observed in 70Li2S-30P2S5 glass system32. Therefore, from
our MLMD simulations at 300 K, it can be concluded here that
there is no paddle-wheel effect in the crystalline Li7P3S11 at room
temperature, and rotational [PS4]3− polyanion groups at 5–6 ps
level have some weakly negative impacts on the overall Li ion
diffusion in Li7P3S11 unit cell. In fact, lack of paddle-wheel effect is
also reported for BH4-substituted Li argyrodite system44. Compare

Fig. 5 Rotational dynamics of [PS4]3− polyanion. The Helmholtz free energy surface of P-S bonds as a function of θ and φ angle for a, b 5#,
c, d 6#, e, f 7#, and g, h 8# [PS4]

3− tetrahedron, respectively, from the whole 1μs MLMD simulations for Li7P3S11 at 300 K. The free energy F was
computed as Fðθ;φÞ ¼ �kBTln½ρðθ;φÞ�, where kB is the Boltzmann constant, T is temperature, and ρ(θ, φ) is 2D projected probability
distribution of four S ligands (as shown in Fig. S18 in Supporting Information).
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to other sulfides (Table S1), the superionic conductivity of for
Li7P3S11 mainly owes to its highly distorted LiSn polyhedron and
the weak Li-anion Coulomb force providing the frustrated
potential energy surface for Li ion migration with low activation
energy barrier4. Li ion migration in Li7P3S11 benefit from bridging S
anions from longer-chain [P2S7]4− units rather than rotations of
[PS4]3− polyanion from them.
In this work, the machine-learning interatomic potentials based

on the MTP framework were developed for Li7P3S11, Li10GeP2S12,

β-Li3PS4, Li3ErCl6, and Li3YBr6 lithium ionic conductors. The newly
developed machine-learning interatomic potentials well repro-
duce the DFT energies and forces, lattice parameters, and local
structures of these five lithium ionic conductors. Combining the
classical molecular dynamics simulations with our developed
machine-learning interatomic potentials, the ultralong-time MLMD
simulations were performed for five lithium ionic conductors at
near room temperature and other elevated temperatures, which
enhance the sampling of Li diffusion events and reduce

Fig. 6 The relationships between [PS4]3− polyanion groups (5#-P, 6#-P, 7#-P and 8#-P) and their adjacent Li ions during [PS4]3− rotation
time for 300 K MLMD simulations of Li7P3S11. 2D probability density distribution (ρ2Dr;θ) of P-S-Li angles θ and distance r between S ligands and
Li ion in the first shell of a 5#-, b 6#-, c 7#-, and d 8#-[PS4]

3− polyanions, respectively; e diffusion trajectories of each Li ion near rotational 5#-
and 6#-[PS4]

3− polyanions; f Pearson correlation coefficients between angular velocity vectors of S ligands in rotational 5#- and 6#-[PS4]
3−

polyanions and their adjacent Li ions; g diffusion trajectories of each Li ion near rotational 7#- and 8#-[PS4]
3− polyanions; h Pearson correlation

coefficients between angular velocity vectors of S ligands in rotational 7#- and 8#-[PS4]
3− polyanions and their adjacent Li ions; evolutions of

diffusion coefficient for Li groups near and far away from rotational i 5#-, j 6#-, k 7#-, and l 8#-[PS4]3− polyanions, respectively.
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calculation errors. On one hand, MLMD simulations show Li7P3S11,
Li10GeP2S12, β-Li3PS4, and Li3YBr6 exhibit the linear Arrhenius
behaviors from 300 K to 500 K. While for Li3ErCl6, the non-linear
Arrhenius behavior was observed, and the corresponding phase
transition occurs at ∼460 K. The near room temperature MLMD
simulations well capture the non-linear Arrhenius behavior and
would increase the accuracy of calculated ionic conductivity at
room temperature. On the other hand, the simulation time of
300 K MLMD simulations was extended to 1 μs level to capture
sufficient Li diffusion and polyanion rotation events in lithium
ionic conductors at room temperature. MLMD simulation results
demonstrate no remarkable polyanion rotation in Li10GeP2S12, β-
Li3PS4, Li3ErCl6, and Li3YBr6 at room temperature during 1μs
simulation time, just librational motion for them. However, in
Li7P3S11 at room temperature, four [PS4]3− tetrahedron in unit cell
are noticed with remarkable rotational motions. All the rotated
[PS4]3− tetrahedra belong to a part of the longer-chain [P2S7]4−

group, while isolated group [PS4]3− does not rotate. Moreover, a
full rotation of three S ligands in [PS4]3− polyanion over ~120
degrees was finished in 5–6 ps. Lastly, our 300 K MLMD simula-
tions show Li ion translational diffusion is quite weakly correlated
to the rotation of [PS4]3− polyanions in Li7P3S11, and rotational
[PS4]3− polyanion groups at 5–6 ps level have some weakly
negative impacts on the overall Li ion diffusion. There is no
paddle-wheel effect in the crystalline Li7P3S11 at room tempera-
ture, and Li ion migration in Li7P3S11 benefits from bridging S
anions from longer-chain [P2S7]4− units rather than rotations of
[PS4]3− polyanion from them. In short, our ultralong-time MLMD
simulations at low temperatures effectively capture the polyanion
rotation events and identify no paddle-wheel effect in Li7P3S11 at
room temperature, deepening our understanding of the relation-
ship between polyanion rotation and cation diffusion in ionic
conductors at room environment.

METHODS
Crystal structures
Supercells of Li7P3S11, Li10GeP2S12, β-Li3PS4, Li3ErCl6 and Li3YBr6
with lattice parameters greater than 10 Å were constructed to
minimize interactions between two periodic images. For Li7P3S11,
a 1 × 2 × 1 supercell with 84 atoms was constructed from the
experimentally determined crystal structure by Yamane et al.45.
For Li10GeP2S12, a 2 × 2 × 1 supercell with 200 atoms was created
from the computed structure in Materials Project (MP) database
(mp-696138). For Li3ErCl6 and Li3YBr6, starting from the experi-
mentally reported disordered structures with fractional occupan-
cies, the 1 × 1 × 2 and 2 × 1 × 1 supercells with 60 and 80 atoms
were firstly built, respectively, and then all Li-vacancy cation
configurations were created using the enumeration method46

implemented in Pymatgen code47. Lastly, the most stable Li-
vacancy configuration of Li3ErCl6 and Li3YBr6 were determined by
ranking their DFT energies, and the corresponding space groups
are P321 and C2/c, respectively.

DFT calculations and AIMD simulations
All calculations were carried out in the framework of density
functional theory (DFT)48 using the projector augmented wave
method49, as implemented in Vienna ab-initio Simulation Package
(VASP). The generalized gradient approximation (GGA)50 and
Perdew–Burke–Ernzerhof (PBE) exchange functional were
employed. The plane-wave energy cutoff was set to 520 eV, and
a k-point density of at least 64/Å−3, similar to those used in the MP
database. AIMD calculations were performed without spin-
polarization in an NPT ensemble at elevated temperatures with
a Nose−Hoover thermostat51. A smaller plane wave energy cut-off
of 300 eV was chosen for AIMD simulations of the supercells with a
Gamma-centered 1 × 1 × 1 k-point grid, and the simulation

supercell sizes were at least 10 Å along each lattice direction. Time
step was set to 2 fs, and all supercell systems were simulated for a
short time with a total of 10,000 steps. AIMD simulations with
supercell model were performed at six different temperatures
(from 300 to 1300 K with 200 K intervals) to diversify the training
structures. For each temperature, about 300 snapshot structures
were uniformly extracted from the production run of 20 ps. Hence,
for each lithium ionic conductor, a total of 1800 training structures
(300 × 6 temperatures) were generated. To obtain accurate
energies and forces for machine learning potential training, the
static self-consistent field (SCF) calculations for training structures
were carried out. These SCF calculations were performed with a
higher k-point density of at least 100/Å−3, an energy cutoff of
520 eV. The convergence criterion of energy for SCF calculations
was set to 10−6 eV atom−1. The crystal orbital Hamilton
population (COHP) between neighboring oxygen ions was
computed by Lobster program52, in which the negative and
positive COHP values indicate bonding and anti-bonding,
respectively. Integrating COHP to Fermi energy level obtain
-ICOHP data to quantify the chemical bonding strength. The
pbeVaspFit2015 basis sets were used for the reconstruction of the
PAW wave functions of each element.

MTP model training and verification
Today, there are many machine-learning atomic potential models,
such as the neural network potential (NNP)53, the Gaussian
approximation potential (GAP)54, the moment tensor potentials
(MTP)55, the smooth overlap of atomic positions (SOAP)56 and the
spectral neighbor analysis potential (SNAP)57. According to the
previous work by S.P. Ong et al.25, MTP model exhibits the smallest
root-mean-square errors in energies and forces. MD simulations
based on the MTP framework have been successfully applied to
many battery materials, including metals58, cathode coating
materials26 and SSE materials27. We sure that MTP model is the
best model for our work, when considering a trade-off between
accuracy and computational cost. In this work, the energy and
force data points are assigned weights of 100:1, similar to the
previous work by Ong27. In the MTP framework, two key
parameters should be carefully selected, which determine the
potential performance, including radius cutoff (Rcut) and maximum
level (levmax). The radius cutoff Rcut controls the maximum
interaction range between atoms, in this work, Rcut for our five
lithium ionic conductors are set to 5 Å, a typical value used in
previously reported MTP frameworks26,27,58. The maximum level
(levmax) determines completeness of the basis set functions, the
larger levmax would make the larger number of terms in the linear
expansion, in turn resulting in higher computational loading and a
greater possibility of over-fitting. In this work, levmax for our five
lithium ionic conductors were tested among these five values of 8,
10, 12, 14, 16 and 18. For the potential fitting, an 80:20 split of the
training : test data was used. All training, evaluations and
simulations with MTP framework were performed by using the
open-source software and Python packages, including MLIP59,
LAMMPS60 and Materials Machine Learning (maml).

Diffusivity and activation barrier calculations
Classical MD simulations for five lithium ionic conductors were
performed by LAMMPS interfaced with the trained MTPs, called
machine learning driven molecular dynamics (MLMD). The super-
cells of five lithium ionic conductors for MLMD simulations are the
same as those of AIMD simulations. Time step was set to 1 fs, a
typical value used in the previous work61. Each lithium ionic
conductor was firstly equilibrated in the NPT ensemble for 100 ps,
and then equilibrated in the NVT ensemble for 1 million steps
(total simulation time as long as 1 ns). Lattice volumes for MLMD
simulations in the NVT ensemble were averaged from all
structures of the previous MLMD simulations in the NPT ensemble.

Z. Xu et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)   105 



For each material, MLMD simulations were performed at room and
slightly elevated temperatures (from 300 to 520 K). At each
temperature, MLMD simulations were repeated 20 times to
enhance samplings of diffusion events and reduce the calculation
errors.
Diffusional properties of an atom can be calculated from its

MLMD trajectories with positions of ri(t), and the displacement Δri
of i-th particle from time t1 to t2 can be calculated by
ΔriðΔtÞ ¼ ri t2ð Þ � ri t1ð Þ, where Δt ¼ t2 � t1. Total squared displa-
cements are obtained by summing the squared displacements of
all Nmobile atoms over a time interval Δt,

PN
i¼1ðjΔriðΔtÞj2Þ. Over a

total MLMD simulation time duration of ttotal, there are many time
intervals of NΔt with the same duration of Δt (Δt < ttotal) at different
starting time of t. Due to atom’s displacements over Δt reflecting
mobility of atoms, the total mean squared displacements (TMSDs)
of all Nmobile atoms over a time interval of Δt can be obtained by
calculating the statistical ensemble average of the squared
displacements over a total of NΔt time intervals with the same
duration of Δt62, TMSDðΔtÞ ¼ PN

i¼1hjriðΔtÞ � rið0Þj2i ¼PN
N

1
NΔt

Pttotal�Δt
t¼0 jriðt þ ΔtÞ � riðtÞj2, where �h i stands for the statis-

tical ensemble average. This statistical ensemble average over
different time intervals of NΔt offers the statistical analysis of
sufficient diffusional events to obtain accurate diffusional proper-
ties. To get diffusivity of the mobile species, MSD over time
interval of Δt is calculated by averaging TMSDs to each mobile
atom, MSD(Δt) = TMSDs(Δt)/N, where, N is the number of
mobile atoms.
If MLMD simulations contain the sufficient diffusional events, the

dependence of MSD over time intervals of Δt would follow a linear
relationship. According to the Einstein relation, self-diffusion
coefficient D of a specie can be calculated from the slope of MSD
curve as a function of time intervals Δt 63, D ¼ MSDðΔtÞ

2dΔt , where, d= 3 is
the diffusion dimension of a particle in simulated system. The linear
fitting of MSD vs. Δt to the Einstein relation should only be
performed on the linear region corresponding to good diffusional
displacements. Therefore, to achieve small error bounds of the fitted
D and get accurate diffusivity, MLMD simulations should be long
enough for capturing a large number of diffusion events. Performing
a series of MLMD simulations at different temperatures obtains the
Arrhenius relations of the log of diffusivity D as a function of 1/T,
D ¼ D0 �Ea=kBTð Þ, and which can extrapolate the prefactor D0,
overall activation energy Ea, diffusivity D and conductivity σ at RT.
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