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Ab initio quantum simulation of strongly correlated materials
with quantum embedding
Changsu Cao 1,2, Jinzhao Sun 3,6, Xiao Yuan 4, Han-Shi Hu2, Hung Q. Pham 5✉ and Dingshun Lv 1✉

Quantum computing has shown great potential in various quantum chemical applications such as drug discovery, material design,
and catalyst optimization. Although significant progress has been made in the quantum simulation of simple molecules, ab initio
simulation of solid-state materials on quantum computers is still in its early stage, mostly owing to the fact that the system size
quickly becomes prohibitively large when approaching the thermodynamic limit. In this work, we introduce an orbital-based
multifragment approach on top of the periodic density matrix embedding theory, resulting in a significantly smaller problem size
for the current near-term quantum computer. We demonstrate the accuracy and efficiency of our method compared with the
conventional methodologies and experiments on solid-state systems with complex electronic structures. These include spin-
polarized states of a hydrogen chain (1D-H), the equation of state of a boron nitride layer (h-BN) as well as the magnetic ordering in
nickel oxide (NiO), a prototypical strongly correlated solid. Our results suggest that quantum embedding combined with a
chemically intuitive fragmentation can greatly advance quantum simulation of realistic materials, thereby paving the way for
solving important yet classically hard industrial problems on near-term quantum devices.
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INTRODUCTION
Quantum simulation for the ground state problem of chemical
systems has been among the most promising applications of
quantum computing1–7. Although the practical quantum comput-
ing advantage of chemistry problems is still on the way, the
development of efficient quantum algorithms for noisy
intermediate-scale quantum (NISQ) devices has been a rapidly
growing field of quantum technology8. Hybrid quantum-classical
algorithms like variational quantum eigensolver (VQE)3 and its
variants have been viewed as promising candidates that are
compatible with NISQ devices for the quantum simulation of
chemical systems. Considerable progress centered around varia-
tional algorithms has been made in quantum simulations of
molecular systems via both numerical9–13 and experimental
explorations3–6,14–16. Yet the experimental capability is no more
than 20 qubits.
Despite the progress in molecular systems, algorithmic devel-

opment in a quantum simulation of materials is still in the early
stage. Such studies could greatly enhance the capability of a
quantum computer in solving both fundamental and industrial
challenges, such as the understanding of unconventional super-
conductivity17 and the optimization of heterogeneous cataly-
sis18,19. Nonetheless, quantum simulation of periodic systems
remains challenging in the foreseeable future. The primary
challenge to ab initio simulation of periodic systems on a
quantum computer has its root in the necessity of approaching
the thermodynamic limit (TDL) for quantitative predictions. This
results in an extra dimension of computational variables
compared to their molecular counterparts, thus demanding an
impractically large number of qubits. So far, most of the current
studies have been limited to toy models of simple solids like the
hydrogen chain with a minimal basis set20–25.

To tackle this problem and enable NISQ devices for quantum
simulation of solid-state materials, various multiscale hybrid
quantum-classical methods have been proposed2. Quantum
embedding theory has been the most widely used framework
for such a multiscale simulation of chemical systems. In principle,
quantum embedding theory divides a large system into smaller
fragments, and enables an accurate treatment using a high-level
computational method. By integrating with a quantum solver like
quantum phase estimation or VQE, quantum embedding allows
the representation of the fragment with a quantum device and
the quantum subsystem is usually coupled to a classical
environment. Fruitful progress has been made in the quantum
simulation of lattice models and small molecules within the
framework of quantum embedding, for instance, dynamical mean-
field theory (DMFT)26–30, density matrix embedding theory
(DMET)31–35, and projection-based embedding36. Thus far, the
pioneering attempts of quantum simulations on periodic solids
have been focused on the active space ansatz, where the effective
Hamiltonian is constructed using an active subspace of orbitals
embedded in a Hartree–Fock (HF) or density functional theory
(DFT) mean-field37–39. Although such an active space approach is a
natural choice for systems where an active site can be
straightforwardly selected, for example, spin defect in solids40–42,
a general framework for ab initio quantum simulation of solid-
state materials is still missing. We are particularly interested in
DMET as a promising platform to derive an efficient hybrid
quantum-classical algorithm for two reasons. DMET intrinsically
allows high-level treatments for multiple fragments or correlated
sites using a high-level theory, unlike the active space or
projection-based embedding, which have been mostly developed
for one single fragment or one correlated site (for instance, solid-
state defect43). Additionally, DMET is a computationally cheaper
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alternative to the successful DMFT technique44 in order to
accelerate the convergence of the ground-state energy to TDL.
While recent developments in ab initio DMET44–48 and its

multifragment extension have been applied for periodic solids49,
the fragment size can be hundreds of qubits or more, which are
hard to solve classically or using NISQ hardware. Here, by
partitioning the unit cells into multiple subsets of strongly and
weakly correlated orbitals, we introduce a hybrid quantum-
classical algorithm that could overcome the limitation. The
embedding Hamiltonian is now solved in a hybrid manner, where
the strongly correlated subsets are solved by a quantum solver
and the weakly correlated subsets are treated classically. This
orbital-based multifragment approach is motivated by the
observation that strong correlation in materials can be attributed
to a few correlated orbitals, for example, 3d orbitals in transition
metal oxides or cuprates50. The strongly correlated subsets are
often small and well-suited, given the current limitation of
quantum resources. We investigate the performance of our
method using prototypical systems from weakly to strongly
correlated electronic structures, including the spin polarization of
one-dimensional hydrogen chain (1D-H), equation of state (EOS)
of two-dimensional hexagonal boron nitride (h-BN), as well as the
magnetic ordering of three-dimensional nickel oxide (NiO). We
show that the quantum resource required for the largest
simulation on NiO can be reduced to 20 qubits from the
requirement of 9984 qubits using a non-embedding algorithm.
Overall, our results suggest that it is possible to perform
quantitative prediction on realistic solids using quantum compu-
ters. This work paves the way for further research in ab initio
simulation of large and complex periodic systems on near-term
quantum devices.

RESULTS
Spin-polarized states of the hydrogen chain
We first perform numerical simulations on the one-dimensional
equidistant hydrogen chain (1D-H). As a simple but useful model,
1D-H is regarded as a good starting point to understand more
complex systems51–53. In this part, we use a spin-unrestricted
UCCSD ansatz in VQE as a quantum computing (QC) solver
integrated with the DMET scheme to study the spin polarizability
of 1D-H. Both antiferromagnetic and non-spin polarized initial
guesses were used to determine the non-magnetic ground state
with the lowest energy. The potential energy curve of the ground
state is depicted in the provided in Fig. 1(b). In our calculations,
each unit cell containing two hydrogen atoms is treated as a
fragment (defined as a unit cell embedding throughout this work).
Figure 1b, c show the total energy and spin density of 1D-H

calculated by QC solver (QC-DMET). As the distance between two
hydrogen atoms increases, the energy curves become flat, and the
spin density on the hydrogen atom increases. This indicates that
the system acts more like isolated atoms with weak coupling
between the hydrogen atoms. As the system is compressed, the
spin polarization vanishes. The transition from antiferromagnetic
to non-spin polarized occurs approximately at 0.45 Å for the
1 × 1 × 45 k-mesh. We have also compared our findings to those
of previous studies and found them to be consistent, as detailed in
Supplementary Section 2.
We assess the accuracy of our method by comparing the DMET

energies obtained with QC solvers to those from fully classical
calculations. As shown in Fig. 1d, the difference between the total
energies calculated by o-DMET using QC solver and FCI solver is
negligible for the compressed region where D(H-H) ≤1.0Å. The
disparity between classical and quantum solvers increases as the
hydrogen chain is stretched. It is worth noting that the sc-DMET
method performs better than the o-DMET method in all scenarios,
as shown in Fig. 1e. In particular, the results of sc-DMET exhibit a

smaller classical-quantum deviation compared to those of
o-DMET. Further analysis of the energy difference between the
solvers can be found in Supplementary Section 2.
Lastly, we also conducted simulations on the closed-shell 1D-H

to investigate the effect of noise on our DMET algorithm. Our
results indicate that the o-DMET energy converges with an
increasing number of shots and is resistant to depolarizing noise.
Quantum error mitigation strategies were found to improve
performance at moderate levels of noise. Additional information
can be found in Supplementary Section 5.

Equation of state of 2D h-BN
We investigate the performance of DMET with the orbital-based
partition in calculating the EOS of a prototypical 2D system, the
hexagonal boron nitride (h-BN)54, with weak electron correlation.
We note that this system has been studied before with a unit cell
or multiple unit cells as the fragments48. Inspired by the sp2

hybridization of B and N55, we divide the unit cell of h-BN into
three fragments (see Fig. 2a). The first fragment consists of the 2s,
2px, and 2py orbitals of B, while the second fragment consists of
similar orbitals of N. The third fragment consists of all remaining
orbitals. Since each of the first two fragments has only six spin
orbitals, this allows us to utilize a QC solver while employing
classical solvers for the third fragment. In addition to our present
fragmentation, two equally valid alternative approaches exist. The
first involves a strongly correlated subset containing all 2pz orbitals,
while the second fragment includes the remaining orbitals.
Alternatively, the second option combines both σ (2s, 2px, 2py)
and π (2pz) orbitals within the correlated subset. Considering the
B-N bond’s partially ionic character56 and modest strong correla-
tion, all options are plausible. Our current selection primarily serves
as a proof-of-concept demonstration. DMET using one unit cell as
well as k-CCSD calculations are also performed for reference.
Figure 2b presents the EOS of h-BN using different meshes for k-

mesh. It can be observed that the orbital-partitioned DMET
scheme, in conjunction with the QC solver, underestimates the
absolute correlation energy when compared to k-CCSD. However,
the computed EOS by all three methods exhibits a similar
curvature, indicating that the orbital-partitioned scheme accurately
captures the curvature of the EOS. This trend is consistent across
different k-meshes. It is worth noting that the equilibrium lattice
constant is a more relevant observable to benchmark a method as
opposed to the curvature of the EOS. However, determining the
lattice constant from an embedding technique necessitates a
systematic convergence of the EOS with regard to the size of the
fragment48. Nonetheless, these calculations demand a much larger
number of qubits which is beyond our limitation in computational
resources. Therefore, we limit our scope by using the curvature of
the EOS to benchmark our quantum calculations against k-CCSD.
Our results showed that the agreement between QC-DMET,
classical DMET, and k-CCSD is excellent, whereas Hartree–Fock
(HF) has a small discrepancy of 4mHa at −0.2Å.
We anticipate that the orbital-based embedding approach

combined with chemical intuition can be helpful in predicting
reaction barriers or phase transitions in solid-state materials.
Importantly, the size of the embedding Hamiltonian within this
approach is relatively small yet can be systematically expanded by
including basis functions with high angular momentum numbers.
This allows a simple way to apply the current noisy quantum solvers
to realistic chemical systems at medium- or large-size basis sets.

Magnetic ordering in NiO
In this section, we further study the accuracy of our orbital-based
partition approach using a high spin 3d solid, NiO, a strongly
correlated insulator whose electronic structure and magnetic
properties have been extensively studied for decades57–66. It is
well-documented that NiO crystallizes in a rock-salt structure with a
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Fig. 1 Results of DMET Calculations for 1D-H. a The unit cell of 1D-H containing two hydrogen atoms is treated as the fragment in DMET
calculations. b The potential energy curve of 1D-H calculated using different k-meshes by sc-DMET using QC solver. c The spin density, i.e., the
difference between the spin-up and spin-down electron density, using the Mulliken population99 for the hydrogen atom, which shows the
phase transition from the AFM state to the non-spin polarized state. d o-DMET and e sc-DMET energy differences between QC solvers and
classical FCI solvers. The same scale for the vertical axis is used.
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type II antiferromagnetic ground state, i.e., an AFII state. First, all the
magnetic moments localized on Ni2+ in each (111) plane are
ferromagnetically aligned. The ferromagnetic (111) planes are
stacked antiferromagnetically along the [111] direction, resulting in
the AFII state (see Fig. 3a). If they are stacked ferromagnetically (all
magnetic moments are aligned in the same direction), then we have
an FM state of NiO. The energetic difference between these two

states of NiO could be straightforwardly calculated using the
nearest-neighbor and the next-nearest-neighbor exchange interac-
tion, J1 and J2, respectively. The exchange interactions have been
measured or calculated using various techniques, thereby providing
reliable references to benchmark our calculations. We note that
DMET and DMFT calculations using the unit cell(s) as the fragments
have been reported on the AFII state of NiO in previous work48.

Fig. 2 Results of DMET calculations for BN. a The unit cell of BN is fragmented into three fragments and their corresponding IAOs. The first
fragment is the 2s, 2px, and 2py orbitals of B, while the second fragment is the same orbitals of N. The third fragment is the pz orbitals from B or
N and all other orbitals; only several of them are shown here. b EOS of BN by Hartree–Fock (dashed curves), classical unit cell DMET (plus
signs), QC-DMET (unfilled circles), and k-CCSD (solid curves) at different meshes of k-points: the absolute EOS (left) and the shifted EOS (right).
The shifted EOS for each method was obtained by shifting both the minimal energy and the lattice constant corresponding to this minimum
to zero. The 5 × 5 × 1, 6 × 6 × 1, and 7 × 7 × 1 k-mesh are denoted by green, red, and blue lines, respectively.
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In order to model the AFII and FM state of NiO, we use a
rhombohedral structure with two formula units per unit cell.
Within the octahedral crystal field, the five-fold degenerate 3d
orbitals of Ni2+ are split into eg and t2g orbitals. Inspired by the fact
that the t2g orbitals are fully filled while the eg orbitals are half
filled64, we partition the unit cell of NiO into three fragments, as
shown in Fig. 3b. The first fragment contains the eg orbitals of the
first Ni2+ and the 2p orbitals of the first O2−. We note that the
inclusion of the 2p orbitals from O2− in this fragment is to account
for the superexchange between Ni2+ 3d and O2− 2p orbitals57,58.
The second fragment is composed of similar orbitals from the
second Ni2+ and O2−. The third fragment is composed of all
remaining orbitals, which include the t2g orbitals as well as other
orbitals with high angular momentum quantum numbers. Similar
to h-BN, our partition scheme permits a mixed solver scheme
where the QC solver is used for the two small fragments, which
presumably account for the static correlation, while the classical
CCSD solver is used for the large fragment to recover the
remaining dynamic correlation. The resulting solver is denoted as
QC/QC/CCSD. We also perform DMET calculations using the entire
unit cell as the fragment to compare with our orbital-based
partition scheme.
Table 1 presents our computed energy gaps between the FM

and AFII states using DMET from two different partition schemes
and solvers. First, we find that o-DMET tends to underestimate the
gaps between FM and AFII and does not significantly differ from
the FM-AFII gap computed by HF. At the 2 × 2 × 2 k-mesh, o-DMET
using the unit cell as the fragment even incorrectly predicts FM to
be the ground state of NiO. The sc-DMET predictions are in better
agreement with the existing computational and experimental FM-
AFII gaps in the literature. Although the importance of correlation
potential fitting in DMET calculations for the electronic structure of

magnetic NiO is highlighted by the improved results obtained
with multifragment embedding, it’s worth noting that the impact
of self-consistency in DMET calculations can vary depending on
the system and the flavor of DMET used. For instance, previous
studies have reported minimal impact on single-embedding
calculations of molecules67 and Gamma-point solid-state sys-
tems68,69, while improved results have been observed with
multifragment embedding45,47,48. Second, we find that the
orbital-based partition scheme is overall in excellent agreement
with the unit cell embedding despite employing much smaller
fragments. At the 2 × 2 × 2 k-mesh, the energy gaps computed by
the orbital-based sc-DMET are only around 20.0 meV (or 0.5 kcal/
mol) different from that by k-CCSD, validating the accuracy of the
orbital-based partition for calculating the FM-AFII gaps of NiO.
Since there are precisely twenty spin orbitals within the
embedding problem for each small fragment, we can employ
VQE with twenty qubits as a DMET solver. The agreement of the
FM-AFII gap calculated by our QC-DMET method with the classical
results is within 40 meV, which falls within the chemical accuracy
of 1 kcal/mol.
Next, we show how the many-body screening effects between

the fragments are recovered through the self-consistent optimiza-
tion of the correlation potential by conducting a classical
experiment in which we explicitly group the first two fragments
together as one to explicitly account for the many-body screening
effect between these two fragments. Specifically, we partition the

Fig. 3 Results of DMET calculations for NiO. a Rock-salt structure of
NiO with two ferromagnetic planes (blue and yellow) stacking
antiferromagnetically. b The computational unit cell of NiO is
fragmented into three fragments and their corresponding IAOs. The
first and the second fragment are the eg and 2p orbitals from Ni2+

and O2−, respectively. The third fragment is the t2g of Ni2+ and all
other orbitals; only several of them are shown here.

Table 1. The energy differences between the FM and AFII state
(EFM− EAFII in meV/formula unit) for NiO from different
methodologies.

Method Solver k-mesh Extrap.

23 33 43 TDL

HF 40.7 24.0 22.9 19.3

o-DMET Full cell CCSD −23.4 49.6 46.1 35.5

CCSD/CCSD/CCSD 95.8 33.6 30.3 20.4

FCI/FCI/CCSD 97.5 34.6 31.4 22.0

QC/QC/CCSD 87.9 33.4 31.2 24.3

QC/QC/HF 54.5 33.3 31.3 25.3

CCSD/CCSD 95.1 33.6 30.4 20.5

sc-DMET Full cell CCSD 95.4 51.9 57.4 73.8

CCSD/CCSD/CCSD 109.0 43.0 43.3 44.4

FCI/FCI/CCSD 111.7 45.6 52.8 74.2

QC/QC/CCSD 94.3 25.4 26.7 30.5

QC/QC/HF 57.7 34.8 36.9 43.0

CCSD/CCSD 153.9 87.3 87.3 87.5

k-CCSD 141.3

Method Literature

HF 22.895

DFT 89.964, 100.895, 103.760,104.096, 111.164, 145.895

SIC 66.461, 81.261, 106.458, 116.058

Experiment 105.8497, 112.298

Both one-shot (o-DMET) and self-consistent DMET (sc-DMET) are pre-
sented. For rows labeled with full cell CCSD, the whole unit cell is treated as
the fragment while the others are calculated with multifragment partition.
The FM-AFII energy gaps were extrapolated to the TDL using33 and 43k-
point, which has been reported to give good agreement with experimental
measurements, as demonstrated by ref. 94. The calculated and experi-
mental values from the literature are also given.
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unit cell into two fragments: (1) Ni2+ eg orbitals and O2− 2p
orbitals; (2) the remaining orbitals on Ni2+ and O2−. This
experiment is denoted as CCSD/CCSD in Table 1. Our results
indicate that at the o-DMET level, the difference between the two
methods of partitioning the unit cell (into two or three fragments)
is insignificant at all k-meshes and at TDL. This suggests that the
many-body screening effect between the two fragments is of
minimal significance. Additionally, at the sc-DMET level, the
energy gap computed by CCSD/CCSD (two fragments) is
significantly improved from that computed by CCSD/CCSD/CCSD
(three fragments). At 23 k-mesh, the difference in the energy gap
computed by CCSD/CCSD and k-CCSD is ~12.6 meV or 0.3 kcal/
mol, which is smaller than the chemical accuracy. This suggests
that the many-body screening effect between the fragments in
our method is partially included and can be systematically
improved by including more orbitals, as previously discussed.
Thus, this experiment demonstrates that the many-body screen-
ing effect between fragments in our method can be partially
included, and systematically improved by increasing the number
of orbitals.
We emphasize that we do not attempt to prove a quantum

advantage within this approach; rather, we demonstrate how the
orbital-based partition for DMET could be utilized in conjunction
with quantum solvers to study realistic and challenging solids. As
far as we are concerned, this is one of the first examples, if not the
first, of the ab initio quantum computation on strongly correlated
solids containing 3d transition metal, using a medium-sized basis
set. Our proposed approach will benefit from both hardware and
algorithmic advances from the quantum computing community.

Quantum resource estimation
We highlight the computational efficiency of our framework by
analyzing the required qubits for each system studied in this work
(see Table 2). One can easily see that the required number of
qubits by a naive quantum algorithm would quickly explode as
the dimension of the solids increases from 1D to 2D to 3D. For
example, the largest calculation performed in this work on NiO
with a 4 × 4 × 4 k-mesh would require 9984 qubits, which is far
beyond the current status of any near-term quantum devices.
To further elaborate on this aspect, the quantum resources

required for our method are independent of k-point sampling
since we embed a cluster within a k-point sampled periodic
environment. In DMET, bath size is determined by the chosen
fragment orbitals. Although our calculations maintain a constant
embedded cluster size, expanding the fragment size with the
k-mesh would necessitate additional quantum resources, indir-
ectly connecting the resource requirements to the number of
k-point samplings. This intriguing variation presents an opportu-
nity for further investigation in future studies.
In practical simulations, evaluating strong correlations is crucial

before investing quantum resources in any algorithm, including
ours. In molecular systems, several multi-reference (MR) diagnostic
schemes have been developed, including DFT calculations, wave
function theories, and machine-learning-inspired diagnostics70.
These diagnostics help understand the correlation, but similar

practices are less common in solid-state electronic structures. We
anticipate that classical MR diagnostics will eventually be applied
in materials research to determine strong correlation levels.

DISCUSSION
In this work, we presented a flexible hybrid quantum-classical
framework for quantum simulation of solid-state materials. With
the multifragment partition of the unit cell at the orbital level,
we show the possibility of ab initio simulation of complex
electronic structures on quantum computers. Our approach is
akin to the active space methods of quantum chemistry in that
it involves dividing the unit cell into smaller fragments, similar
to how an active space is partitioned into subspaces. However,
there are several crucial distinctions in our method when
compared to the traditional active space decomposition
methods. Our proposed method represents a significant
departure from the traditional active space decomposition
methods such as generalized active space self-consistent field
method71,72, localized active space self-consistent field
method73,74, or active space decomposition75, which have been
primarily formulated for molecular systems. Extending these
methods to solid-state systems is either impractical because of
their size-inextensivity or presents significant challenges. In
contrast, our method is formulated and implemented within a
periodic DMET framework, enabling quantum computation on
solid-state systems. Furthermore, our method diverges from
previously studied multifragment DMET approaches, which
have focused on weakly-bound fragments, by strategically
partitioning fragments based on the chemical intuition of
orbital interactions. This results in a more flexible approach and
the ability to control the size of the problem for near-term
quantum devices. We note that the distinction between
strongly and weakly correlated subsets is subtle, with no clear
boundary between them. Our method assumes a decoupling,
allowing the strongly correlated subset to be treated using a
higher level of theory. This is similar to addressing static and
dynamic correlation in traditional quantum chemistry76.
To investigate the accuracy of our method, we studied the

antiferromagnetic electronic structure of the 1D hydrogen
chain within periodic boundary conditions where the whole
unit cell is chosen to be a correlating group of orbitals. This can
be seen as a special case of our approach. The agreement
between the EOS produced by our method and other classical
approaches like k-CCSD or CCSD-DMET demonstrated the
accuracy of the unrestricted UCCSD ansatz used in DMET. We
then calculated the EOS of h-BN and compared them against
those calculated by k-CCSD. A good quantitative agreement
was observed, indicating the accuracy of our method for this 2D
material. The strongly correlated electronic structure of NiO was
also studied. Not only do our calculations agree with the
k-CCSD at the available k-mesh, but are also well-consistent
with previous studies from both experimental and theoretical
literature.
The spin-unrestricted UCCSD ansatz was implemented and

employed in the VQE procedures for 1D hydrogen chain and 3D
NiO system; in particular, both occupations and orbital coefficients
are not restricted to be the same for spin-up and spin-down
electrons. Previous studies have focused extensively on the spin-
restricted wave function and the spin-unrestricted ansatz has
been more or less overlooked. The spin-unrestricted UCCSD solver
could be useful for cases when it is more convenient to break the
spin symmetry to converge to the ground state. We anticipate that
the ansatz improvement within this direction, for instance, an
unrestricted k-UpCCGSD ansatz77 or an unrestricted adaptive
variational algorithm78,79 may further reduce the circuit depth
with satisfactory accuracy.

Table 2. A survey on the number of required qubits for the largest
simulation of each system studied in this work.

System Number of cGTOs k-mesh Number of qubits

(per unit cell) No embedding This work

1D-H 2 111= 11 44 8

2D h-BN 26 72= 49 2548 12

3D NiO 78 43= 64 9984 20

C. Cao et al.
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We anticipate several directions in which the recent technical
advances can be augmented with our framework to improve both
accuracy and efficiency when dealing with large systems. One
direction relates to the systematically improvable embedding
scheme. In this scheme, the conventional bath orbitals in DMET
can be systematically augmented with some extra orbitals
computed from local second-order Møller–Plesset perturbation
(MP2) calculations, resulting in a larger correlation space and
higher accuracy80. Another promising direction is to explore the
use of quantum-classical hybrid quantum Monte Carlo (QMC)
solvers, for example, a quantum-classical hybrid full configuration
interaction QMC81 or auxiliary field QMC16. These QMC-enhanced
methods are based on the fact that quantum computers could
provide a better initial trial state with good overlaps with the
ground state of the system. Furthermore, incorporating higher
level excitations in UCC ansatz may lead to more accurate results,
but currently requires a large number of parameters and deep
quantum circuits. With advancements in parameter reduction and
circuit compilation techniques, it may become practical82.
Finally, we propose two applications that our method could

potentially apply to. First, the correlating orbitals embedding
studied herein could be used to study high-temperature super-
conducting cuprate on a NISQ device owing to the fact that Cu2+

3d and O2− 2p orbitals govern the strong correlation physics in
cuprate similar to Ni2+ 3d and O2− 2p orbitals in the case of NiO.
We note that a comprehensive DMET study on the parent state of
cuprate has been recently reported by ref. 49. Thus, it would be an
interesting complementary study on these materials using the
orbital-based multifragment embedding proposed in this work.
Solid-state heterogeneous catalysis like single atom/cluster
catalyst83,84 is another important chemistry application where
the 3d orbitals of transition metals play a significant role in
determining the reaction barriers, thereby requiring an accurate
treatment for electron correlations. In both cases, the application
of our methodology requires a priori partition of different groups
of active orbitals using chemical intuition. Our recommended
practice is to systematically expand each correlating fragment by
adding orbitals from the weakly correlated fragment until the
property of interest, e.g., relative energy, is converged.

METHODS
In this section, we introduce the key steps in the ab initio periodic
DMET algorithm used in this work. We discuss how this algorithm
can be integrated with an orbital-based partition of the unit cell to

enable the simultaneous use of both quantum and classical
solvers, resulting in a hybrid quantum-classical algorithm for
realistic solids. For periodic systems, each atomic Bloch orbital, or
k-adapted atomic orbitals (AOs), is simply the Fourier transform of
a contracted Gaussian-type orbital (cGTO):

ϕk
μðrÞ ¼

X
R

eikRϕμðr� RÞ; (1)

where R is a real space lattice vector and k is a crystal momentum.
The crystalline orbitals are linear combinations of atomic Bloch
orbitals, ψk

pðrÞ ¼
P

μC
k
μpϕ

k
μðrÞ. The second-quantized Hamiltonian

in the crystalline orbital is expressed as

Ĥ ¼ P
p;q

P
kpkq

hkpkqpq âkpyp âkqq

þ 1
2

P
p;q;r;s

P
kpkqkrks

gkpkqkrkspqrs âkpyp âkryr âkss â
kq
q :

(2)

where âkpyp (âkpp ) is the fermionic creation (annihilation) operator to
p-th orbital in kp sampled in momentum space (k-space), with p, q,
r, s denoting the indices of crystalline orbitals. Ab initio simulation
on solids usually requires the computation on a supercell with a
very large size. Thus, it is a common practice to employ
transnational symmetry by solving the Hamiltonian in the
momentum space (k-space). In Eq. (2), we note that kp− kq= 0
and kp+ kr− ks− kq= 0 owing to the translational symmetry
(this is preferred as the conservation of crystal momentum). In the
following, the localized orbitals are denoted by i, j, k, and l, while
the orbitals in embedding space are denoted by ~i;~j; ~k and ~l.
The quantum-classical hybrid flowchart is illustrated in Fig. 4.

The algorithm begins with the procedure of projecting the non-
orthogonal atomic Bloch orbitals to the orthogonal localized ones,
i.e., periodic intrinsic atomic orbitals (IAO)85 and projected atomic
orbitals86, and partitioning the unit cell into several correlated
fragments. In previous DMET algorithms for periodic systems, the
whole unit cell is usually selected as one unique fragment
embedded in an environment composed of unit cells47,48. Due to
the translational symmetry, only one embedding problem needs
to be solved. It has also been extended to multi-fragments in
multi-layer compounds or inhomogeneous systems, where a sub-
structure containing several atoms is chosen as the fragment49. In
this work, we introduce an orbital-based fragmentation in which
each fragment may contain several correlated orbitals from
different atoms. Within this scheme, it is possible to perform the
partition with an arbitrary number of fragments. For the sake of

Fig. 4 Schematic diagram of the hybrid quantum-classical periodic DMET algorithm for the ab initio simulation of solids. In this cartoon,
we assume the unit cell is divided into two fragments a and b, without loss of generality. Due to the translational symmetry in the periodic
system, we only perform the partition covering one unit cell and solve them in a high-level solver without repeating the calculations on all the
other unit cells.
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simplicity, we assume the unit cell is divided into two fragments, a
and b, to be solved with quantum and classical solvers,
respectively.
The bath of each fragment is constructed solely by treating the

rest of the supercell as the environment in R-space. For fragment
a, it is built by performing singular value decomposition on the
off-diagonal block of density matrix between the fragment and
the environment, which is expressed as,

Dij ¼
X
~k

Bi~kλ~kV
y
~kj
with i � a; j 6� a (3)

where B is a rectangular matrix used to transform the local orbitals
to the bath orbitals. The embedding orbitals are composed of the
fragment and the bath orbitals. The number of the bath orbitals is
no larger than that of the fragment. Regardless of the size of the
supercell, the size of each embedding problem is at most 2N with
N being the number of local orbitals within the fragment. Then we
obtain the embedding Hamiltonian similarly to molecular systems
through a projector operator (which is described in detail in the
literature34,46,48) as follows

Ĥemb ¼
X
~i;~j

h~i~j â
y
~i
â~j � μ

X
~i�a

ây~i â~i þ
1
2

X
~i;~j;~k;~l

g~i~j~k~l â
y
~i
ây~kâ~l â~j ; (4)

where ây~i and â~j are operators that create and annihilate electrons
in the embedding orbital ~i and ~j, respectively. h~i~j and g~i~j~k~l are the
one- and two-body component of the embedding Hamiltonian,
which are evaluated classically; and μ is the global chemical
potential, which is a parameter to be optimized in DMET
procedures to ensure the conservation of electron numbers.
Once constructed, a correlated wave function method is

typically employed to solve the embedding Hamiltonian. The
key difference is we only utilize the quantum resources for the
embedding problem corresponding to the strongly correlated
group, while a classical solver, for instance, coupled cluster
singles and doubles (CCSD), is used for the weakly correlated
group. The size of the strongly correlated group orbitals can be
managed to accommodate the current as well as any future
NISQ devices. In our implementation, the embedding Hamilto-
nian Hemb for fragment a is passed to the quantum device and
solved by the VQE with a spin-unrestricted unitary CCSD
(UCCSD) ansatz87–89. It is important to note that UCCSD has
superior performance compared to traditional CCSD. This is due
to its increased expressibility, as it includes both excitation and
de-excitation operators. Additionally, UCCSD is more robust and
avoids the non-variational catastrophe that often occurs in
bond-breaking regions, unlike CCSD which tends to fail in these
scenarios90,91. The central idea of using VQE as the DMET solver
is to construct and measure a parameterized embedding

quantum state Ψð θ!Þemb on a quantum computer (see Fig. 4).

For a UCCSD ansatz, the parameter θ
!

represents the amplitude
for an excitation. After obtaining the expectation value

hΨð θ!ÞembjĤembjΨð θ!Þembi of embedding Hamiltonian, the ampli-
tudes are updated on a classical computer variationally and
iteratively until they reach the terminal condition. The quantum
state constructed from UCCSD is expressed as

jΨð θ!Þembi ¼ expðT̂ð θ!Þ � T̂
yð θ!ÞÞ Ψ0j i, where Ψ0j i is the

Hartree–Fock ground state of the embedding in the periodic
system and T̂ represents the summation of single excitations
and double-excitations and defined as,

T̂ðθÞ ¼ P
~m;~a;σ

t̂
~aσ
~mσ þ

P
~m;~n;~a;~b;σ;τ

t̂
~aσ;~bτ
~mσ;~nτ

¼ P
~m;~a;σ

θ~aσ~mσâ
y
~aσâ ~mσ þ

P
~m;~n;~a;~b;σ;τ

θ
~aσ;~bτ
~mσ;~nτ â

y
~aσâ

y
~bτ
â~nτ â ~mσ;

(5)

where the occupied orbitals are denoted by ~m and ~n while the
virtual orbitals are denoted by ~a and ~b; σ and τ are the
corresponding spin indices. For an unrestricted UCCSD, occupa-
tion and excitation amplitude of the spin-up and spin-down
orbitals are allowed to be different. The converged quantum
circuit with variationally optimal parameters will be used to
measure the one- and two-particle reduced density matrix, i.e.,
1DQC

emb and 2DQC
emb, respectively; Similar to the classical algorithm,

these quantities are required to calculate the energy contribution
from each fragment as well as to optimize a global chemical
potential.
Once we solve the embedding Hamiltonian, a correlation

potential u is employed to minimize the difference of the one-
particle density matrix between the correlated density matrix
1DQC

emb and the mean-field (mf) density matrix 1Dmf
emb. This is often

defined as a self-consistent DMET, denoted in this work as sc-
DMET, to distinguish itself from a one-shot DMET (o-DMET) where
the mean-field bath is not optimized. In our algorithm, we locally
search for the sub-block of the correlation potential or ua only for
the strongly correlated fragment a while leaving the weakly
correlated fragment b aside.

F̂
0
ij ¼

F̂ij þ uijâ
y
i âj with i � a and j � a

F̂ij with i 6� a or j 6� a

(
(6)

The cost function thus can be written as

LðuaÞ ¼
X
~p;~q�a

1Dclassical
~p~q ðF̂~p~qðuÞÞ�1DQC

~p~q ; (7)

where 1Dclassical
~p~q is the mean-field one-particle reduced density

matrix corresponding to the total system. Note if there is more
than one strongly correlated fragments, the global correlation
potential u will be reconstructed by simply concatenating all
submatrices ua into the corresponding submatrix. From our
numerical experiments below, we have observed that this strategy
usually leads to fast convergence of the correlation potential with
satisfactory accuracy. Note that our proposed algorithm can be
directly applied to multiple fragments, thus enabling a flexible
framework to combine different quantum and classical solvers for
the electronic structure of one crystal.
Once the self-consistent iteration terminates, the physical

property of interest, such as the total energy of the unit cell,
can be obtained through a sum over the contributions from
different fragments, i.e., Ecell= Ea+ Eb, in a democratic manner
that has been discussed several times in the literature92.
Lastly, we discuss how our method takes into account the

interaction between fragments through a self-consistent
procedure. In particular, the correlation potential is found by
optimizing a cost function that depends on the many-body
reduced density matrix 1DQC

~p~q . Additionally, the effective
Hartree–Fock potential is reconstructed at each iteration by
reusing the previous global many-body reduced density matrix,
which is discussed in previous work49,93, and is included in the
one-body component of the embedding Hamiltonian. We assert
that the many-body effect between the fragments is implicitly
captured during the DMET’s self-consistent procedure, resulting
in partial inclusion of the many-body screening effect in our
calculations. However, it is worth noting that the screening
effect can be fully captured by systematically including more
orbitals in the correlated fragments. Our orbital-partitioned
extension of DMET possesses a high degree of generality and
adaptability, allowing for such systematic convergence to the
fully-screening effect without overwhelming the quantum
resources. As such, it is promising in the NISQ era, where the
number of available qubits is gradually increasing over time.
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