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Kohn–Sham time-dependent density functional theory with
Tamm–Dancoff approximation on massively parallel GPUs
Inkoo Kim1, Daun Jeong1, Won-Joon Son 1✉, Hyung-Jin Kim 1✉, Young Min Rhee 2✉, Yongsik Jung 3, Hyeonho Choi 3,
Jinkyu Yim1, Inkook Jang1 and Dae Sin Kim1

We report a high-performance multi graphics processing unit (GPU) implementation of the Kohn–Sham time-dependent density
functional theory (TDDFT) within the Tamm–Dancoff approximation. Our algorithm on massively parallel computing systems using
multiple parallel models in tandem scales optimally with material size, considerably reducing the computational wall time. A
benchmark TDDFT study was performed on a green fluorescent protein complex composed of 4353 atoms with 40,518 atomic
orbitals represented by Gaussian-type functions, demonstrating the effect of distant protein residues on the excitation. As the
largest molecule attempted to date to the best of our knowledge, the proposed strategy demonstrated reasonably high efficiencies
up to 256 GPUs on a custom-built state-of-the-art GPU computing system with Nvidia A100 GPUs. We believe that our GPU-
oriented algorithms, which empower first-principles simulation for very large-scale applications, may render deeper understanding
of the molecular basis of material behaviors, eventually revealing new possibilities for breakthrough designs on new material
systems.
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INTRODUCTION
Material simulations encounter various problems on different
energy, length and time scales. Therefore, a wide range of specific
computational methodologies have been designed to yield well-
grounded understanding of a wide number of processes occurring
in small- and medium-sized organic molecules and large
biological systems1. At the fundamental level, materials are
described by the many-body Hamiltonian in the Schrödinger
equation, which is generally considered as an intractable problem
owing to the exponential time complexity with size. However,
Hohenberg and Kohn2 has revealed that the electron density
possesses a one-to-one correspondence with the ground state
wavefunction; based on this notion, the Kohn–Sham formulation
of the density functional theory (DFT) drastically simplifies the
many-body problem to a set of single-body problems3. Support-
ing a balance between accuracy and efficiency, DFT has been
widely utilized in the field of materials science to quantum-
mechanically rationalize the molecular factors influencing the
structural, electrochemical, and photochemical properties, and its
time-dependent extension (TDDFT) has yielded insights into the
electronic excited states of diverse materials4,5.
Over the past decades with the advancement of high-

performance computing (HPC) architecture, efficient parallel
algorithms have been devised for multi-core central processing
units (CPUs), which have facilitated the routine application of DFT
methods for large molecules comprising up to a few hundreds of
atoms6–8. Owing to the intrinsically heavy scaling of DFT to the
system size ranging up to the quartic order, systems containing
several thousands of atoms have remained virtually unexplored
with the conventional DFT methods. Thus, employing cost-
reducing approximations such as the linear-scaling methods9

has been an unavoidable strategy, which inevitably compromises
the predictive accuracy to achieve feasibility. With the emerging

novel display and battery materials that are characterized by large
organic molecules in an amorphous solid-state, researchers
require highly efficient simulation platforms that can yield
consistent predictive powers for the systems, as in plain DFT.
Recently, material simulations have been facing disruptive

changes in HPC architectures driven by the rapidly increasing use
of heterogeneous computing accelerators, such as graphics
processing units (GPUs)10,11. The advent of GPU-programming
models has transformed GPUs into general-purpose accelerators,
which have solely been considered heterogeneous processors for
graphics applications. The compute unified device architecture
(CUDA) model12, for instance, enables direct access to parallel
compute units in a GPU with a high level of control by utilizing a
grid topology comprising many thread-blocks that are executed
concurrently. To fully unlock the potential of new and massively
parallel hardware, the pre-existing algorithms should be recast in a
form such that parallel execution of kernels with high concurrency
is maintained with coordinated data transfers between the host
and the accelerators13.
After the pioneering works on offloading some computationally

intensive sections of DFT methods to GPUs14–16, a series of
research attempts have been made to target molecular applica-
tions to GPUs, clearly demonstrating the advantageousness of
GPU offloading methods. Herein, we will restrict our discussion to
the atom-centered Gaussian-type basis sets designed for mole-
cular systems17, although many studies also reported GPU-based
DFT using other basis representations such as plane wave18 or
real-space grids19 with very different parallelization tactics.
Generally, the major computational task in DFT with atom-
centered basis can be condensed to the Fock matrix build, which
can be categorized into two parts: the contraction of electron-
repulsion integrals (ERIs) with a density matrix and the evaluation
of the exchange–correlation potential. Following the
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implementation of the GPU-accelerated Fock build15,16, several
research groups have started developing GPU-specific algorithms
for DFT. Because ERI calculations formally exhibit quartic scaling
with the size of the system, the concurrent evaluation of the
integrals has been a central component of the algorithm
development14,20–27 combined with Fock digestion28–30. Efforts
were also made to specially prepare the linear-scaling scheme for
the exact exchange calculations to work efficiently on GPUs31,32.
Moreover, the contribution of exchange–correlation potential to
the Fock matrix can be efficiently calculated using the grid-
batching scheme33,34. Recently, ground-state DFT implementa-
tions using distributed multi-node multi-GPU systems have been
reported35–37. However, relatively little attention has been paid to
porting TDDFT to multi-GPUs, although most ground-state GPU
algorithms can still be applied for the excited-state calculations38.
Besides, while previous studies have revealed that efficient DFT

calculations on GPUs are a promising approach and material
simulations are at the stage of up-scaling system sizes, no GPU
implementations appear to have achieved a performance on the
scale of peta-FLOPS (1015 floating-point operations per second)
likely with missing sufficiently large implementation that can
showcase the capability of heterogeneous hardware. To address
the need for large-scale general DFT programs in the field of
materials science and to leverage the computing power of
massively parallel GPU clusters, we developed a scalable DFT
algorithm featuring atomic orbital basis. Moreover, the code was
successfully implemented using a multilevel parallel-programming
model, targeting hybrid hardware configurations adopting inter-
and intra-node connections, as well as accelerators. Our proposed
DFT method secured high performance on a state-of-the-art
platform over a peta-FLOPS scale with well-behaved load-
balancing across the distributed system, while integrating a full
stack of simulation capabilities for both electronic ground- and
excited-states.

RESULTS
Massively parallel GPU environment
We envisage the integration of distributed Kohn–Sham DFT
calculations in high-performance computing systems, which can
completely leverage the massive parallelism offered by GPUs. This
study employed the CUDA model; hence, throughout this article,

we have used CUDA terminology39. However, the generalization
to other GPU programming models can be readily made (see
Supplementary Table 1). Typically, a GPU is based on an array of
streaming multiprocessors that are designed to concurrently
execute a large number of threads. Threads are fundamental
execution units that are processed in parallel on a streaming
multiprocessor with a single instruction. Specifically, thread
schedulers simultaneously issue each instruction to a warp of
threads (typically, 32); accordingly, the same instruction is
invariably executed by all the threads in the warp. This feature
indicates that different control paths via branching are serialized,
thereby adversely affecting the computing performance, referred
to as thread divergence. Threads are organized in groups called
thread-blocks, which are further organized in a grid structure;
therefore, thread and thread-block indices within a grid offer a
logical way to invoke computations across the discrete elements
in multi-dimensional domains encountered in DFT methods as
matrix elements or quadrature points. Moreover, contrary to CPU,
a GPU has limited memory capacity and is not expandable.
Assuming that a dense matrix is manipulated within the GPU
memory, we presume that the practical limit of the matrix
dimension lies between 104 and 105, requiring 0.8–80 gigabytes
(GB) of space in random-access memory (RAM) in double
precision, constrained by the memory capacity of modern GPUs.
An experimental peta-scale computing system, featuring high-

end data-center-grade hardware components, was commissioned
using segments of the SSC-21 supercomputer at Samsung
Electronics40. Figure 1a illustrates the architecture and hardware
configuration of the proposed computing system. Each compute
node is equipped with dual 32-core AMD EPYC 7543 CPUs (core
operating frequency: 2.8 GHz, with 1024 GB RAM), and eight
Nvidia A100 GPUs (each with 3456 FP64-cores operating at
1.41 GHz and 80 GB RAM). The GPUs are interfaced with the
NVLink connection, supporting bidirectional data-transfer rate of
600 GB/s. The nodes interconnect is arranged in a 5-stage Clos
topology, and each node contains four Mellanox InfiniBand HDR
fabrics (200 GB/s). Observably, the overhead of data-transfer
between the CPU and GPU via PCI-express Gen4 (64 GB/s)
represents as an important inefficiency factor that should be
mitigated.
In this perspective, as illustrated in Fig. 1b, we propose a

multilevel parallel-model based on a massage-passing interface
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Fig. 1 Massively parallel GPU computing. a Hierarchical structure of compute servers. Theoretical bidirectional data transfer rates within the
system are listed. b Hybrid MPI-OpenMP-CUDA parallel model for the distributed GPU computing. Each process is color-coded according to
the hardware used, as illustrated in a.
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(MPI) for inter-node communications, open multi-processing
(OpenMP) for intra-node CPU/GPU parallelization, and CUDA for
GPU offloading of computationally intensive parts of applications.
One MPI rank is placed on each node, and by invoking the
OpenMP parallel interface, it spawns as many CPU threads as the
number of GPUs, each bound to a GPU. To exploit the fast
interconnects between intra-node GPUs for data broadcasts and
reductions, the input data are initially broadcast via MPI from the
master rank to all worker ranks, followed by CPU-to-GPU data
transfers solely on the OpenMP master threads, avoiding traffic
overload and data congestion in the PCI-express lanes, and the
data are instantaneously broadcast to other GPUs via NVLink. The
fine-grained GPU computations are grouped within the OpenMP
scheduler to ensure a dynamic load-balance. The data-reduction
stage proceeds in a manner similar to that for the data-broadcast,
but the flow order is reversed: the GPU-private data are first
reduced within GPUs in each node using the fast NVLink
interconnect, and subsequently, are downloaded to the CPU
memory using the OpenMP master threads, followed by data-
reduction among the compute nodes via MPI.
As a fundamental requirement for the aforementioned model to

operate efficiently and effectively for the DFT methods, the
computational task of constructing Fock matrices must not only
be translated into fine-grained data-parallel threads, but the
optimal data-distribution scheme should also be devised for
global load-balancing in multi-GPUs under network configura-
tions. Considering its vitality, this aspect has been presented and
discussed in the following sections.

Kohn–Sham equation with a finite basis set
To obtain a comprehensive view of the involved algorithms, a
brief summary of the Kohn–Sham DFT and TDDFT methods are
presented with an emphasis on the computational aspects. For
convenient representation, we have restricted the discussion to
closed-shell systems, in which the spin component is integrated
from the following equations. Within the Born–Oppenheimer
framework, the non-relativistic many-body Hamiltonian in the
Schrödinger equation for polyatomic molecules can be trans-
formed into a set of effective one-electron Kohn–Sham equations
as follows3:

F̂ψiðrÞ ¼ εiψiðrÞ (1)

where F̂ � T̂ þ V̂KS denotes the Fock operator comprising the
non-interacting kinetic energy operator, T̂ , and the Kohn–Sham
operator, V̂KS. The effective potential given by V̂KS generates
independent Kohn–Sham (KS)-orbitals, ψi, of energy εi, from which
the density can be obtained as ρ(r)= 2∑i∣ψi(r)∣2. Equation (1) is
solved via iteration through minimizing the total electronic energy
E= ET+ EV+ EJ+ cXEK+ EXC, where the respective energy com-
ponents represent the kinetic, nuclear attraction, Coulomb,
Hartree–Fock (HF) exchange, and the exchange–correlation
(XC) energies, stemming from the description of F̂ (refer to
Supplementary Text 1) with respect to a set of KS-orbitals. In
particular, hybridizing a portion of the exact HF exchange with the
mixing parameter cX is currently a de facto strategy for improving
the accuracy in the density functional approximation7. Generally,
the approximate forms of the functional EXC are formulated under
the generalized gradient approximation (GGA)41 as EXC≡ ∫f(ρα,
ρβ,∇ ρα,∇ ρβ) dr, which depends on spin densities and their
gradients. With cX= 1 and EXC= 0, E is rendered as the general
Hartree–Fock energy expression.
Linear combinations of finite non-orthogonal basis sets

corresponding to contracted Gaussian functions {ϕμ} centered
on atoms are utilized as in conventional quantum chemistry
methods42, which are hereafter referred to as atomic orbitals
(AOs). This strategy describes the KS-orbitals as ψi(r)= ∑μCμiϕμ(r).
Thus, Eq. (1) can be rewritten in terms of AOs as the following non-

linear eigenvalue problem43–45:

FC ¼ SCε (2)

where F and S are the Fock and overlap matrices, respectively,
C≡ [Co, Cv] denotes the KS-orbital coefficient matrix with No-
occupied and Nv-virtual orbital columns, and ε symbolizes the
diagonal matrix with εi. The density can also be represented in AO
basis as the one-electron density matrix, P ¼ 2CoCT

o. All matrices
possess N × N dimensions, where N indicates the total number of
basis functions.
The Fock matrix can be decomposed into three parts45: the one-

electron core Hamiltonian, H core
μν , comprising the kinetic and

nuclear attraction integrals, the two-electron part of the Fock
matrix, Gμν, including the Coulomb and HF exchange integrals,
and the XC contribution to the Fock matrix, FXCμν . Namely, we have

Fμν ¼ H core
μν þ Gμν½P� þ FXCμν ½ρðrÞ� (3)

and note that different representations of the density are used
here. The explicit expressions for these matrices are listed in
Supplementary Text 1. Because the Hcore

μν —independent of the
density—is invariant during the calculations, it is computed once
at the beginning of the calculation, whereas the density-
dependent Gμν and FXCμν are re-evaluated at every iteration.
Typically, the Fock matrix is transformed at each iteration into
an orthogonal basis for facile diagonalization, and the eigenvec-
tors are subsequently back-transformed to yield the KS-orbitals
and density. The updated Fock matrix is formed using the new
density in Eq. (3), and this process is repeated until self-
consistency of the ground-state density is attained.
The excited states in the DFT formalism can be accessed

through the time-dependent evolution of ground-state KS-
orbitals46,47. Within the adiabatic approximation, in which the
explicit time dependence of the XC functional is neglected, and
within the linear-response formalism under the Tamm–Dancoff
approximation (TDA)48, the eigenvalue equation for the excitation
energies as poles is expressed as49

AX ¼ ωX (4)

where A represents the Hamiltonian in the space of singly-excited
electronic configurations, and X and ω represent the excitation
amplitudes and energies, respectively. Although the full TDDFT
formulation with the deexcitation amplitudes affords slightly more
accurate transition dipole moments between the ground and
excited states50, TDA typically retains a good agreement with it
both in terms of excitation energies and molecular properties. In
addition to the moderate speed-up by neglecting the deexcita-
tions, which renders TDA suitable for large-scale applications, the
triplet instability problem in TDDFT is also generally rectified by
TDA often with significantly improved triplet excitation energies51.
With the closed-shell reference ground-state, two types of excited-
state solutions can be derived from Eq. (4), corresponding to the
spin multiplicity of singlet or triplet, and the explicit expressions
are summarized in the Supplementary Text 2.
According to the single-electron excitation from occupied to

virtual orbitals, A possesses a dimension of NoNv × NoNv, which can
become prohibitively large for full diagonalization with increasing
number of basis functions. In this context, the Davidson method
allows for the extraction of the lowest few excitations of interest
for practical applications via constructing a subspace Hamilto-
nian52,53. The subspace Hamiltonian is iteratively diagonalized to
produce the lowest eigenvalues while incrementing the subspace
b≡ {b1, b2,⋯ } within tractable limits. Thus, a computational
bottleneck encountered here involves building a matrix-vector
product σk≡ Abk from which the subspace Hamiltonian matrix
element can be conveniently obtained as Hkl ¼ bT

k � σl . The initial
subspace vectors can be constructed using a set of orthogonal
vectors of eia where i and a denote the occupied and virtual
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orbital indices, respectively. The matrix element σia can be
expressed in AO basis with the Fock-type matrix ~Fμν as54

σia ¼ ðεa � εiÞbia þ ½CT
o~FCv�ia (5)

~Fμν ¼ ~Gμν½~P� þ ~F
XC
μν ½ρðrÞ; ~P� (6)

where the scaled occupied–virtual density martrix ~P ¼ CT
obkCv,

which is generally non-symmetric in nature, was used instead to
compute ~Gμν . The similarity between ~Fμν and Fμν in Eq. (3) allows
the former to be calculated with the corresponding ground-state
implementation with slight modifications. The integral transfor-
mation between atomic and molecular orbital bases can be
represented as matrix multiplications after constructing ~Fμν , which
can be efficiently performed using a multi-GPU linear-algebra
library. Two large vectors bk and σk must be stored in the CPU
memory at each Davidson iteration. Modern computers incorpo-
rate RAM close to or in the order of terabytes, and storing the
matrices in the core memory poses no challenges.
In DFT and TDDFT calculations, a major computational bottle-

neck arises from the construction of Gμν and ~Gμν , respectively, both
involving ERIs over four-center AOs, defined as

ðμνjλσÞ ¼
Z Z

ϕμðrÞϕνðrÞϕλðr0Þϕσðr0Þ
jr� r0j drdr0 (7)

exhibiting a formal OðN4Þ complexity with respect to the basis set
size for a given molecule. In practice, the number of significant
ERIs scales asymptotically as OðN2Þ with the molecule size
because of the locality of the Gaussian-type functions. Addition-
ally, a secondary bottleneck with a OðN3Þ complexity arises from
the calculation of FXCμν , which requires numerical quadrature in real
space. Which of these two bottlenecks is dominant is decided by
the size of the system and the basis set of choice, and we will deal
with their computational aspects in more details in the following
sections. Because matrix operations also frequently occur in the
calculations, by employing the high-performance GPU linear
algebra library, we performed a cursory survey on the perfor-
mance of matrix multiplications and diagonalizations up to a size
that can completely occupy the GPU memory (refer to Supple-
mentary Table 2). Even with their inherent OðN3Þ complexity,
mostly owing to exceptionally low prefactor, their computations
can be effectively hidden in the timescale of DFT calculations,
which is predominated by the Fock build.

Direct Fock matrix build on multi-GPUs
The time-consuming task of constructing Gμν and ~Gμν in the
respective DFT and TDDFT calculations entails the Coulomb and
HF exchange contributions, which are generally computed in an
integral-driven and direct scheme55 (refer to Supplementary Text
3). As explained in the above, the number of significant ERIs scales
asymptotically as OðN2Þ, and as a result, there exists a crossing-
point at which matrix operations with OðN3Þ complexity become
computationally dominant. However, the large prefactor in ERI
evaluations with higher angular momenta functions and the
spatial distribution of the basis functions obfuscate pinpointing
such a crossing-point. For achieving an efficient Fock build with
multi-GPUs, a concurrent evaluation for the batches of ERIs is a key
requirement. Certain ERI algorithms, such as McMurchie and
Davidson56, Head-Gordon and Pople57, and Rys58, were applied as
GPU extensions14,15,20,23,30. However, as widely anticipated, ERI
implementations based on recursion relations are generally suited
for treating low angular momenta integrals featuring AOs of l ≤ 1,
largely due to the limited memory of GPU, while the Rys
quadrature scheme, which computes the ERI by n-point numerical
integration, where n is determined by the half-sum of the angular
momenta of the AOs, is regarded suitable for GPU implementa-
tion, and hence, is adopted in the present work.

We designate a shell as a group of 2l+ 1 AOs in spherical
harmonics arising from the given basis function, denoted here-
after as μ≡ {μ0,⋯ , μ2l+1}, and therefore, (μν∣λσ) represents a batch
of (2lμ+ 1)(2lν+ 1)(2lλ+ 1)(2lσ+ 1) ERIs, which is processed by a
single GPU thread. The AOs inside the bra (⋅∣ or ket ∣⋅) of ERIs are
interchangeable with each other, and accordingly, for instance
with AOs of l ≤ 2 for brevity, only six groups of distinct shell-pairs
exist: (ss), (ps), (pp), (ds), (dp), and (dd). Here, negligible shell-pairs
can be eliminated by examining their pre-exponential factors to
the ERIs, thus reducing the computation effort significantly59, in
particular, for large molecules where the AO pairs are more prone
to negligible overlap conditions. As a sufficiently small value is
crucial to prevent accumulation of errors and potential linear
dependency in the basis set with large molecules, shell-pairs
exhibiting pre-exponentials under 10−13 au are discarded in our
implementation.
After utilizing a permutational symmetry between the bra and

the ket, any symmetry-related ERI sub-block can be defined by
combining two groups of these shell-pairs (Supplementary Fig. 1).
For best GPU performance, each sub-block should be computed
separately as the differing angular momenta combinations of the
involved AOs clearly leads to conditional branching, which
hampers the concurrent processing of ERIs. Further and more
importantly, arranging each shell-pair in advance is a critical
measure for ensuring maximum concurrency within a thread-
block. Otherwise, because each shell is a spherical set of
contracted Gaussian-type functions, each with varying numbers
of primitive functions that are viewed as a nested loop with
different lengths, can potentially lead to thread divergence.
Evidently, all threads within a thread-block should ideally run over
identical loop-structures to avoid thread divergence. In accor-
dance with the scheme reported in33, we rearranged the shell-
pairs at three levels as depicted in Fig. 2a. The (μν) shell-pairs are
initially sorted into subgroups according to the outer loop count
(i.e., contraction number Kμ). Subsequently, the shell-pairs within
each subgroup are sorted again according to Kν, thereby leading
adjacent shell-pairs to have likely the same loop structure and
counts. Finally, for each subgroup with the same configuration of
Kμ and Kν, the shell-pairs are further sorted according to the
Schwarz upperbound

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμνjμνÞp
. This ordering, as explained

hereafter, allows the threads in a thread-block defined with a
judicious size to likely possess the same loop structure with similar
ERI upperbounds. The computation of some thread-blocks can
also be skipped when the associated densities are smaller than a
predefined threshold (e.g., 10−10 was used in this work). This
rearrangement of the shell-pairs can be performed simply by
sorting a suitable function such as sðμ; νÞ � 106 � Kμ þ 103 � Kν þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðμνjμνÞp

where the multiplicative factor clearly indicates the
sorting level.
Figure 2b depicts the loop-count and upperbound of the ERI

batches in a sub-block after the above sorting process. Clearly, the
computational loads represented by the loop-count are mostly
concentrated on the upper-right corner of the sub-block (i.e., the
region where both shell-pair indices approach their last elements).
To achieve an optimal load balance of asymmetrical data across
distributed GPUs, we directly mapped the ERI sub-block, which is
characterized by Nbra × Nket shell-pair combinations, onto the grid
topology by dividing into Ng≡ Nbra/Nt ⋅ Nb grids, each with a
dimension of (Nb, Nket/Nt) thread-blocks, again each with a
dimension of (Nt, Nt) threads. In other words, (Nt, Nt) threads
form a thread-block, and (Nb, Nket/Nt) thread-blocks form one grid
element, which spans over Nb ⋅ Nt shell-pairs of the bra and all
shell-pairs of the ket. Thus, in a GPU kernel, a grid evaluates a total
of Nb ⋅ Nt ⋅ Nket batches of ERIs over the spherical harmonics
manifold, and Ng grids cover the entire ERI sub-block. This strategy
of partitioning into rectangular grids ensures a balanced data
distribution among the compute nodes in a two-dimensional
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block-cyclic layout of the sub-block of ERIs, as will be explained in
the following paragraph.
Given Ng≫ Nr with Nr being the number of MPI ranks, the loop

over the grids with a stride of Nr can distribute the computational
load evenly across MPI ranks; this is aided especially when Nt and
Nb are relatively small to allow for data locality such that the Nr

grids distributed among the MPI ranks collectively map on regions
of similar computational load as a whole (Fig. 2c). Each compute
node is assigned with Ng/Nr grids, and the load-balancing among
the intra-node GPUs can be addressed dynamically within the
OpenMP parallel-model. The OpenMP scheduler ensures full-
occupation of the GPUs by continuously offloading the subse-
quent grid to the first available GPU until all the grids are
computed. Moreover, not only the sorting process ensures that
the concurrency of the threads is guaranteed within a thread-
block as each thread will likely possess the same or at least similar
loop structures, but the similar upperbound further permits that
the computation of the thread-block is skipped at the beginning

of the GPU kernel when the associated density matrix element is
negligible, further improving the efficiency.

Numerical multi-center XC-grid integration
In this section, we present the calculations of the XC contributions
to the energy and the Fock matrix using numerical quadrature in
real space, with the formulations given in Supplementary Text 4.
The quadrature points and their relative weights are generated
around each nucleus through the combination of radial and
angular grids using Becke’s partitioning scheme60, in which we
controlled the radial partitioning via the Euler–Maclaurin61 and the
angular parts by using the Lebedev quadrature62. Under the GGA
formalism, to evaluate EXC and its derivatives at every quadrature
point, rq, for any given iteration, the point electron density, ρq, and
its gradient,∇ ρq, are required, which are generally computed on-
the-fly in order to avoid storing the value, ϕq

μ , and the gradient,
∇ϕq

μ , of all AOs requiring 4N ⋅ Nq data points wherein the number

Fig. 2 Multi-GPU mapping of electron repulsion integrals (ERIs) for Fock build. a 3-Level presorting scheme for shell-pairs. The case with
the (ss) shell-pairs from water with the def2-TZVP basis set is shown. Subgroups subject to subsequent presorting are colored in alternating
shades for clarity. b The (ss∣ss) sub-block of ERIs using the presorted shell-pairs illustarted in a. The vertical scales (loop-counts and estimated
ERIs) are visually supplemented by the coloring schemes on the side. Grid partitioning scheme for MPI ranks is also shown. c Balanced
mapping of grid arrays to multi-GPUs. Grid arrays constructed in b are shown. Each block comprises two-dimensional threads with similar
loop-counts and ERI values.
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of quadrature points, Nq, are generally greater than the number of
AOs, N. Thus, for a given rq, two loops over the AO indices, ϕμ and
ϕν, must be completed to calculate the pointwise XC contribution
to Fμν. However, the double-loop clearly leads to thread
divergence as the quadrature points that map onto the threads
are naively generated by three-loops over the atomic, radial, and
angular indices, and accordingly, are practically dispersed in the
space, with different contributions that primarily originate from
the surrounding AOs.
To ensure concurrency and efficiency in the GPU kernel for the

XC-grid integration, the quadrature points are divided into Nc

cubes, each collecting the points in the vicinity. Accordingly, the
AOs that make non-zero contributions to these quadrature points
are rendered almost identical when the volume of the cube is
sufficiently small; this condition can be realized by recursively
dividing the cube encompassing the entire molecule into octants
until the number of points in a single or multiple octants at a
given depth is less than a number of threads to be treated in the
thread-block. Similar approaches have been discussed in the
literature33,34.
Figure 3a illustrates our proposed approach focusing on the

quadrature points over a water molecule as an example. The
quadrature points from two selected cubes are displayed; one set
of quadrature points is located near one of the H atoms, whereas
the other set is distributed along an O–H bond. The hypothetical s-
type AOs of the O and H atoms are also indicated in the figure.
The boundary of the AOs represents the surface beyond which the
AO value is treated as negligible (i.e., ϕμ→ 0). In the case of AO
with a higher angular momentum, the largest value among the
2l+ 1 spherical components is employed to define such
boundaries. If at least one point in a cube is encompassed by
such a boundary, we include the corresponding AO in the AO-
mapping matrix of the dimension of Nc × N, for which we utilized
the smallest 2-byte data-type, as supported by CUDA, requiring

2 ⋅ Nc ⋅ N bytes in total. As two AO loops inside each thread are
required in the direct approach to calculated ϕq and∇ ϕq,
predetermination of the significant AOs for the given cube is an
imperative condition for achieving computational efficiency as all
threads in a thread-block undergo the same computations,
involving just the surrounding AOs.
Because similar computational workloads cannot generally be

expected from each cube, we evenly divided the list of cubes to
each GPUs (Fig. 3b). However, even such proportional distribution
of the cubes to all GPUs has been proven to exhibit optimal
scalability for large-scale calculations as observed in our findings
in later sections. Furthermore, in TDDFT, considering that ρq
and∇ ρq are invariant throughout the TDDFT calculations, they are
calculated only once for each quadrature point since the
converged ground-state density is used throughout, and subse-
quently, stored in the core memory for GPU offloading for instant
access when needed. We note that the GPU memory is generally
sufficiently large to store these values for various grid parameters
(Supplementary Table 3).

Relative performance of GPU versus CPU
A fair comparison is difficult to obtain because of the hetero-
geneity in microarchitectures. However, to enable a reasonable
and pragmatic comparison of GPU versus CPU performance on
the DFT methods, we examined the DFT and TDDFT timings
measured with our GPU code and a well-established CPU code63

on the commodity GPU and CPU computing servers, respectively.
Moreover, we refrain from comparing GPU performance with
single-threaded CPU performance since this approach does not
represent the practical conditions in materials simulation as multi-
threaded executions are more commonplace. To this end, we
surmised that for commodity hardware, a GPU server will normally
contain two Nvidia A100 devices with a total theoretical peak
(Rpeak) of 19.5 tera-FLOPS, whereas a CPU server with dual 32-core

Fig. 3 Multi-GPU mapping of numerical quadrature for exchange–correlation. a Schematic illustration of the partitioning scheme of the
quadrature points. Data were generated for water with (10, 14)-grid and partitioned into 44 boxes. See Method for the grid definition. Points
from two select boxes are shown in magenta/green. Two s-type AOs are displayed in gray; the boundary implies their significance threshold.
Significance table with a true or false value with the related elements entailing the overlap between boxes and AOs is given at the bottom.
b Evenly-distributed mapping of boxes to multi-GPUs. Each grid, comprising a one-dimensional array of blocks corresponding to boxes, is
scheduled to a single GPU. Each block contains threads corresponding to points with the predetermined list of AO contribution in accordance
with the significance table.
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AMD EPYC 7543 processors will possess a total Rpeak of 2.9 tera-
FLOPS. Based on the ratio of the theoretical peak performances
between the GPU and CPU servers, we estimate an ideal speed
improvement of 6.8.
As a practical probe-molecule for benchmarks, we selected a

blue-emitting organic light-emitting diode (OLED) material,
5TCzBN64, comprising 233 atoms and 2,182 basis functions under
the def2-SVP basis sets (Supplementary Fig. 2). The Becke’s three-
parameter hybrid exchange functional (cX= 0.2) with the
Lee–Yang–Parr correlation functional (B3LYP) was employed65–67.
Approximately identical energy eigenvalues for both the ground
and excited states were obtained for the two independent DFT
implementations, thereby validating our implementation (Supple-
mentary Table 4). One may wonder that the discrepancy in the
SCF energies in this table (~44 μH) is larger than ideal. This is due
to the difference in the grid point definitions between Turbomole
and our code. Indeed, additional HF-SCF calculations for 5TCzBN
with the same basis set produced a much reduced discrepancy of
less than 1 μH.
As demonstrated in Fig. 4a, the obtained speed improvements

in the average time per iteration, tit, are 3.2 and 2.6 for DFT and
TDDFT, respectively, on the GPU server equipped with two A100 in
reference to the CPU server running 64 threads. These speed
improvements correspond to 47% and 38% of the ideal value
based on the theoretical peak. To further characterize the GPU
performance, the roofline analysis using the Nsight profiling
toolkit is plotted in Fig. 4b, clearly visualizing the 21 GPU kernels
distributed in both memory and compute-bound regions. The
performance of kernels involving larger angular momenta are
limited by the memory bandwidth due to a larger number of
intermediate integrals. In the compute-bound region, approxi-
mately 10% of the peak performance is drawn, suggesting a
potential for enhancement through further code optimizations.
Notably, the lower performance may be partially articulated with
the larger prefactor in the Rys quadrature scheme in the ERI
evaluations. The tit for TDDFT is approximately four times larger
than that of DFT because the three roots, entailing an equal
number of the Fock matrix builds, were computed sequentially.
Although simultaneously solving for all roots is generally
considered more efficient53, we have resorted to the sequential
algorithm to minimize the memory usage since the simultaneous
approach necessitates storing all the Fock and density matrices for

each root in GPU memory, which becomes problematic for large-
scale calculations. The construction of the TDDFT Fock matrix
additionally suffers from a larger computational overhead
originating from the non-symmetric density matrix.

Full-scale TDDFT on biological protein
As depicted in Fig. 5, we report the full-scale excited-state
calculations of green fluorescent protein (GFP). GFP is found in the
jellyfish Aequorea victoria, and contain p-hydroxybenzylidene-
imidazolinone (HBI) chromophore within the 11-stranded β-barrel
as the component responsible for the green fluorescence
observed in this species. The protein chain comprises 238 amino
acids, and HBI emits bright green fluorescence when exposed to
light in the blue to ultraviolet range68. The molecular structure was
generated from the X-ray crystallography followed by protonation
to a pH of 7.8, rendering a total of 4353 atoms, including 245
water molecules, and characterized with −6 charge (Fig. 5a).
Solvent water molecules are essential for yielding a non-vanishing
energy gap between the highest-occupied and lowest-
unoccupied MOs (HOMO–LUMO)69,70. The molecular geometry
was adopted from that reported in71 with geometrical corrections
on eight amide H atoms. The corrections were made on H atoms
that were farther than 1.5Å from the neighboring N atoms by re-
attaching them at 1.0Å from N. It was originally intended for
hybrid quantum mechanics/molecular mechanics (QM/MM) simu-
lations such that only the 42-atom HBI chromophore was treated
quantum-mechanically, enabling the embedding DFT calculations
within cruder force-field calculations. Thus, this whole GFP had
been considered plainly formidable in DFT formalism prior to this
work. In the full-scale DFT treatment, the total number of basis
functions was N= 40,518 with the def2-SVP basis set, and the
numbers of occupied and virtual orbitals were 8164 and 32,354,
respectively. The number of shell-pairs are provided in Supple-
mentary Table 5, showing that < 5% of shell-pairs are retained
after the integral-screening as an indication of approaching the
asymptotic OðN2Þ behavior of ERIs. However, we note that even
with the significantly reduced number of shell-pairs here, the
associated ERI computations still overwhelms the linear algebra
operations (Supplementary Table 6).
Using our multi-GPU implementation, we have successfully

pioneered the ground-state DFT and the excited-state TDDFT
calculations for the whole GFP system. We employed the HFLYP
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exchange–correlation functional, where the exact HF exchange
(cX= 1.0) is combined with the Lee–Yang–Parr correlation
functional66,72. We note that the hybrid functionals with a lower
HF exchange either failed to reach SCF convergence due to the
closure of the HOMO–LUMO gap or resulted in an unphysically
small HOMO–LUMP gap, giving rise to spurious low-lying charge-
transfer (CT) states that hampered the excited-state calculations
(Supplementary Table 7). The convergence difficulties in the DFT
calculations of proteins are generally ascribed to the self-
interaction errors within the density functional approximations
and the improper treatment of vacuum/system interface, and the
viable remedies have been suggested including the use of range-
separated functional and implicit solvent model70,73,74. Adding
extended solvent network as point charges for treating solvated
systems, or even truncating the excitation space within the TDDFT
description have also been suggested for avoiding contamination
by spurious CT states75. In this work, where we focus on
algorithms for achieving scalable GPU utilizations, we have
avoided the difficulty by taking the explicit solvent water
molecules into account and simply by using 100% HF exchange.
Figure 5b illustrates the convergence behavior of the lowest

three excited-states in the singlet manifold. For all states
considered, the convergence threshold of 10−4 au for the residual
is attained within 55 iterations, entailing a total of 88 σ-vector
formations. The results demonstrate a smooth convergence, and
the bright excited state was identified as the S1 state, exhibiting a
large transition dipole moment of 7.21 Debye.
Figure 5c demonstrates the variation in excitation energies and

transition dipole moments between the HBI chromophore under
various model solvent conditions and the entire GFP system. The
gas-phase, implicit solvent, and QM/MM models at the same
HFLYP level did not capture the inclusion of the protein chains
and the explicit water solvent under the experimental pH
condition lowered the excitation energy by 0.22 eV (4.23 eV vs
4.01 eV). The excitation depends on the dielectric medium exerted
by the protein backbone, and no solvent models can correctly
estimate the energy. Similar findings were reported previously
that distant residues indeed have an effect on the excitation by
using the QM/MM model with varying coverage of the polarizable
embedding potential76. The high values of the transition dipole
moments obtained in the calculations of the HBI chromophore
and full-scale GFP system imply strong absorption; however, the
latter case exhibits slightly decreased value. Furturemore, a visual

inspection of the results of the natural transition orbital analysis77

revealed that the different calculations resulted in the similar
electronic structure centralized in the chromophore (Fig. 5d and
Supplementary Fig. 3).
In contrast, in full-scale TDDFT at the B3LYP level, the S1 state

was determined to be the spurious charge-transfer state between
the chromophore and a distant residue, and its transition dipole
moment was accordingly very small (Supplementary Fig. 3). This is
a common problem of conventional global DFT functionals75, and
can be remedied by adopting the range-separation technique.
Indeed, when we adopted the LC-ωPBE functional, we obtained a
larger HOMO–LUMO gap (Supplementary Table 7) and the bright
state was correctly predicted as S1 with an excitation energy of
3.88 eV. In addition, the state was not corroded by the artificial
intensity borrowing of spurious low-lying CT states75. In light of
the strong local excitation characteristics in the bright state of
GFP, the influence of diffuse basis functions on the excitation of a
neutral system will likely be small. However, actually assessing it in
a quantitative manner especially for a large system can be an
interesting study in a future work. Of course, they can play an
important role in anionic systems, further warranting a future
study with diffuse functions.
Finally, Fig. 6a characterizes the multi-GPU performance of the

TDDFT calculations of GFP over and up to 256 A100 GPUs totaling
2.5 peta-FLOPS in the raw computing power with double
precision. Parallel efficiency is evaluated as the ratio of total
computation times on single-GPU and multi-GPUs, describing
losses due to communication overhead and serial fractions of the
code, as well as the load-balance, and indicating the degree of the
actual speed-up with respect to the ideal speed-up. A near perfect
parallel efficiency can be expected from the carefully designed
dynamic load-balancing scheme described in an earlier section.
Using 64 GPUs distributed over 8 compute nodes, a favorable
speed-up of 45.5 was achieved, corresponding to a parallel
efficiency of 0.71. The parallel efficiency decreased to 0.54 and
0.37 for 128 and 256 GPUs, respectively; this trend resulted, not
from load-imbalance but from the emerging serial and partly
parallelized sections of the code, owing to the relatively short
execution of the GPU kernels from the fine-graining. As observed
in Fig. 6b, the total TDDFT execution time decreases substantially
from 22.2 days using 1 GPU to a mere 5.6 hours using 256 GPUs.
Examining the individual timing components revealed that the
high parallel efficiency of ERI and XC computations in the Fock
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build stage was maintained throughout the benchmark, as
indicated by the linearity in the log-log scale, also suggesting
that the latency of GPU kernel launches could be effectively
hidden. The deteriorated parallel efficiency is mainly attributed to
matrix multiplications, featuring limited GPU parallelization within
a single node; we note that the parallel efficiency can be easily
increased to 0.46 in combination with a scalable multi-GPU matrix
operations. It may also be worthwhile to assess the parallel
performance of our implementation under the constant workload
per GPU. We have provided such information in Supplementary
Text 5 for interested readers.

DISCUSSION
In this study, we developed and implemented high-performance
DFT and TDDFT algorithms for material simulations of very large
size and scale. Specifically, we have considered the Kohn–Sham
formulation with finite, atom-centered Gaussian functions, as
adopted in standard quantum chemistry suites of programs. The
parallelization capabilities of multi-GPU were investigated to
accelerate the Fock matrix build, which was determined to be
the maximally time-consuming step, comprising the calculations
of the ERIs and XC functional derivatives. Three parallelization
models of MPI, OpenMP and CUDA programming models were
employed for handling the inter-node, intra-node, and GPU
parallelizations, respectively. These models were utilized in
tandem for a faster and larger scale of application development.
The presented GPU algorithm ensured the concurrency of threads
within a GPU kernel, while yielding an desirable load-balancing
within the distributed network of GPUs.
We demonstrated the performance of our DFT implementation

at large scales through a benchmark study with a custom-built
state-of-the-art GPU-cluster system comprising 256 Nvidia A100
GPUs. In principle, this system collectively operated at 2.5 peta-
FLOPS with double precision, and scaling feasibly to problems of
an extremely large size. The excited-state calculation of the green
fluorescent protein complex with 4,353 atoms and the def2-SVP
basis set in this study marked the largest TDDFT calculation to
date on any computing platform. The calculation was concluded
within ~6 h with 256 GPUs, achieving a parallel efficiency of 0.37.

In summary, our contribution not only significantly improves and
expands the spectrum of molecular systems to be considered by
full quantum-chemical treatment without the possible loss of
accuracy associated with cost-reducing approximations, but also
empowers materials scientists to seek new designs or new
combinations of organic molecules to an extent that has remained
inconceivable till now.
We note that even with the capability of performing large scale

(TD)DFT calculations, more affordable QM/MM style calculations
will still be very useful and should be employed in a
complementary manner. In fact, from the deterioration of DFT
results on full GFP with the widely adopted B3LYP functional, one
can infer that treating a large enough system with full-scale DFT
does not necessarily gain over using QM/MM or some other
multiscale approaches. The HFLYP approach that we employed
was an easy way of circumventing the problem caused by the
locality issue of DFT and the related appearances of spurious CT
states, but will not be a physically acceptable solution as HFLYP is
not likely very reliable in handling diverse chemistry problems.
The range-separation techniques may contribute again as a more
viable tool for handling extended systems, and we will need
further tests with their benchmarks in that regard. In addition,
while we observed ~0.2 eV shift in the excitation energy with the
inclusion of the full protein model with GFP, how far in space we
should extend from the chromophore itself to reach some
convergence is still a question that needs to be answered. Of
course, research for answering these should be designed also by
considering the form of the adopted exchange–correlation
functional and perhaps with different levels of basis sets. We
anticipate that such studies will ensue in the near future, and QM/
MM will definitely be utilized for useful comparisons. As these will
involve heavy computations, a method as reported in this work
that can utilize a highly parallel GPU platform will be extremely
helpful.

METHODS
Code implementation
The multi-GPU DFT algorithms were implemented in an in-house
code evolved from78. The program was written entirely in modern
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Fortran 2003/2008 with the CUDA extension, and was compiled
using Nvidia SDK 22.3 compiler suite with the “-fast” optimization
flag. The linear algebra library of Nvidia’s cuBLAS 11.8 and
cuSOLVER 11.3 were utilized for matrix multiplications, diagona-
lizations, and singular value decompositions. The multithreaded
version of the Mellanox HPC-X 2.10 package was employed for
MPI based on OpenMPI 4.1.2. Unified communication-X (UCX) was
leveraged for both point-to-point and one-sided communication
between the nodes. CPU-to-GPU binding was achieved using
OpenMP parallel interfaces. We considered a non-uniform
memory access (NUMA) structure in a multithreaded hybrid
OpenMP/MPI application for maximizing CPU-to-GPU and node-
to-node communications and data transfers. This enhancement
was achieved effortlessly within the OpenMP environment by
enabling the OMP_PROC_BIND variable and explicitly binding the
cores in the OMP_PLACES variable according to the hardware
configurations (refer to Supplementary Fig. 5 and Supplementary
Table 8).

Electronic structure calculations
Multithreaded DFT and TDDFT calculations on the CPU were
performed using the Turbomole 7.6 program package63. The
solvent effect in the excited state was investigated using a
continuum solvation model, the conductor-like screening model
(COSMO)79,80. The aqueous conditions were imitated using the
parameters of dielectric constant (ϵ= 78.35) and refractive index
(n= 1.3). The QM/MM calculations were performed using the
Gaussian 16.C.01 program81 with the our-own-N-layer integrated
molecular orbital molecular mechanics (ONIOM) approach82 with
electrostatic embedding83, in which the Amber force fields were
used to describe the MM region. A conventional unpruned (50,
194)-grid was employed for numerical integration (i.e., 50 radial
points and 194 angular points per radial point without any
pruning)84, while the implementation-default XC grids were used
with Turbomole and Gaussian. Further, the threshold of the SCF
convergence was the root-mean-squared difference of 10−6 au in
two consecutive density matrices. A symmetric orthonormaliza-
tion procedure with the threshold of 10−6 au was used to define
the orthonormal orbitals. For the range-separated LC-ωPBE
functional, for which we have not implemented efficient GPU
treatments on the XC energies, we evaluated potentials and
kernels by using the CPU version of LibXC 5.2.385. Natural
transition orbital (NTO) analyses for the CPU calculations were
post-processed using the TheoDORE 2.0 package86. The def2-SVP
basis set was used for all calculations87. All molecular geometries
considered in this work are provided in Supplementary Table 9.
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