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Sizing up feature descriptors for macromolecular machine
learning with polymeric biomaterials
Samantha Stuart 1, Jeffrey Watchorn 2 and Frank X. Gu 1,2✉

It has proved challenging to represent the behavior of polymeric macromolecules as machine learning features for biomaterial
interaction prediction. There are several approaches to this representation, yet no consensus for a universal representational
framework, in part due to the sensitivity of biomacromolecular interactions to polymer properties. To help navigate the process of
feature engineering, we provide an overview of popular classes of data representations for polymeric biomaterial machine learning
while discussing their merits and limitations. Generally, increasing the accessibility of polymeric biomaterial feature engineering
knowledge will contribute to the goal of accelerating clinical translation from biomaterials discovery.
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INTRODUCTION
The selection of feature descriptors to encode a dataset for
machine learning is one of the most important decisions
underlying model quality, as different data representations can
yield different interpretations of training data by the model1,2.
With this, appropriate descriptors should be chosen with care and
intention at the outset of a machine-learning project. Small
molecules, as a function of their constrained sizes and structure,
can be represented as standardized numeric descriptors for
simulation, molecular property prediction, and virtual screening3.
The ability to encode small molecules numerically in part provided
an essential foundation for the chemoinformatics domain to
achieve data-driven research success in small molecule drug
discovery4.
Inspired by small molecule success, machine learning frame-

works for studying polymers often use feature descriptors based
on the attributes of drug-like small molecules4,5. The intrinsic
limitation of applying small-molecule-based feature representa-
tions to biomaterials is that small molecule descriptors lack the
ability to accommodate the heterogeneity of polymer properties,
which are drawn from combinations of polymer chemical,
physical, and topological attributes3,6. Further, alterations in these
macromolecular properties can yield significant changes in
predictive target outcomes, such as a polymer’s resulting
interactions in biological media7. Similar examples including
changes in polymer molecular weight, degree of polymerization,
co-polymer, branching, chirality, nanostructure, synthesis techni-
que, storage conditions, environmental conditions, polydispersity,
and side chain regularity have all been shown to impact
interaction outcomes7–12. In view of the limitations of small
molecule descriptors for representing polymeric biomaterials,
there is a clear need for dedicated macromolecular descriptors
that facilitate the training of representative predictive models in
this domain.
Unfortunately, it has proved challenging to generally represent

the behavior of polymer biomaterials and their interactions with
other biological macromolecules for machine learning. There are
several popular approaches to polymer representation, including
domain-specific descriptors, molecular fingerprints, string

descriptors, and graph representations (Fig. 1), albeit there is no
recognized consensus for an optimal representation across the
biomacromolecular problem spaces5,7,13–16. Where one size does
not fit all, researchers must independently consider the attributes
of their dataset and objectives of their research project to
contextually identify how descriptors can positively drive their
resulting model towards robust predictive performance, a process
known in machine learning as feature engineering.
Feature engineering encompasses refining and structuring raw

input data into a relevant data structure that enables machine
learning. Generally, this process is problem specific and relies
heavily on domain (a priori) knowledge of a given problem.
Domain knowledge guides the design and selection of features
relevant to training accurate machine learning-based models. As
an example, for polymer and biopolymer systems, variables such
as molecular weight, degree of polymerization, and representation
of the polymer sequence are often selected as features17. While it
is possible to use these variables as a feature vector directly, the
engineering process often involves some transformation to either
improve machine readability or benefit predictive power. Exam-
ples include denoting presence or absence via one-hot encoding,
binning a numerical value into categorical ranges, improving
learning speed and preventing numerical overflow with scaling, or
applying information compression algorithms such as principal
component analysis or UMAP. Where deep learning algorithms are
used, the input feature vector is again transformed through
stacked layers of neurons, the ideal numbers of which vary in
accordance with the dataset, and are optimized during the
training process.
The exploratory process of feature engineering, particularly in

research domains that have not been extensively studied with
machine learning, can be time-consuming. Hence, reducing the
effort involved in selecting descriptors of polymer properties and
biomacromolecular interactions provides an important foundation
for the generation of quick and unbiased research insights with
machine learning. Increased dissemination of polymeric biomater-
ial feature engineering knowledge will serve to reduce time spent
on the feature engineering project phase, and contribute to the
shared goal of accelerating the path from materials discovery to
biomaterial clinical translation and commercialization18–21.
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Towards this aim, in this perspective, we provide overviews, as
well as discussion of the advantages and limitations, of different
classes of macromolecular data representations applicable to
polymeric biomaterial machine learning frameworks. Many poly-
meric biomaterial machine learning research efforts focus on
interaction prediction tasks, such as modeling how polymers will
interact with a target protein, or a biological environment
containing other macromolecules. Modeling interaction outcomes
ultimately informs the selection of polymers for use in medical
devices, which by design induce such biological interactions.
Additionally, biomaterials are often composites of multiple
material types (polymers, proteins, nucleic acids, peptides, etc.).
While it is convenient to express proteins, peptides, and nucleic
acids using their primary sequence, this is not true for polymeric
materials, hence representing such a composite is a fundamental
challenge to biomaterials development22.
With this in mind, we have focussed these discussions on the

four most popular classes of macromolecular representation
applicable to such polymer and biomaterials research: domain-
specific descriptors, molecular fingerprints, string descriptors, and
graph descriptors, described at a high level in Table 1.
Throughout this review, we highlight examples of research

applying polymer data representations that can contribute to
achieving predictive biomaterial design; such that polymers and
biopolymers can be proactively selected for use in a biomaterial to
achieve targeted biological outcomes. We hope that this
perspective will benefit researchers seeking greater technical
context on feature engineering for predictive polymer biomaterial
design, as well as researchers in computer science seeking greater
domain context on the challenges researchers face when building
predictive models of large polymer systems for biomaterials
engineering.

Domain-specific macromolecular descriptors
Research focused on training supervised learning models and
interpreting their learned understandings through feature

importance have clarified complex biological interaction mechan-
isms, and inspired research directions in the macromolecular
biosciences23–27. Such works have been conducted from expert
curated datasets on the order of 100 data points or greater11,28–30

and apply problem-specific modeling features designed by
researchers intimately familiar with the physics of the domain.
Altogether, supervised learning followed by feature importance
analysis of problem-specific macromolecular descriptors is an
excellent use case for machine learning, where there are high-
quality datasets describing multivariate problem spaces25,31. There
are a growing number of examples of these works to draw
inspiration from across research domains that employ macro-
molecular biomaterials. In particular, employing analytical char-
acterization methods in conjunction with supervised learning has
proved imperative for success in deconvoluting complex
behaviors.
Analytical descriptors derived from mass spectroscopy are one

powerful example in this regard. Proteomic descriptors from mass
spectroscopy, when combined with supervised learning, have
extracted wide-ranging biomechanistic insights, including the
detection of Alzheimer’s disease from nanoparticle protein
coronas32–34. In one such example from nanomedicine, supervised
learning and mass spectrometry were combined to accurately
predict the biodistribution of nanomaterials in vivo using protein
quantities present in the protein corona of PEGylated gold
nanoparticles23. The analytical descriptors used as inputs for the
neural network in this analysis were the label-free quantitative
intensities from mass spectroscopy of proteins isolated from the
surface of 8, 15, 35, 50, and 80 nm gold nanoparticles, over the
course of 24 h of circulation in rats (t= 1, 2, 4, 8, and 24 h).
Outputs were the resulting half-life, spleen gold accumulation,
and liver gold accumulation of the nanoparticles as measured by
inductively coupled plasma-mass spectrometry (ICP-MS). The
workflow mapping the descriptors and outputs in this work is
illustrated in Fig. 2. Other analytically derived nanoparticle design
attributes can also be applied as descriptors, such as size, zeta

Fig. 1 A visual representation of the general process for applying machine learning to biomacromolecular modeling and discovery.
Feature engineering functions as a central pillar between data collection and modeling, hence careful consideration of descriptor frameworks
can have dramatic influence on model performance.
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potential, molecular weight, and associated experimental condi-
tions such as cell type, exposure time, exposure route, and
concentration6. Direct descriptors of the elemental composition of
self-assembling monolayers (SAMs) have also been successful for
interaction prediction tasks on these macromolecular assemblies,
specifically %C, %H, %O, %N, total number of atoms, and number
of O-H, C-C, C-O, C-N, and C=O bonds in the SAM28.
Multiple modes of analytical descriptors may also be required to

accurately model a biomacromolecular system. For example,
augmenting experimentally derived data with high throughput
physics-based simulation data can be considered, particularly in
domains where molecular docking and molecular dynamics are
applicable. These physics-based modeling techniques are helpful
for establishing physical constraints for inverse design problems,
even in cases for biological systems or complex materials design
(such as in biomaterials design) where the physical models
describing these processes are not well defined35. Moreover, these
simulations can help to combat data sparsity, especially for
physical parameters that would be difficult to determine
experimentally, while providing an end-to-end quantification of
overall model uncertainty35. Some examples of parameters of
interest include the expected free energy of binding in protein-
ligand interaction screening36; the diffusivity, probability of
sequestration or vascular adhesion of nanocarriers for cancer
drug delivery37; and dipole moment, polarizability, and hydrogen
bond donor/acceptor ability for polymer solubility prediction
tasks38,39. A final consideration for physics-based models for
biopolymer prediction tasks is the length scale that the model
should operate. For example, quantum chemical calculations to
model electronic properties are accurate for small molecules, but
often neglect considerations for polymeric materials such as
conformation or morphology40. Coarse-grained modeling presents
as an appropriate trade-off for polymer and biopolymer systems,
where the goal is to represent higher-resolution systems with
fewer degrees of freedom, which enables simulations at length
and time scales more representative of biopolymer systems41. For
example, coarse-grained simulations of biopolymeric galactoman-
nans were able to accurately model the static structure, solution
viscosity, and radius of gyration of guar gum gels42.
In terms of other domain-specific feature generators, nuclear

magnetic resonance (NMR) and time of flight secondary ion mass
spectrometry can also be purposefully applied to generate
analytical macromolecular descriptors of complex biomaterial
interactions43–45 which are well suited for supervised machine
learning36,46. One such study focused on both polymer discovery
and increasing mechanistic understanding of polymers for optimal
ribonucleoprotein (RNP) delivery11. The authors experimentally
screened a library of 43 copolymers to map nine polymer
descriptors to their association with toxicity and gene editing
efficiency, including: polyplex radius, polymer % cationic

monomer (determined by NMR), molecular weight, pKa, polymer
hydrophobicity, RNP binding affinity, Hill coefficient, N/P ratio (i.e.,
nitrogen to phosphate group ratio), and charge density11. The
trained random forest classifier identified polymer design
attributes important for gene editing efficiency that the authors
found counterintuitive, in particular flagging hydrophobically
driven cooperative deprotonation as a promising mechanism for
delivery11. Taken together, methodologies that parallelize polymer
synthesis, high throughput screening, and multi-variate modeling
are expected to continue driving results in biomaterial interaction
prediction tasks1,7,16,47.
Finally, designed analytical descriptors have also shown

promise in inverse design tasks. A supervised learning model
was accurately trained using a 117-sample dataset to predict the
cloud point of poly(2-oxazoline), a polymer with emerging
applications in biomaterials48,49, using gradient-boosted decision
trees and custom descriptors comprising varying ratios of four
select monomer units, and molecular weight30. Molecular weight
and composition ratio were identified as descriptors using domain
knowledge in data curation. Interestingly, despite training from a
relatively small dataset, the model in this work successfully
executed polymer inverse design by synthesizing 17 de novo
polymers with targeted cloud points between 37 and 80 °C with
errors consistent with experimental ranges30. Inverse design tasks
are often conducted using string descriptors, however, this among
other similar works suggests that the targeted selection of
physical property macromolecular descriptors can allow for the
inverse design of macromolecule systems within narrow, well-
defined, chemical spaces learned by supervised models30,50–53.
Despite the success of experimentally derived biomacromole-

cular descriptors for supervised learning, there are some
challenges with this form of data representation. For one, any
syntax or semantics underlying the behavior of biomacromole-
cules is not preserved as an integral part of the descriptors.
Alternative approaches directed towards including higher-order
semantic molecular information for biomacromolecules are
described further on in the language-based, and graph represen-
tation section.
Reducing the initial feature set into the final set of independent

descriptors most relevant to the modeling task is also challenging.
Directly encoded domain-specific feature vectors describing
polymeric biomaterials can possess important variables which
are highly intercorrelated (i.e., Pearson Correlation Coefficient
> 0.85). Domain knowledge must be applied in such cases to
decide whether to remove one of the intercorrelated variables
through a standardized procedure such as the Least Absolute
Shrinkage and Selection Operator (LASSO), or alternatively apply a
dimensionality reduction technique such as principal component
analysis (PCA) which enforces no linear intercorrelation between
input variables. Several works make use of the LASSO method for

Table 1. Summary of popular macromolecular descriptor classes.

Descriptor Class Overview Implementation Labor-Intensiveness

Domain-specific Task-specific analytical measurements of
the underlying system

Tabular encoding of experimental conditions,
physical properties, physics-based simulations,
analytical measurement results in accordance
with domain knowledge

High (unless data collection is
automated or variables
known a priori)

Fingerprint Vector encoding of the macromolecular
chemistry in the training dataset

Tabular encoding of vectorized system, adoption
of pre-existing frameworks where compatible

Low

String
Representation

Encoded molecular structures using a
predefined chemically complete
knowledge framework

Incorporate framework in tabular data (ex.
SMILES, BIGSMILES, SELFIES, etc.)

Medium

Graph
Representation

Encoding and attribution of molecular
systems using a graph data structure at a
predefined level of abstraction

Custom encoding of nodes and edges for a graph
learning task, adoption of pre-existing
frameworks where compatible

Medium
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feature selection to eliminate the least relevant descriptors to the
prediction task1,23. However, in biomaterial polymer informatics,
the subject properties of the model can be intercorrelated from
fundamentally networked attributes, rendering dropping such
information before modeling undesirable54. In these cases, one
may use PCA to remove feature intercorrelations while limiting
information loss at the expense of some direct interpretability of
the resulting feature importance54. Some of this interpretability
can be retained by examining the factor loadings obtained
through PCA as they correlate with the contribution of a given
input variable to the model55. These loadings can also be used as
an unbiased means of deriving insights from complex data over
the baseline of manual interpretation25. Ultimately, problem
context best informs the choice of methodology for biomaterial
polymer feature selection, as it does with feature engineering on
the whole.

In fact, evidence from benchmarking featurization strategies for
polymer property prediction suggests not only that problem
context dictates which feature engineering strategy will be the
best performing, but that the predictive performance of a model
can degrade after applying other feature engineering strategies to
a fixed problem context17. Polymer size is one such example of a
modeling feature for which problem context dictates its predictive
significance.
In the benchmark, two datasets were contrasted for their

performance sensitivity to polymer size as a modeling feature in a
regression task. In regression, the resulting mean absolute error
(MAE) benchmarks the predictive performance of the trained
model on the task. In one dataset, including polymer size as a
feature decreased MAE by 50% for each of its three property
prediction tasks, a marked improvement. The other dataset,
including polymer size did not yield any statistically significant
reductions in MAE, indicating no effect. Domain knowledge

Fig. 2 Supervised learning descriptors derived from mass spectroscopy predict in vivo fate of PEGylated gold nanoparticles. The half-life
(a), spleen accumulation (b), and liver accumulation (c) of five nanoparticle sizes were applied as target labels to train an artificial neural
network to map proteomic input descriptors to in vivo nanoparticle fate (d). The model generalized successfully in predicting the properties
of two unknown (UK) nanoparticles for their half-life (e), spleen accumulation (f), and liver accumulation (g). n= 3, error bars indicate standard
deviation. Adapted with permission from ref. 23 (copyright American Chemical Society, 2019).
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suggests two problem context factors could underlie the
discrepancy in the importance of the polymer size feature. First,
the target variables of the first dataset were each sensitive to the
polymer size ranges characterized in the training data (20–600
constitutional units), while the prediction target of the second
dataset was not sensitive at the resolution being modeled
(mean= 7770 g/mol, std= 1100 g/mol). Second, that measure-
ment noise obfuscated any effect that was measured in the
training data of the second dataset, which was collected by a
different means than the first dataset. These contextual factors
demonstrate the common bottlenecks encountered in biomaterial
polymer dataset curation. Specifically, it is exceedingly challen-
ging, and often laborious, in biomaterials design tasks to identify
both polymer design space ranges that correspond to interaction
behaviors of interest, and characterize those ranges reproducibly
at scale, with measurement error that does not obfuscate the
desired signal17.
Formulating prediction tasks whereby challenges in data

curation can be overcome remains an ongoing focus in the
biomaterial polymer research domain. In addition to polymer size,
there are innumerable design variables in polymer biomaterial
development (physical, chemical, topological, etc.) whose curation
will similarly impact the success of the featurization strategy in a
given problem context. The challenges inherent to data curation
in polymeric biomaterial design begets the premise of this work,
that one size does not fit all in selecting a feature engineering
strategy across predictive tasks. In a domain where problem
context dictates the best feature engineering strategy, focusing on
optimizing features to suit the variable-target mappings within a
curated biopolymer dataset will trump the application of a generic
strategy across problem domains that are not similarly curated,
and where data points are scarce56.

The scarcity of datapoints due to the labor-intensiveness of
manual data collection imposes another limitation in feature
engineering that merits noting, “the curse of dimensionality.” That
being, the phenomenon in deep learning where as a feature
vector dimension increases, the greater the number of datapoints
in the dataset required to train a model. In biomaterial domains
where interaction phenomena are typically unmapped, one may
consider including every available parameter as a feature to
increase the probability of mapping data to the prediction target.
However, the curse of dimensionality enforces an upper limit in
feature vector dimensionality as predicated by the amount of data
able to be collected for the predictive task. Alternatively, one may
augment a small, experimentally curated domain descriptor
dataset using information from open-access databases or other
research studies. However, pooling datapoints as such imbues
mixed variance levels in the dataset from different experimental
conditions, which again risks obscuring the desired objective
function for the task22. All such factors in data curation similarly
obfuscate the ability to draw standalone comparisons of model
architectures based on different biomaterial datasets. Specifically,
variance in performance can be attributed to any one or
combination of data curation, feature engineering, or model
design and training workflows. As such, across datasets, a one-size
“fits all” approach has not yet accommodated all varieties of
domain-specific factors inherent to polymeric biomaterials design.
In sum, domain descriptors can yield extremely informative

feature mappings between experimental parameters and target
variables for a wide variety of prediction tasks in polymeric
biomaterial interaction prediction. However, the highly laborious
nature of data collection and data curation remains an obstacle to
scaling domain descriptors, and underscores the importance of
both combinatorial polymer chemistry57 and of developing
automated pathways for characterization in this area58–60.

Fig. 3 Outline of molecular fingerprinting workflow applied to a two-unit polymer structure. a An exemplary two-monomer-unit polymer
subset. b Binarized chemical attributes (Morgan Fingerprint) juxtaposed with an intra-molecular property enriched fingerprint (Molecular
Embedding). c Explanatory diagrams mapping chemical structures to their characteristic atom features, bond features, and the resulting
globally abstracted Molecular Graph. Adapted with permission from ref. 5 (copyright American Chemical Society, 2019).
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Whether data collection is automated or manual, however,
problem context dictates the performance of domain descriptors.

Macromolecular fingerprint representations
Generally, fingerprinting strategies involve converting molecular
information into a numeric vector, such as a bit string, which
expresses structural information. There are many different
approaches to molecular fingerprinting, the most popular
approaches can be broadly divided into three categories:
substructure-keys-based fingerprints, topological or path-based
fingerprints, and circular fingerprints61. Substructure-keys-based
fingerprints set the bits of the associated bit string based on the
presence or absence of a given chemical structure or features
based upon a predefined dictionary61. Some popular examples of
substructure-based fingerprints include MACCS, PubChem finger-
prints, and Klekota–Roth fingerprints62–64. Both topological and
circular fingerprints rely on a hashing function that character-
istically abstracts molecular patterns from the macromolecular
system into a vector3. Topological fingerprints such as Daylight
fingerprints hash the connectivity between atoms up to a certain
number of bonds61, whereas circular fingerprints such as
Extended-Connectivity fingerprints encode the chemical environ-
ment surrounding a given atom to a specified radius65. Thus, the
attributes of these hashed descriptors are tailored to the system
being modeled, rather than drawn from a predetermined schema.
A principal challenge of adopting a hashed molecular
fingerprinting-based chemical descriptor strategy is the connec-
tivity of biopolymer subunits. Similarly, substructure-key finger-
prints lack uniqueness as a function of structural arrangement.
Some of this challenge may be alleviated by converting monomer
unit fingerprints to those of their dimeric or oligomeric counter-
parts, though due to the stochastic nature of polymer species, the
precise arrangement of subunits or substitutions (such as those in
biopolymeric cellulose derivatives) is likely unknown66. One
promising strategy to deal with this inherent ambiguity is to
incorporate additional descriptors at various length scales (so-
called hierarchical67 or augmented scaled fingerprints17, depend-
ing upon the included parameters) to more accurately describe a
given polymer. For example, the success of the Polymer Genome
project is underpinned by hierarchical fingerprints derived from
data describing polymers at three length scales (atomic,
molecular, morphological)67. Further, hierarchical fingerprinting
has also shown success in biopolymer materials discovery,
specifically in identifying naturally derived biopolymer candidates
with improved thermomechanical and transport properties
compared to existing synthetic materials68.
It is additionally possible to combine a fingerprint with domain-

specific descriptors, or graph descriptors, to correlate the
molecular pattern vectors with relevant analytical and structural
data. To this effect, experimentally-informed chemical fingerprints
have been applied in tandem with macromolecular graph
representations to perform polymer property prediction with
graph neural networks15,67. A macromolecular fingerprinting
approach should be selected with care, however, in tandem with
a learning approach. A fingerprint benchmarking study compared
the Morgan Fingerprint (MF), Molecular Embedding (ME), and
Molecular Graph (MG) as alternative chemoinformatic descriptors
under supervised learning, semi-supervised learning, and transfer
learning schemes, with feed-forward neural networks predicting
polymer density, melting temperature, and glass transition
temperature5. Figure 3 depicts an exemplary fingerprint genera-
tion workflow, for each of the MF, ME, and MG, respectively. The
study used 1442 homopolymer structures and labels available in
the PolyInfo database, with two monomers of each structure
modeled as training samples. While the ME had the best
performance as a fingerprint, they found that the selected
learning approach affected the explanatory chemical variables

the model identified to map relationships between polymer
attributes and properties with ME descriptors5.
Fingerprinting offers simplicity of computation at some expense

of interpretability, as the same fingerprint can be used to describe
two different systems (referred to as a “bit collision”)5. The
allowance of bit collisions during fingerprinting prevents finger-
print representations from being applied directly for polymer
inverse design. Additionally, latent spaces learned from fingerprint
representations are considered “chemically incomplete” as the
chemical features they encode are restricted to those contained
by the dataset used during fingerprint hashing14,16. Latent space
representations are typically created in deep representation
learning, and apply architectures such as variational autoencoders
for generative modeling tasks. In the context of biomaterials
development, exploiting latent spaces holds much potential for
increased performance. Latent spaces are well suited for global
optimization as they are both continuous and differentiable69,70

whereas complex chemical spaces tend to be challenging to
optimize71. Some examples of latent space representations in
polymeric materials include formulating novel biomaterial
nanoaggregates of π-conjugated peptides71 and developing
polymers for extreme conditions72.
As a whole, particularly in exploratory macromolecular infor-

matics where inverse design is not a focus and chemical structure
can be directly encoded, the simplicity and flexibility of
fingerprinting can overcome trade-offs induced by bit collisions
in view of ease of computation.

String representations
Models based upon string representations encode molecular
structures and properties into strings in accordance with a
predefined chemical knowledge framework. These strings are
then treated as character sequences for featurization, akin to
learning tasks in natural language processing. Hence, models that
leverage string representations are popular for their facile
interpretability, memory efficiency, and ready compatibility with
natural language processing algorithms3,7,38,73. They are also
generally considered chemically complete, which overcomes a
limitation of macromolecular fingerprinting approaches, and are
explicit in their description of polymer structures14. Generally, the
task of implementing descriptor frameworks in language-based
models involves first selecting a language-based encoding for
chemical data, converting these encodings to distinct sub-units
known as tokens, followed by the generation of characteristic
embeddings using transformer architectures. The characteristic
embeddings can then be applied as the input feature vector to
the desired learning task.
A very popular encoding for string representation of polymers is

the simplified molecular input line entry system (SMILES), which is
natively designed for small molecules. Despite the fundamental
differences between macromolecular and small molecule chemis-
tries, SMILES representations have been used successfully in
macromolecular machine learning. Two recent examples lever-
aging Bidirectional Encoder Representations from Transformers
(BERT) architectures polyBERT74 and TransPolymer75 were both
able to accurately perform polymer property prediction tasks by
applying these language-based approaches with polymer SMILES
strings as an input. Of note the connectivity problems as discussed
earlier were resolved either by explicitly denoting connectivity in
the associated SMILES string or through canonicalization. Other
language-inspired models such as LSTM and n-gram type models
have also been applied to biomacromolecular problem spaces
such as the prediction of aggregate behaviors of polymers and
biopolymers and predicting the radius of gyration56,76. Generally,
the choice of architecture is imperative for the success of a given
model based on string descriptors. While BERTs have shown
tremendous success, including outperforming other more
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traditional models (such as LSTMs) in polymer property prediction
tasks75 it is highly dependent on the system and modeling task.
Two more recently developed chemical string encoding frame-

works are SELFIES and BIGSMILES. The SELFIES framework was
developed primarily to overcome the limitations of SMILES for
inverse design: every SELFIES representation corresponds to a
chemically valid structure, which is not true of SMILES52,53. Both
SELFIES and SMILES however are dedicated small molecule
encodings and cannot uniquely encode polymer chemistry7. In
light of this, the BIGSMILES framework was created for large
polymer encodings. BIGSMILES can encode co-polymer informa-
tion (homopolymer, random-, block co-polymer status), and
distinguish linear, ring, and branched polymers13.
Outside of preexisting string formats, physical analogs in

biopolymer research can be represented as domain-specific string
formats and leveraged as inputs to natural language processing
workflows3. For example, prediction of the immunogenicity of
glycans, a non-linear biological macromolecule, was achieved
from deep learning models trained on 19,299 glycan examples,
characteristically binned into “glycoword” monosaccharide
groups77.
It merits noting that string representations can also be applied

to model biomacromolecules without the use of natural language
models, similar to a fingerprint. For example, polymer functional
groups encoded as SMILES can be converted to.mol files using the
RDKit package to generate signature descriptors for directly
training a machine learning model1. Using this methodology, one
recent work identified monomer groups associated with
macrophage-instructive behavior in meth(acrylate) and meth(a-
crylamide) polymers, specifically using supervised learning with
multi-modal descriptors from high throughout co-polymer screen-
ing, optical microscopy, and SMILES representation1.
With chemical string and natural language-derived descriptors,

limitations are largely related to scaling strings from atomic to
macromolecular scales. In the case of SMILES, as an explicit small-
molecule representation, strings become too long to feasibly
parse at polymer scale and do not account for the hierarchical and
stochastic nature of polymer behavior13. However, more efficient

abstractions of large molecule systems using BIGSMILES suffer
from the opposite problem: the explicit organization of the sub-
components within a polymer is lost in order to incorporate
stochasticity in representation14. Finally, approaches that apply
methodology from natural language processing face the same
constraints that impact natural language research only in chemical
context: extensive pretraining, data augmentation, and large
dataset sizes are required for these approaches to succeed in
macromolecular informatics, which can handicap progress where
data is scarce in this field7,78. In these cases macromolecular
fingerprints and graph representations, where the direct encoding
of a chemical structure is feasible to avoid such pitfalls, are
reported to outperform language models when provided the
same amount of data78. Taken together, the suitability of applying
chemical string and natural language-inspired descriptors in a
macromolecular informatics project, over a simpler fingerprint or
domain-specific descriptor, depends on several key factors. While
these factors are contextually dependent upon the objectives of
the work, they broadly include data availability, the acceptable
macromolecule size resolution for representation and associated
chemical space trade-offs, and limitations of the available
computational resources.
In terms of labor-intensiveness, generating the initial string

descriptors derived from a predefined knowledge frameworks
such as SMILES is relatively straight-forward as it only requires
knowledge of polymer structure. Pursuing a natural language
processing workflow however requires additional familiarity with
complex NLP domain concepts such as tokenization and
transformer models, increasing the labor and computational
background required. Alternatively, fingerprinting the SMILES
representation with RDKit can more readily generate feature
vectors from the string representation without requiring natural
language processing background. Both such approaches are
readily scaled computationally using only a priori structural
knowledge, which in turn makes them less laborious than manual
data collection or creating a de novo biomaterial domain-specific
string representation.

Fig. 4 Illustration of the generation and application of macromolecular graph representations for property prediction, cross-polymer
comparison, and macromolecular interaction mechanism interpretation. Transformation path of raw macromolecular structures in the
workflow, first converted into SMILES text files, then network graphs. a Graph nodes correspond to monomers, edges correspond to bonds,
both of which are attributed to vectorized molecular fingerprints describing aspects of their underlying molecules. b Exemplary pair-wise
similarity matrix derived from dimension-reduced representations of macromolecular species across the training library. c GNN computation
of various interaction prediction labels from input macromolecular graphs. d Post-hoc graph attribution analysis explains underlying
structures important to model-assigned interaction predictions. Adapted with permission from ref. 15 (copyright Somesh Mohapatra, Joyce An
and Rafael Gòmez-Bombarelli, 2022).
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Graph representations of macromolecules
In computer science, graphs are data structures constructed from
a collection of nodes, typically depicted as circles, and the edges,
depicted as lines, which indicate relationships between nodes. The
Graph Neural Network (GNN) approach to deep learning became
popularized as a tailwind of the deep learning renaissance
brought on by Convolutional Neural Networks (CNN)79. CNNs
learn multi-scale feature representations from Euclidean domains
of data, and can be generalized on graphs through graph
convolution operations. The ability to construct supervised
mappings from non-Euclidean, graph-structured data through
graph convolution represented a fundamental breakthrough in
chemoinformatics and supervised learning. Accordingly, numer-
ous structure-property prediction studies resulted from small
molecule graphs, as well as studies of protein interface predic-
tion80–82. There is significant overlap between the research aims in
graph learning, and predictive design for macromolecules, given
the abundance of networks in macromolecular bioinformatics83.
The formidable breakthrough in protein folding prediction by the
AlphaFold deep learning model trained using graph data
representations is one exemplary success of what is possible at
the intersection of these rapidly evolving fields83,84.
The engine underlying success in graph structure-prediction

tasks is known as representation learning. Specifically, representa-
tion learning refers to a workflow where training data is input to a
GNN formatted as a graph, after which a GNN during training
constructs its own vectorized encoding of the data by traversal of
the input graphs3. The resulting vector (i.e., the “learned
representation”) can be applied similarly to a hashed fingerprint,
as an input feature descriptor to a downstream task-specific
predictive model such as a random forest, artificial neural network,
etc3. Hence, the primary advantage of graph representation
learning in macromolecular informatics is the compatibility
afforded by the graph data structure (i.e., nodes and edges) with
the physical organization of macromolecular materials as mono-
mers with linkages and resulting topology. Representation-learned
encodings, in addition to the basic attributes of a macromolecule
found in a fingerprint, encode the specific syntax of the
interconnections within the macromolecule being modeled15. As
well, graph representation learning is not as sensitive to the size of
the training set compared to natural language processing-based
models, which improves the applicability of these methods for
data-constrained research78. However, for researchers in macro-
molecular biomaterials design, selecting the precise nodes and
edges to define for a GNN representation learning task, and the
level of systemic abstraction they represent requires careful
consideration in the context of the training dataset. Newly
developed frameworks for modeling polymers as macromolecules
for informatics can offer inspiration in this regard.
A chemistry-informed graph representation for macromolecules

was recently developed, allowing for the quantification of
structural similarity of 19,147 glycan biopolymers, in terms of
both chemical and topological attributes, along with interpretable
macromolecular supervised learning15. The representation applied
for this is depicted in Fig. 4. Another recent work drew inspiration
from polymer stochasticity to construct a graph representation
framework for over 40,000 polymers as molecular ensembles,
while incorporating chain architecture, monomer stoichiometry,
and degree of polymerization in the descriptor set78. Additionally,
a new framework has been released for end-to-end polymer
informatics, PolyGrammar, which is the first to be chemically
complete, molecularly explicit, physically valid, explainable, and
invertible for generative polymer inverse design14. PolyGrammar is
derived from a symbolic hypergraph representation and as proof
of concept constructed representations for 600 polyurethane
samples14.

Broadly, advances in graph representation learning for macro-
molecular systems present clear opportunities for paradigm shifts
in predictive model capabilities, as was observed with Alpha-
Fold84. However, in macromolecular domains where there are
challenges with data collection, data availability, or lacking
standardization where training data is available, all present
obstacles to the deployment of a universal framework for
molecular representation at scale7.
One approach to this would be using molecular descriptors to

describe the sub-units of the polymeric biomaterial, and building a
graph embedding from the set of sub-units. So long as the
chemical space inherent in the sub-units is countable, the
approach would scale. The challenge with this is defining scope
to abstract a polymeric biomaterial into sub-units. Procedures for
creating sub-unit definitions, for example coarse-grained polymer
representations in physics-based simulations, are not always
rigorously defined56,85, and their selection will introduce a level
of ambiguity in the predictive task. Along these lines, the
application of this descriptor class can require some customiza-
tion, which increases the labor intensiveness as compared to an
off-the-shelf approach.
Future research at the intersection of graph representation

learning and self-driving labs for the accelerated discovery of
biomacromolecular materials will present a powerful opportunity
to combine both standardized data availability and the best
available macromolecular data representations, in real-time86.

Outlook
There are many options to consider in selecting biomacromole-
cular machine learning descriptors for polymer interaction
prediction tasks. As emphasized in this perspective, the objectives
of the research project, access to data, labor-intensiveness of data
collection, and downstream requirements for interpretability
should be considered in balance at the outset of selecting or
designing choice descriptors. The performance of a polymer
interaction prediction model can be attributed to any one or
combination of factors in data curation, feature engineering, or
model design and training workflows. It is extremely challenging
to identify polymer design space ranges that correspond to
interaction behaviors of interest, and characterize those ranges
reproducibly at scale, with measurement error that does not
obfuscate the desired signal. Knowing this, a “one-size fits all”
approach to feature selection and modeling across interaction
prediction tasks for polymeric biomaterials is unlikely to accom-
modate all varieties of relevant domain-specific factors. The
heterogeneous nature of data curation in the field underpins
the wide variety of feature engineering methodologies discussed
in this perspective: domain-specific, fingerprint, string, and graph
descriptors.
In navigating biopolymeric feature selection, where exploratory

proof of concept work is the focus, employing descriptors that are
both simple and interpretable establishes trust in the data and
builds scientific intuition. Alternatively, in scaling a model for
deployment with an active learning system or accelerated
materials discovery platform, descriptors that support model
generalization and capacity for inverse design can be imperative.
In either case, the process of feature engineering for a predictive
task is often iterative, and ultimately reflective of the inherent
predictive power of the independent variables being used to
describe the target. Along these lines, there has been a shift at the
forefront of machine learning research from “model-centric AI” to
“data-centric AI,” which reflects the growing recognition across AI-
accelerated research domains that efforts to improve the quality
of training data can be more productive than efforts focused on
model optimization for specific tasks87. In terms of data-centricity,
it is hard to beat incremental value brought forward by applying
high-resolution analytical tools such as mass spectroscopy and
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nuclear magnetic resonance to enrich descriptor quality, and thus
model quality. In opposition, it is very time-consuming to apply
traditional analytical approaches for data generation at scale,
which motivates the development of automated, scalable, data
collection approaches. While one size does not fit all today,
continued research efforts to automate high-resolution biomacro-
molecular data collection, and accurately encode biomacromole-
cular interaction phenomena as features, are expected to enable
the next generation of predictive biomaterial polymer designs.
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