
REVIEW ARTICLE OPEN

Understanding and design of metallic alloys guided by
phase-field simulations
Yuhong Zhao 1,2,3✉

Phase-field method (PFM) has become a mainstream computational method for predicting the evolution of nano and mesoscopic
microstructures and properties during materials processes. The paper briefly reviews latest progresses in applying PFM to
understanding the thermodynamic driving forces and mechanisms underlying microstructure evolution in metallic materials and
related processes, including casting, aging, deformation, additive manufacturing, and defects, etc. Focus on designing alloys by
integrating PFM with constitutive relations and machine learning. Several examples are presented to demonstrate the potential of
integrated PFM in discovering new multi-scale phenomena and high-performance alloys. The article ends with prospects for
promising research directions.

npj Computational Materials            (2023) 9:94 ; https://doi.org/10.1038/s41524-023-01038-z

INTRODUCTION
Understanding the relationship among “composition-processing-
microstructure-properties” is the central theme of materials
science and engineering1. Historically, the design of new materials
has predominantly relied on the “trial-error” method to adjust and
analyze alloy composition and process parameters, which requires
a long cycle and high costs2–5. Multiscale modeling and
computing methods, briding atomic scale structures to macro
properties, are playing an increasing role in understanding and
interpreting experimental observations and reducing experimen-
tal costs.
Mean field approaches are popular for approximating large

complex stochastic models that contain large number of
interacting bodies. By averaging the multi-body interaction into
single-body interaction, the mean-field approximation theory
(MFT) has become basis of some computational models, such as
Weiss molecular field theory (WMF), Bragg-Williams Mean field
theory (BW-MFT), Landau theory, density functional theory (DFT)
and phase-field methods (PFM), etc. In addition to mean field
approaches, there are many other microstructure simulation
models, such as Molecular dynamics method (MD), Cellular
Automata method (CA), Monte Carlo method (MC), Level Set
Method (LSM), Front Tracking Method (FTM), Envelope Method
(EM), Mean radius approach (MRA), and Kampmann-Wagner
numerical method (KWN), etc. Commonly used microstructure
simulation approaches and some cases are presented in Fig. 1.
PFM is derived based on MFT and can uniquely provide critical
links at both nanoscale and mesoscale, including morphology,
size, spatial arrangement, transition path, defects, stress and strain
distribution of various phases under complex internal or/and
external effects.
The term “phase-field (PF)” was originally proposed to model

mesoscale solidified dendrites6, with phase ∅ and concentration
Cas non-conserved and conserved field variables respectively,
which is the prototype of the continuous phase-field model
(CPFM). In 1991, Chen adopted the atom occupation probability P
as the conserved field variable to establish a microscopic diffuse

phase-field model (MPFM) for phase separation of binary alloys,
including atomic clustering and order-disorder transformation7. In
2002, Elder used the average atom density ρ as a conserved field
variable to develop the phase-field-crystal (PFC) model for wider
applications, even graphene materials8. PFM does not need to
presuppose initial microstructure configuration and track the
phase or grain boundary, allowing multiple fields to be easily
added together, i.e., chemical, thermal, mechanical, magnetic,
electrical, and other fields, to facilitate the opening or closing the
effect of one or more internal or external fields to describe the
microstructure and performance evolution in materials process.
Therefore, the versatility and flexibility of PFM make it applicable
to a wide range of phase transformation phenomena in metallic
materials, such as dendrite9, eutectic10, peritectic11, precipita-
tion12, spinodal decomposition13, crystal growth14, dynamic
recrystallization and recovery15, austenite16, ferrite17, pearlite18,
bainite19, martensite20, and vacancy (irradiation)21, dislocation22,23,
crack24, etc.
Parallel to the increase in computer power, advances in

computational modeling methods have resulted in a level of
sophistication which is comparable to that of experiments. PFM
can be integrated or coupled with many advanced atomic scale
experimental observations and various computing and intelligent
approaches to help design materials and processes more
accurately and widely. Figure 2 shows the applicable temporal
and spatial scope of the above three PFMs and some applications
of integrated PFMs in metallic materials. As this paper aims to
summarize the application of integrated PFMs, we will not
distinguish the three PFMs in the following.
Some commercial or open-source PF software packages (see

Supplementary Note I) have been developed, which greatly
promote the wide application of PFM.
Early PFM focused on modeling via setting some phenomen-

ological parameters, gradually developed into quantitatively
simulating the materials process matching the spatial and
temporal scales of the experiment, which can be achieved by
enlarging the interface width25–28, coupling thermodynamic and
dynamic databases29–32, and distinguishing the crystallographic
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characteristics of different phases33–35. Later, researchers paid
more attention to helping interpret and understand experimental
microstructure by PF simulation. However, it is still an arduous task
to optimize the alloy properties and design new materials.
In this brief review, we focus on the potential of integrated PFM

in designing high-performance alloys fabricated in process of

solidification, precipitation, deformation, or additive manufactur-
ing, etc. In the second section, some recent applications combined
with experiments to simulate microstructure evolution are
introduced, showing the potential of PFM in quantitatively
predicting the relationship between processing and microstruc-
ture. In the third part, several key factors, and internal mechanisms

Fig. 1 Commonly used microstructure modeling approaches and some cases. a PF for phase transformation in LA147 alloy64. Figure
adapted with permission from ref. 64, CC BY 4.0. b DFT for Ag-segregation185. Copyright Elsevier, 2023. c MFT for Ferroelectric phase-
transition186. Copyright Springer Nature, 2021. d MD for virtual voids distribution187. Copyright Elsevier, 2021. e EM for columnar dendritic
solidification188. Copyright Elsevier, 2017. f CA for additive Manufacturing (AM)189. Copyright Elsevier, 2021.

Fig. 2 Integrated computational phase-field theory framework. Schematic of applicable temporal and spatial scope of the three PFMs and
some applications in metallic materials of integrated PFMs.
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to improve alloy properties, especially the PFM design idea, are
discussed. The fourth section gives some integrating or coupling
ways commonly used in PFM to correlate microstructure and
performance, as well as corresponding applications, also several
accelerating solutions, such as machine learning and advanced
algorithms. The fifth section is the concluding remark and
perspective. Finally, the basic theoretical framework of PFM and
the coupling path with internal or external fields are briefly
summarized.

CROSS VALIDATION OF PHASE-FIELD PREDICTION AND
EXPERIMENTAL OBSERVATION
PFM has been applied to a wide variety of material processes as
stated in numerous review articles, including solidification36–39, solid
state phase transformation1,40,41, fracture42–44, corrosion45, ferro-
electric46, battery47, cell48, etc. This section focuses on the latest
application of PFM in comparing and verifying alloy microstructure
morphology observed in corresponding experiments49–53.
Goerler et al.51 observed topological phase inversion in Ni-

based superalloys after long-term aging at 1100 °C for 250h, their
corresponding PF simulation indicated that the topological
inversion was due to lattice misfit caused by the formation,
coalescence and ripening of γ0 precipitates. Besides verifying the
morphology and analyzing inherent reason, another case tried to
give further pattern criterion. Recently, three typical BCC/B2
coherent microstructures of Al-Ni-Co-Fe-Cr high-entropy alloys
(HEAs) were obtained through experiments and PF simulations
(Fig. 3)54, namely spherical, cubic and woven nanoprecipitates,
and the elastic mismatch criterion ε>0:4% for cubic precipitate
was proposed through PF simulation.

Morphological control can also help formulate technical
parameters. Short circuit caused by dendrite growth is a key issue
limiting the capacity and longevity of rechargeable battery55,56. In
2022, Lin et al.57 introduced diffusion kinetics, interfacial
anisotropy, electric field, stress field and lattice mismatch between
deposit and substrate into PFM, so as to reveal the solidification
mechanism of three dendrite patterns (needle-like, tooth-like, or
tree-like) observed in experiment, as illustrated in Fig. 4. Accord-
ingly, the technology parameters of molten salt electroplating to
adjust the dendrite pattern were designed to minimize the failure
caused by dendrite growth.
Researchers are no longer satisfied with the cross validation of

PF simulation of microstructure morphology and experimental
observation, gradually turn attention to seeking the application of
PFM in the melting, solidification, aging, rolling and other stages
that parts may experience, thus obtaining some relationships
between microstructure characteristics and material processing
parameters to meet the actual needs of designing high-
performance alloys, as described below.

KEY PROCESS FACTORS FOR OPTIMIZING PERFORMANCE
Dendrite arm spacing in solidification
The arm spacing between primary and/or secondary dendrites in
as-cast alloys indicates the solute inhomogeneity and segregation
in microstructure, which plays a crucial role in mechanical
properties of castings53,58. Such process parameters as solidifica-
tion speed, cooling rate, temperature gradient and local
solidification time are closely related to the dendrite arm
spacing59. Bellón et al. quantitatively predicted the stable range
of primary dendrite arm spacing (PDAS) in Al-1 wt.%Cu and Al-4

Fig. 3 Microstructure morphology of as-cast HEAs of Al and transition metals (Al-TM) HEAs. (a1, b1, c1) Dark-field TEM images. (a2, b2, c2)
Simulated microstructures by PFM. (a1, a2) Al21.2Ni29.9Co21.1Fe13.8Cr14.0 (No.1-Al21), (b1, b2) Al12.5Ni17.5Co17.5Fe17.5Cr35.0 (No.2-Al12), and (c1, c2)
Al17.6Ni20.6Co20.6Fe20.6Cr20.6 (No.3-Al17)54. Copyright Elsevier, 2020.
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wt.%Cu alloys60 using PFM and dendritic needle network method
as shown in Fig. 5, and proposed the process parameters to
reduce the PDAS and refine the grains, thereby mitigating
shrinkage, porosity, cracks and other casting defects.
The above casting defects can be accurately predicted by the

macro casting simulation software (EasyCast, ProCast, Novacast,
Magma, etc.). Hence, an imperative necessary is to combine meso PF
simulation with macro casting software to realize the integrated
design from microstructure to defect prediction, and finally to high-
performance alloys and structural or functional components.

Early clustering in aging
Generally, as-cast alloys need to undergo heat treatment
processes such as homogenization, aging, annealing, quenching,
and normalizing, etc. to improve microstructure and properties.
Small coherent clustering or Guinier-Preston (GP) zone, precipi-
tated at the earliest quenching or aging stage, is also critical to the
mechanical properties of alloys61. Both PFC method and MPFM
can capture the phase transition details of diffusion time on the
atomic scale, which can shed significant light on the elusive fast
transformation of the formation, growth and enrichment of early
clustering33. For instance, Fallah group33–35,62 elucidated the

complete free energy path of early clustering in supersaturated
Al-Cu, Al-Cu-Mg, and Al-Mg-Si alloys with PFC, found that
dislocations (Fig. 6) can significantly reduce the energy barrier
height and the critical nucleation size, resulting in higher
aggregation rate and finer clusterings34,62.
Additionally, the following specific phase separation mechan-

ism leading to microstructure diversity containing various defects,
always plays a significant role in affecting materials performance.

Spinodal decomposition (SD) in precipitation
Compared with the nucleation and growth mechanism (NG), the
most prominent difference of SD is that no nucleation energy
barrier is required63. Xin et al.64 designed an SD strengthened
ultralight high-strength Mg-14Li-7Al (LA147, wt.%) alloy by using
experiments and PF simulation, and its specific yield strength
(470-500 kNmkg−1) almost exceeds that of all other engineering
alloys. As shown in Fig. 7, PF simulation not only provides direct
evidence of D03-Mg3Al ordered phase precipitated by SD, but also
quantitively determines the amplitude modulation wavelength of
three stages in SD, i.e., incubation period, rapid growth period,
and equilibrium period. Subsequently, they further explored the
precipitation mechanism and sequence in Mg-11Li-3Al alloy65, in

Fig. 4 Comparison of dendrite morphology between simulation and experiment. a Schematic of the electrochemical system. b Uranium
deposits detached from the cathode. Comparison of molten-salt electrorefining experimental (c1, c2, c3) and PF simulated (d1, d2, d3) dendrite
pattern after electrodeposition process of 300 s under different applied voltages. e Design for different dendrite patterns with (f) dendrites
considering varied electric potential, diffusivity, and strain, etc57. Copyright Elsevier, 2021.
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Fig. 5 Primary dendrite spacing in cast metallic alloys60. a PDAS as a function of cooling rate for Al-1wt.%Cu alloy. The dendrite morphology
from (b) PFM and (c) dendritic needle network model. Copyright Elsevier, 2021.

Fig. 6 PFC simulation for the evolution of Cu-rich clusters. a Formation and evolution of 2D Cu-rich clusters, (a1) t ¼ 1000 and (a2)
t ¼ 30000. The system undergoes a process of rearrangement and/or annihilation of dislocations within the matrix, leading to the formation
of cluster α62. Copyright Elsevier, 2013. b Evolution of 3D Cu-rich clusters, (b1) t ¼ 5000 and (b2) t ¼ 30000. The black T-like symbol in the inset
of (b3) represents edge dislocation34. Copyright Elsevier, 2016.
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which the PF simulation reproduced the evolution mechanism
from θ (D03-Mg3Al) phase to Al-Li phase with core-shell structure
after medium temperature (270 °C) aging, and predicted the
corresponding hardness.
The microstructures generated by SD or NG mechanisms usually

work under different temperatures, stress, or other load condi-
tions, which may form various point defects, line defects and
surface defects, and have a serious impact on alloy properties.
Currently, PF simulation plays an increasingly important role in
alloy design considering defect formation and evolution.

Defects of twins and dislocations during deformation
Nanotwins can improve the work hardening rate of metallic
materials66,67, which is mainly due to the interplay between
dislocations and twins, including de-twinning68,69, dislocation
crossing twin boundary70 and twin boundary steps becoming
dislocation accumulation site or dislocation sources71,72, etc. PFC73

is an effective tool for intuitively revealing the interaction between
nanotwins and dislocations during equal volume deformation of
rolling, forging, or Split-Hopkinson-Pressure-Bar. Here, strain rate
_ε<10�7 � 10�2 s�1 is applied to avoid calculation divergence.
For example, a new Cu92Al5Ni3 (wt.%) alloy74 with tensile

strength of 797.06 Mpa and elongation of 28.66% was designed
through melting-aging-deformation processes. PF simulation
showed that the interplay between twins and dislocations led to

such high performance, as shown in Fig. 8, including twin
boundary fragmentation, formation/annihilation of dislocation
dipoles, and climbing-slipping motion of dislocations. The typical
characteristics of high strength-ductility Cu alloys, such as fine
grains, high twin density and stable grain boundaries, were also
proposed.

Defects of Void and bubble expansion
PFM is also used to predict the evolution of bubbles and voids
during irradiation, to calculate local thermodynamic properties, and
to evaluate the microstructure effect on the properties of metallic
materials75. For example, Hu et al.76 put forward the concept of
effective thermal conductivity KG, employed the heat transport
equation and PFM of polycrystalline U–Mo fuel alloy with a given
crystal morphology and gas bubble distribution to calculate the
thermal conductivity of heterogeneous systems, Fig. 9 illustrated the
effect of bubbles between and inside particles on KG.

Diffusionless martensitic transformation
The diffusionless martensite transformation is often accompanied by
high strength and hardness, e.g., the tensile strength of martensitic
steel is within 600 MPa~1600 MPa. Shchyglo et al.77 found that
when the carbon content increased from 0.1% to 0.3%, the yield
strength of lath martensitic low-carbon steel increased by 45.83%,

Fig. 7 The atom probe tomography (APT) results and PF simulation of water-quenched LA147. a Reconstructed APT volume showing Al-
rich zones (blue phase) distributed within the BCC phase (magenta phase) (plotted with 6 at % Al iso-surface). b Time-temperature
transformation diagrams of LA147 and a range of spinodal alloys. c The bottom view of the extracted Al-rich zones in a shows the
characteristic morphology and crystallographic features of a classic spinodal decomposition. d, e Composition maps were generated from the
APT data and PF simulation, respectively. f, g One-dimensional concentration profile of Mg, Li, and Al through the Al-rich zones in d and
e, respectively. h PF simulation of microstructure evolution of Al-rich region64. Figure adapted with permission from ref. 64, CC BY 4.0.
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which can be attributed to displacive martensitic transformation.
However, due to the extremely rapid formation of martensite, it is
almost impossible to experimentally capture the nucleation and
growth of martensite in steel. Therefore, they proposed a martensite
PFM considering 24 K-S variants to reveal the process from
nucleation to final complex microstructure (as shown in Fig. 10),
and clarified the martensite strengthen mechanism.
Additionally, martensite transformation of Ni-Ti-based shape

memory alloys78,79 and the tetragonal to monoclinic transition of
Zr alloys80,81 are also investigated by PFM.

INTEGRATING AND CORRELATING PERFORMANCE MODELS
The aforementioned PFM design scheme is effective by comparing
the morphology and associating the actual process parameters.
How to directly, accurately, and efficiently design high-practical
service performance alloys using PFM is a more urgent issue. Here
we concisely summarize several integrating and correlating ways
and prominent applications: (I) empirical models, (II) machine
learning, (III) advanced algorithms, (IV) coupling with discrete
models of continuum system, (V) integrating with macroscopic
constitutive equations, and(VI) optimizing process parameters.

Empirical models correlating with performance
Introducing microstructure data from extensive experiments or
PF simulations as variables into empirical models can characterize
the microstructure evolution, and obtain mechanical response,
thus improving the efficiency of screening high-performance
materials.

Geometric hardening parameter. The critical stress σc of crack
initiation in mushy zone of Fe-C alloy is related to the geometric
hardening parameter η caused by the interdendritic contact
area82,

σc ¼ η � ½δf sσδ
cþγf sσ

γ
c� (1)

where σδ
c and σγc are the flow stress of δ-phase (Fe-0.11wt.%C) and

γ-phase (Fe-0.60 wt.%C).δf s and γf s are the solid fraction of
δ-phase and γ-phase. From Lee and Kim’s yield criterion for porous
metals83, the geometric hardening parameter η is proposed as the
function of solid fraction84,

η ¼ L
λ
¼ ½f s �

cfs
1� cfs

�
a

at 0< cfs � f s � 1 (2)

where f s; cfs represent the solid fraction and critical solid fraction in
the mushy zone respectively. α is a constant. L and λ are the primary

Fig. 8 Twining/grain boundaries optimization mechanism74. a Schematics of equal volume deformation. b Microstructure under different
processing methods. c Stress-strain curve, (a-e) is the schematic of original grain boundaries (OGB), sub-grain boundaries (SGB), and
recrystallized grain boundaries (RGB), respectively. d High-Resolution-Transmission-Electron-Microscope (HRTEM) image of deformation twin
(DT) and the inverse Fast Fourier transform (IFFT) image of yellow frame area. Copyright Elsevier, 2022.
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arm spacing and contact length in Fig. 11a. Seol et al.84 quantified the
effect of dendrite morphology on mechanical strength of carbon steel
using PFM to calculate the contact ratio (L=λ) in Fig. 11b, found that
strength of a ¼ 1:5 is more consistent with measured data in Fig. 11c.

Comprehensive evaluation function. Based on the microstruc-
ture information obtained from 10 sets of 3D PF simulations
and 40 sets of experiments, taking the phase-fraction, grain-
size, and shape- factor of γ0 precipitate as evaluation indicators,

Fig. 9 Effective thermal conductivity of polycrystalline materials as a function of interface coverage of intergranular gas bubbles and
effective thermal conductivity KG of grains with nano-sized intragranular gas bubbles76. Copyright Elsevier, 2015.

Fig. 10 Simulation vs experiment of martensite in samples containing 0.1, 0.2, and 0.3 wt.% carbon77. a EBSD images. b PF simulations.
c Stress-strain curves. Copyright Elsevier, 2019.
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Ta et al.85 proposed an evaluation function (3) to select the
best composition and heat treatment schedule, and found Ni-
19.36 at.% alloy had the best mechanical properties aging at
973 K for 100000 s. The following linear comprehensive
evaluation function is established by empowering weight w1,
w2 and w3 to different indicators85,

Composite indicator ¼ w1 ´ Phase fractionþ w2 ´Grain size

þw3 ´ Shape factor
(3)

where w1, w2 and w3 are the weight factor of phase volume
fraction, grain size, and geometric shape of γ0 precipitates,
respectively. The evaluation function represents the quality of
alloy performance.

Critical resolved shear stress increment. For shear-resistant pre-
cipitates, dislocations are difficult to cut through, and often bypass
the precipitates by Orowan mechanism, leaving dislocation loops
around the precipitates to block dislocation motion86. The
precipitation behavior of Mg-Re alloy during non-isothermal aging
was studied by PFM, the critical resolved shear stress
(CRSS) increment caused by Orowan loop for spherical and

plate-shaped precipitates was given by Δτs87 and Δτp
88, respectively,

Δτs ¼ μ � Gb
2πM � λr ln

R
r0

� �
(4)

Δτp ¼ Gb

2π
ffiffiffiffiffiffiffiffiffiffiffi
1� ν

p ð0:825
ffiffiffiffiffiffi
dttt
f

q
� 0:393dt � 0:866ttÞ

´ ln
0:866

ffiffiffiffiffiffiffi
dttt

p
b

(5)

where μ is the ratio of CRSS values of the alloys containing random
or regular distributed precipitates, λr is the spacing between
particles that have a regular distribution, G is the shear modulus of
Mg matrix, b Burgers vector of the slip dislocations, M ¼ ð1� νÞ12 is
a constant, ν the Possion’s ratio, R and r0 the outer and inner cut-
off radius of the dislocation. f the volume fractions of β0
precipitates, dt uniform diameter of prismatic plates, tt represents
mean planar thickness of prismatic plates. Using Eq. (5), the
physical parameters of metastable β0 precipitates calculated by
PFM can be used to predict ΔCRSS in Mg-Re alloys88, as shown in
Fig. 12. It was also found that the hardening effect of Mg-Nd alloy
is more significant than that of Mg-Gd alloy with the same volume
fraction of β0 precipitates.

Fig. 11 Effect of dendrite morphology on tensile strength. a The contact ratio L=λ. b Contact ratio L=λ as a function of solid fraction during
solidification of δ and γ phases with various cooling rates. c Critical fracture strength in the mushy zone with different carbon content. Marks
and curves indicate the tensile strength of simulation84 (Copyright Elsevier, 2016). and experiment82, (Figure adapted with permission from
ref. 82, CC BY 4.0.) respectively.

Fig. 12 Prediction of ΔCRSS in Mg-RE alloy88. a 3-D morphology of multi-β0 particles simulated by PFM. b Evolution of CRSS for systems
containing β0 precipitates with different shapes. The volume fraction of β0 precipitates reach equilibrium (4.8%) at about t� ¼ 55; 000Δt.
Copyright Elsevier, 2014.
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Strain rate hardening effect. The unique thermomechanical
properties of shape memory alloys are due to martensitic
transformation induced by temperature or stress, the correlated
stress-strain relation is89,

σijðr; tÞ ¼ δF
δεijðr; tÞ (6)

where σij is the stress tensor, δ the variation operator, F ¼
Fche þ Fel þ Fgrad is the system total free energy, and Fche, Fel and
Fgrad are the chemical free energy, elastic strain energy and
gradient energy, respectively. εij ¼ ð∂ui=∂rj þ ∂uj=∂riÞ=2 is
Cauchy-Lagrange strain tensor, and ui , i ¼ 1; 2 is the displace-
ment in x or y direction90. Using strain and temperature as order
parameters81, the PF approach can be extended to describe
thermomechanical equilibrium process. Ahluwalia et al.91 investi-
gated the dependence of martensitic transformation and stress-
strain response on grain size in nanocrystalline shape memory
alloys, discussed grain size, latent heat effect and loading rate89, as
illustrated in Fig. 13, showing that polycrystalline nanowires, latent
heat, and higher strain rate can induce strain rate hardening
effect.

Integrating with machine learning
The number of microstructural and compositional parameters,
processes, and configurations to combine to invent a new material
is enormous. Compared with traditional physical methods, using
machine learning (ML), we can directly face the required
performance, avoid interwinding in physical and chemical
processes, and efficiently and quickly design new materials or
optimize manufacturing process of existing materials in a cross-
scale manner. The ever-increasing computational resources and
development of advanced ML models such as reinforcement
learning92, Gaussian process regression93, and many other
numerical algorithms make ML-PF modeling a rapidly growing
topic94–97. Its main strategies can be roughly summarized as
follows: (1) generating datasets by PFM to construct neural
networks96,98, (2) using ML technology to build a fast and reliable
surrogate model of PFM99–104, (3) extracting key microstructure
information from PFM to generate image datesets105–107, and (4)
integrating machine-learned functions or parameters (e.g. free
energies, partial differential equations, mobilities) as a
model101,108,109 for PFM. Yet, the size and uncertainty of training

Fig. 13 The stress-strain response in different environments89. The PF simulated microstructure patterns of single crystalline nanowire (a1)
and polycrystalline nanowires with different grain sizes (a2) R∼100 nm and (a3) R∼70 nm. Stress-strain curves of (b) the single crystalline
nanowire and polycrystalline nanowires with different grain sizes at temperature below Tm, (c) the latent heat effect, and (d) grain size R~ 100
nm with different strain rates. Copyright Elsevier, 2018.
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data, the selection of training metrics, and the balancing of
accuracy, interpretability and versatility are still difficult tasks110.
Here, we list several promising examples of accelerating or

innovating metallic systems design via PFM coupled with ML
code, which is a critical knowledge gap and one of the research
directions worth expanding in the future.

From microstructure to performance. Predicting material proper-
ties from their microstructure is an active research field in ML field.
In 2021, Vilalta et al.111 used PF dislocation dynamics simulation

to obtain different stacking fault energy (SFE) distributions of Ni-
Co-Fe-Cr-Mn family HEAs, and input them into the ML model as
learning data to predict the relationship between yield stress and
SFE, with an error of about 2%, as shown in Fig. 14 (b1-b2),
showing that for a given SFE, the yield stress increases slightly in

the size between 1 nm and 4 nm, and the critical yield stress has a
peak between the mean SFE of 40 mJ/m~50 mJ/m.

From performance to microstructure reversely. Reverse design for
specific performances can optimize alloy microstructure or
processing history more efficiently and accurately.
Zhu et al.97 proposed a performance-oriented concentration

modulation approach to achieve the extraordinary mechanical
properties of Ti-Nb shape memory alloys, the computation
framework is shown in Fig. 15. To seek optimal microstructure,
the high-throughput PF simulations, yielding 540 candidates, were
conducted using four microstructure feature variables, namely, Nb
concentration of the matrix (MNb) and nanofillers (FNb), volume
fraction of nanofillers (VF ), and the number of nanofillers (NF ). The
perfect combination with ultralow modulus (El ¼ 16:05MPa),

Fig. 14 Example of phase-field coupling machine learning111. (a1, a2) Two examples of the random stacking fault landscape simulated by
PFM. (b1, b2) Gaussian Process Regression (GPR) prediction of yield stress as a function of region sizes and SFE. Copyright American Society of
Mechanical Engineers (ASME), 2021.

Fig. 15 Computational framework for the design of the Ti-Nb nanocomposite. a Crystal structure of (a1) BCC parent and (a2) martensitic
(orthorhombic) phase. b Square-array distributed Nb-lean nanofillers in the Ti-Nb nanocomposite and loading-unloading condition and
profile. c High-throughput PF simulation framework for the Ti-Nb nanocomposite. Details in ref. 97. Figure adapted with permission from ref. 97,
CC BY 4.0.
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quasi-linear elasticity (σL ¼ 468:40MPa), and near zero stress-
strain hysteresis is screened by coupling ML, i.e., MNb ¼ 18:4%,
VF ¼ 25%, FNb ¼ 7:2%, NF ¼ 16.

Some machine learning techniques accelerating PF simulation.
With the ever-increasing computing resources and development
of advanced machine learning algorithms, the strategy of
“machine learning-phase field method” has an extremely broad
application prospect112. So far, this strategy mainly focuses on the
identification of microstructure evolution diagrams and acceler-
ates the solution of partial differential equations (Allen-Cahn and
Cahn-Hilliard equations). Deep Neural Network (DNN) including
Convolutional Neural Network (CNN) and Recurrent Neural Net-
work (RNN) has paved the way for identification of microstructure
evolution diagrams. Notably, such RNN or its subclass of Long-
Short Term Memory (LSTM) has been proved to be successful in
rapidly predicting the time evolution of the microstructure. On the
other hand, Physics-Informed Neural Network (PINN) and Deep
Operator Network (DeepONet), as the general neural network
framework of the dynamic system governed by the free energy
functional gradient flow, provide a promising method for the
efficient solution of partial differential equations coupled physical
field information.
RNN and LSTM: RNN can preserve past information and handle

temporal dependencies, i.e., the history of microstructure evolu-
tion113. In this way, phase-field simulations can be redefined as
multivariable time-series problem99,113,114. In order to overcome
the shortcoming of vanishing or exploding gradients that often
exist when using RNN, LSTM is proposed as a subclass of RNN,
which has better accuracy and long-term predictability, also can
predict next frame. Compared with the original phase-field
simulation, the accelerated phase-field framework with LSTM
can not only maintain the same accuracy, but also accelerate the
prediction speed at least three orders of magnitude113. Figure 16
is a schematic diagram of multilayer perceptron (MLP) and
convolutional neural network and long short-term memory (CNN-
LSTM) architecture for discovering partial differential equations
(PDEs) with spatial derivatives dictionary. Relevant researches
continue to emerge, including brittle fracture115,116, spinodal

decomposition99, single dendrite growth116 and polycrystalline
grain formation117, etc.
DeepONet and FNO: In 2019, Brown University proposed a

DeepONet that uses operators to solve partial differential
equations (PDEs), which is unique in that it has two parts: branch
and trunk. Some operators are generated by branch network
learning to approximate the input data, while the trunk network is
responsible for the output data. Finally, the data from the two
networks are introduced into DeepONet to solve the PDEs.
DeepONet is one of the possible ways to learn phase-field-free
energy functional solution operators from the labeled input-
output datasets in high-dimensional systems (e.g., multiple
phases, scales, and physical fields). This architecture is capable
of learning the mapping of field variable distribution from the
current time step to the next time step118. According to statistics,
compared with traditional high-fidelity phase-field simulation, the
framework integrating a convolutional autoencoder architecture
with a DeepONet would save 135 minutes for each evolution.
DeepONet has been applied to research crack path in quasi-brittle
materials119 and spinodal decomposition of a two phase
mixture120, etc.
Another simpler architecture called “Fourier neural operator

(FNO)” developed by California Institute of Technology can
dramatically speed up the solution of PDE by using many Fourier
layers. In an example of solving Navier-Stocks (N-S) equation,
30,000 simulations are needed, FNO solution time is less than one
second, and DeepONet takes 2.5 seconds, while the traditional
solver takes 18 hours121. Then, they presented an enhanced
Fourier neural operator, named U-FNO, that combines the
advantages of FNO-based and CNN-based models to provide
results for PDEs that are both highly accurate and data efficient122.
Now, FNO and U-FNO have been successfully used to solve N-S
equations of single-phase or multiphase flows. Therefore, it is very
promising to use DeepONet or FNO/U-FNO architecture to solve
the Allen-Cahn or/and Cahn-Hilliard equations of PFM.
Genetic algorithms: Genetic algorithm is a random search

method, which can converge to a global minimum value of the
objective function123. Using genetic algorithms to solve optimiza-
tion problems includes problem coding, generation of initial

Fig. 16 Schematic of the general steps in the discovery of PDEs with spatial derivatives dictionary109. 2022. a A MLP architecture and b A
CNN-LSTM for learning coarse-scale PDEs. Copyright American Physical Society.
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population, fitness computation, selection, crossover, and muta-
tion, etc. In recent computational studies, Sugathan et al.124

introduced the effective Landau coefficients that are optimized by
genetic algorithms to phase-field free energy equations for
ferroelectric switching characteristics. The simulation results
showed introducing a lower ferroelectric phase fraction, more
crystal structure, and more columnar grain was preferable for
ferroelectric applications.
Desai et al.125 discovered novel, time-dependent protocols with

time-varying deposition rate and mobility using genetic algorithm.
Coupling with PFM, the targeted microstructures can be obtained,
such as the lateral concentration modulation with lower deposition
rate and higher deposition time, the vertical concentration modula-
tion with high deposition rate, and hierarchical concentration
modulation falling in the middle, the workflow is shown in Fig. 17.

Advanced numerical schemes for high calculation efficiency
PFM is relatively slow to explore large composition-processing-
microstructure-properties space. In addition to the above machine

learning methods, the phase-field community has also been
exploring a variety of novel algorithmic solutions to speed up and
accelerate phase-field simulations.

Adaptive mesh refinement. Adaptive mesh refinement (AMR) is an
effective tool for numerically solving partial differential equations
in arbitrarily shaped and complex regions. By automatically
changing the mesh size according to specific needs of different
regions126, the number of meshes is reduced to save computing
time. Besides, AMR is often used to extend the simulation length
equivalent to actual experimental scale, without disturbing
resolution on thin interfaces. For instance, the PF models of
solidification and fracture are typical representatives, but with
some difficulties in implementation and programming.
When AMR is used for dendrite growth during solidification,

especially with thermal diffusion127, gas porosity128, melt convec-
tion129, the fine meshes are dynamically employed in interface
region, while coarse meshes are in elsewhere. Figure 18 gives two
examples of dendritic growth simulated by PFM with AMR.

Fig. 18 Dendrites simulation by PFM with AMR. (a1) Single dendrite, and (a2) polycrystalline dendritic growth126, from top to bottom,
correspond to 6.4 ms (916 K), 12.8 ms (913 K), and 19.1 ms (910 K), respectively. Copyright Elsevier, 2021. b Gas porosity128 in ten dendrites and
hydrogen bubbles without flow (b1) and with flow (b2) in 2D, (b3) five dendrites and hydrogen bubbles in 3D; (b4) Solid fraction versus time.
Copyright Elsevier, 2017.

Fig. 17 Coupling of genetic algorithm with phase-field alloy deposition model125. Copyright Elsevier, 2022.
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Fig. 19 Crack propagation in a 3D polycrystalline structure131. a 3D polycrystalline structure with 150 grains. b Adaptive mesh refinement at
displacement step u ¼ 7:0 ´ 10�3 mm. c The force–displacement curve. The crack surfaces at different propagation stages: d
u ¼ 4:0 ´ 10�3 mm, e u ¼ 6:2 ´ 10�3 mm, f u ¼ 6:6 ´ 10�3 mm, and g u ¼ 7:0 ´ 10�3mm. Copyright Elsevier, 2020.

Fig. 20 Typical cases of phase-field simulation with heterogeneous parallel platform for high performance computing. a, b Dendrite
groeth144 (Figure adapted with permission from ref. 144, CC BY 4.0.) and c Morphology of eutectic with and without fluid flow141. Copyright
Elsevier, 2020.
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Compared with the uniform mesh, the calculation efficiency is
improved by 1-2 orders of magnitude126.
Generally, the mesh unit size near crack tip needs to be less

than half of the length scale in phase-field fracture model. AMR-PF
strategy has been used to simulate crack initiation and propaga-
tion130,131, brittle fracture132,133, ductile fracture134, etc. An
example of AMR-PF simulation of crack propagation in polycrystals
is shown in Fig. 19, and the computational time is 2.2 times faster
than that known135.

GPU technique. The parallel GPU (Graphics Processing Unit) is a
popular tool for large-scale and high-performance computing
owing to the massive computation and high memory band-
width136. Computation with GPU is about 36 times faster than that
with a single Central Processing Unit (CPU) core137.
The heterogeneous parallel platform, composed of different

architectures such as Compute Unified Device Architecture
(CUDA), Open Computing Language (OpenCL), and combined
with parallel programming methods such as MPI-Message Passing
Interface or OpenMP- Open Multi Processing, is an effective means
for overcoming the shortcomings of large amount of calculation,
small simulation scale, and usually limited to qualitative research.
For example, GPU+CUDA or MPI+CUDA+GPU for calculating 3D

Fig. 21 Typical numerical discrete methods of PF equations. For
example, FEM, FDM, FFT, LBM, FVM, etc.

Fig. 22 Outline of the process-structure-performance relationship145. a Output from the grain growth by PFM at timestep 0, 100, 200, 500,
and 1000 in IN100 alloy, the grains number reduced from 3165 to 790 over 1000 timesteps. b Simulated stress-strain response for 0, 500 and
1000 timesteps, representing grain size effects. Copyright Elsevier, 2012.

Fig. 23 Flow chart of the integrated CPFE-PF approach146. Copyright Elsevier, 2020.
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dendritic growth138,139, OpenCL + GPU for eutectic growth140,141

and eutectoid growth142, MPI + OpenCL +GPU for dendrite
growth143, MPI +OpenMP for algal and dendritic growth144.
Figure 20 lists two examples using a heterogeneous parallel

platform. MPI +OpenMP hybrid parallel programming is faster
than that using only MPI parallel method to simulate dendrite
growth, as shown in Fig. 20a, b. Compared with CPU serial
program, the computational efficiency for simulating eutectic

growth based on GPU has increased by two orders of magnitude,
as shown in Fig. 20c. However, the calculation time of small-scale
simulation may be longer, because it takes extra time to create
and release parallel domains and data transmission.
So, traditional accelerated algorithms (AMR, GPU, etc.), and

machine learning technologies (RNN, CNN-LSTM, DeepONet, etc.)
are all necessary for accelerating phase-field simulation to design
high-performance alloys.

Fig. 24 A complete closed loop from microstructure prediction by PFM to mechanical performance evaluation by CPFEM147. a Volume
fraction of each variant with tension stresses of 50 MPa along ½�111�β. b The cross-section of the variant cluster. c Elastic interaction energy of
50 MPa tension stress along ½�111�β. d Schematic of applied stress. e True stress-strain curves. f, g Mises stress distribution after 20% tension
and compression. Copyright Elsevier, 2020.

Fig. 25 Effect of mismatch strain on creep behavior150. The internal misfit stresses for (a) negative mismatch δ ¼ �0:005 and (b) positive
mismatch δ ¼ 0:005. c Plastic strains change with simulation time. Copyright Elsevier, 2018.

Y. Zhao

16

npj Computational Materials (2023)    94 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



Coupling with discrete models of continuum system
Using numerical discrete models of macro or micro continuum
materials, including finite element model (FEM), finite difference
model (FDM), finite volume model (FVM) and fast Fourier
transformation (FFT) spectral method, etc, to connect the
microstructure characteristics of micro areas with mechanical
properties of the same macro continuum through thermodynamic
parameters, is a promising approach for “virtual machining” and
“virtual design” of novel metallic materials. It should be pointed
out that in some published literature, FEM is unilaterally defined as
a physical modeling method applicable to macro systems, which
is not appropriate, because FEM is really a numerical discrete
technique for continuum media consisting of elements with no
physical meaning. Only when coupled with various constitutive or
physical equations can it have corresponding physical definitions.
As shown in Fig. 21, like FDM, FEM can be used to discretize and
solve the phase-field equations on micro scale, that is, the micro
phase-field equations can be numerically solved by FEM, FDM,
FVM, LBM or FFT, etc. Hence, FEM is really a discrete method,
which can be used in any continuum system on any spatial scale,
including micro and macro scales.
The grain size is often used to bridge the PFM describing

process-microstructure relation and the crystal plasticity (CP) FE
model describing microstructure-property relation, and a process-

structure-performance relationship is built145, as shown in Fig. 22.
The grain growth process and grain size distribution of IN100 alloy
annealed at 650 °C obtained from PF simulation are input into the
CPFE model to analyze the influence of precipitate size and
volume fraction with different annealing time on mechanical
properties of the alloy.
Min et al.146 developed a CPFE model coupled phase-field

(CPFE-PF) model to predict the relationship among thermo-
mechanical process, microstructure evolution, and mechanical
properties of ultra-low carbon steel, the flow chart is shown in
Fig. 23. The state variables including grain size, orientation and
stored energy are transferred between the models, then the CPFE-
PF model for rolling deformation of ultra-low carbon steel was
verified experimentally, showing that the computing model was
consistent with the experiment when appropriate number of
grains were contained.
Using a similar CPFE-PF framework, a closed loop from

microstructure prediction to corresponding mechanical perfor-
mance evaluation of αþ β titanium alloys was established147

(Fig. 24). PFM was used to investigate the variant selection of α
precipitate in Ti-6Al-4V alloy under specifically applied stresses,
and the mechanical properties of typical microstructures under
fatigue stress, normal stress, and shear stress were evaluated by
using CPFE model. It was found that the micro-texture formed
under shear deformation brings the alloy higher strength.

Fig. 26 The creep behavior of single crystal Nickel-based superalloys153. a Microstructure of εmis ¼ �0:003 at the first PF time step, (a1) γ=γ0
microstructure, (a2) long range stress, (b1, b2) excess dislocation density in slip system 1 and 2, (c1, c2) statistical stored dislocation density in
slip system 1 and 2, (d1, d2) plastic slip in slip system 1 and 2. Plastic strain with (b) different γ=γ0 misfits, (c) γ0 edge length, and (d) γ0 volume
fractions. Copyright Elsevier, 2018.
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Integrating constitutive relations
In fact, in previous sections of this review, when elastic strain
energy or plastic deformation energy is added to the free energy
in Cahn-Hillard equation or Alen-Cahn equation, or when PFM is
combined with crystal plasticity (CP) theory, PFM already has been
coupled with constitutive equation of the material. So, here we
just list several common constitutive equations combined with PF
model, including elastic (E), elastic-plastic (EP), visco-plastic (VP),
rigid-plastic (RP), visco-elastic (VE), and elastic visco-plastic (EVP)
models, see Supplementary Note II for details.
The EP-dislocation dynamics models (DDM) include discrete

dislocation dynamics (DDD) for dislocation line148 and continuous
dislocation dynamics (CDD) for dislocation density. Gao et al. used
DDD to discuss the relation between creep properties and
microstructure, including volume fraction149, morphology result-
ing from misfit stresses150, and crystallographic orientation151 of γ0
phase, and found that the best deformation performance was due
to narrow and homogeneous γ matrix channels, and small positive
lattice mismatch between γ and γ0 phase as shown in Fig. 25.
However, this model is limited to the dislocation motion in static
precipitates.
To describe the co-evolution of both precipitate and dislocation

during the whole creep stage, Wu et al. used the coupling method
of EP-CDD and PFM in single crystal superalloys152–154. They found
that in the initial creep stage, the primary γ=γ0 microstructure, i.e.,
smaller γ=γ0misfit, larger γ0 size, and higher γ0 volume fraction, can
result in better creep resistance3, as shown in Fig. 26. Furthermore,
another coupling model of PF and CDD based on plasticity and
damage is also established to solve the “swallow-gap” problem in
early creep stage and the “dislocation not cutting” problem at

tertiary creep stage154, showing that the increase of dislocation
and creep strain in the early and third creep stages are due to the
multiplication of dislocation in γ channels and the dislocation
cutting into γ0 precipitates respectively.
The visco-plasticity (VP) constitutive relation was added into

PFM to study the mechanical properties, rafting behavior155 and
the whole creep stage156,157 of Ni-based superalloys. Yu et al.158

developed VP-PF model based on classical flow theory, crystal
plasticity, and creep theory to reveal the yield characteristics,
rafting behavior, and creep resistance, as shown in Fig. 27. They
found that the yield stress was inversely proportional to the width
of γ matrix channel resulting from the active slip system shearing
into γ′ precipitates, and stable raft structures could improve the
creep resistance of superalloys.
Also combining CP analysis and PFM, Liu et al.159 developed

EVP-PF model to investigate the process-structure-property
relationship of Ti-6Al-4V alloy in additive manufacturing process,
Fig. 28 illustrated some directly relative parameters or variables
required to be transferred between different models, showing that
equiaxed β-grains and fine α-lath microstructure contribute to
high tensile strength.

Optimizing process parameters for high-performance
The optimum composition and processing schedule for the best
mechanical properties of alloys can be designed by selecting key
factors as evaluation indicators and combining microstructure
information obtained from PF simulation and experiment.
Rahnama et al.160 proposed that the strength change of Fe-

15Mn-10Al-0.8C-5Ni and Fe-15Mn-10Al-0.8C (wt.%) light steels

Fig. 27 The yield characteristics and creep resistance of Ni-based superalloys simulated by PFM158. a Simulation of tensile for γ′/γ
microstructure with different matrix channel widths. b Simulation of creep with one γ′ variant. c, d Plastic strain fields from PF simulation.
Copyright Elsevier, 2018.
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is closely related to the annealing temperature and the
morphology of ordered phases. As shown in Fig. 29, the
morphology of B2 intermetallics in Fe-Al and Fe-Al-Ni systems
and the morphology of κ-carbides in Fe-Mn-Al-C system at
different annealing temperatures (500 °C, 700 °C, 900 °C,
1050 °C) were simulated by PFM, it was found that the addition
of Ni led to the ordering of α phase and the transformation to a
stringer B2 precipitate, preventing the formation of αþ κ
lamellar structure. At 500 ° C and 700 °C, the mechanical
properties of the alloy were not improved. When annealed at
900 °C and 1050 °C, B2 precipitates changed from faceted
shape to disk-like shape, and due to the Ni-Al bond being
much stronger than the Fe-Al bond, the alloy shows higher
strength (~980 MPa) and lower plasticity (~10%).

Another example, combined with the microstructure simulated
by PFM and the sensitivity analysis of actual process parameters,
an optimized forging processing window with fine grains was
obtained in AZ80 alloy161–163, which can be applied to guide the
multi-step variable speed process in isothermal forging, as shown
in Fig. 30, they produced AZ80 alloy parts of high rib and thin web
with an average grain size of 9 μm and a grain refinement degree
of 77.5%, the maximum yield strength and tensile strength are 268
MPa and 342 MPa respectively.
Geng et al.164–167 combined the macro CFD model of heat

transfer and fluid flow with the micro-PFM for polycrystalline alloy
solidification, to investigate the grain/sub-grain evolution during
laser welding solidification of 5083 Al sheets, as shown in Fig. 31.
Their PF simulation includes two contributions. (i) Select

Fig. 28 Schematic of the proposed computational framework to investigate the process-microstructure-property relationship of additive
manufacturing- fabricated metallic material159. Some directly relative parameters/variables that are required to be transferred between
different models are listed, including high-temperature field T , beam power P, scanning speed v, hatching space hs, layer thickness tl , cooling
rate, the volume fraction of α-phase Vf , α-lath thickness tα and lamellar αþ β microstructure and so on. Copyright Elsevier, 2020.

Fig. 29 Design idea in ref. 160. a PFM coupled with thermodynamics and dynamics. b Heat treatment process. c The ordered phase
morphology. Copyright Elsevier, 2017.
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reasonable welding process parameters. High power matching
high welding speed (power should not exceed 3000 W, speed
should not exceed 120 mm/s) can reduce columnar crystals and
refine dendrite structure. (ii) Increasing nucleation density can
significantly refine grains in heterogeneous nucleation. Adding an
appropriate amount of Ti (~1.7 wt.%) to the weld can reduce the
width of columnar crystal zone and secondary dendrite spacing.
The tensile strength of the joint with the above two optimization
methods was increased from 303 MPa to 313 MPa and 320 MPa,
respectively167.

CONCLUSION REMARKS AND PROSPECTS
The versatility and easy implementation of PFM make it play an
increasingly central role in finding and designing innovative
metallic materials, this short review focuses on deciphering the
core ideas and some typical applications of PFM in guiding the
design of high-performance alloys. Obviously, its applications are
far broader than metallic materials, such as ferroelectric/ferro-
magnetic materials168,169, nanometer singular materials (gra-
phene170, metallic glass171, liquid crystal172, and aerogel173),
biomedical174, polymer175 and so on. As a matter of fact, it has
been extensively applied to predict the microstructure and
performance of almost all existing material processes, including
melting and solidification, casting, aging, heat treatment, solid
phase transformation, forging, welding, creep, deformation, defect
evolution, corrosion, irradiation, additive manufacturing, sintering,
and fracture failure, etc.
The design strategy of innovative materials with outstanding

performance through PF simulation can be roughly divided into
three stages. The first stage is to achieve cross-validation of PF
simulation and experiment by comparing microstructure mor-
phology. The second stage is to introduce the relationship
between microstructure and macro performance into PFM. The
third stage is to optimize the process parameters, screen out the
best microstructure, and ultimately guide the design of high-
performance alloy through PFM integrated with various comput-
ing and experimental and machine learning methods. At any
stage, the goal of integrated PFM simulation is to design high-

performance materials and optimize their manufacturing pro-
cesses accurately, efficiently, energy-saving and economically.
To this end, several upgrading strategies are proposed here, but

not limited to these, to achieve the perfect cohesion and
implementation of the above different stages and ultimate goals.

● It is necessary to establish a multi-level unified PFM, which
takes the conserved or non-conserved field variables with
multiple physical meanings as the multiscale order para-
meters, combines thermodynamic conditions, dynamic pro-
cesses and free energy function modeling theory, and can
fully consider various internal and external processes of
multicomponent, multiphase and polycrystalline systems.

● Strengthen the integration of multi-scale computing methods
and experiments, that is, combine the first principles,
molecular dynamics, cellular automata, crystal plasticity
theory, flow fluid mechanics, machine learning, experiment,
and other methods to transfer multi-directional data, which is
helpful to achieve the convert and intersection of materials
and process design information at different spatial and
temporal scales.

● It is necessary to further establish a variety of fast numerical
algorithms and reliable large-scale Message Passing Interface
(MPI) parallel computing technologies for PF equations based
on FEM, FFT, FVM, FDM, LBM, etc., and it is also urgent to
combine various macro process optimization technologies or
industrial software packages to accelerate the prediction,
design, optimization and production of high-performance
alloys and actual components.

FUNDAMENTAL THEORY OF PHASE-FIELD MODEL
The comprehensive reviews of PFM were first published in the
Annual Review of Materials Research by Chen176 and Karma177 in
2002. Since then, many review articles of PFM with different
emphasis36,38,178–181 have emerged.
In PFM, two types of field variables that are continuous across

the interface are used to describe the microstructure evolution.
Conserved field variables are related to density quantities, such as
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Fig. 30 PF simulation helps optimize forging process161,163. (a1) and (a2) The grain microstructures obtained from experiments and PF
modeling for discontinuous dynamic recrystallization (DDRX), (a3) Linear relationship between stresses ln σ and lnZ, (b) PF-DDRX model
framework, (c1) Predicted grain microstructures at different strains, and (c2) Mechanical performance response. Copyright Elsevier, 2020.
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local concentration, atomic occupation probability, or atom
average density, etc., the governing equation is given by Cahn-
Hilliard equation182,

∂ciðr; tÞ
∂t

¼ ∇Mij∇
δF

δcjðr; tÞ ; i; j ¼ 1; 2; � � � ; n (7)

where F is the total free energy of the system, c1; c2; � � � cnðr; tÞ are
the conserved field variable which is continuous at spatial
coordinate r and time t, ∇ is Hamiltonian operator, Mij is the
atomic mobility between components i and j, δF

δcjðr;tÞ denotes the
thermodynamic driving force.
The evolution of non-conserved field variables related to

structural symmetric parameters, such as long-range order
parameter, elastic or plastic strain, polarization, structural variant,
etc., is controlled by Allen-Cahn equation183,

∂ηαðr; tÞ
∂t

¼ �Lαβ
∂F

∂ηβðr; tÞ
; α; β ¼ 1; 2; � � � ;p (8)

where η1; η2; � � � ηpðr; tÞ are non-conserved field variables, Lαβ
denotes the structural relaxation coefficient, Mij and are Lαβ can be
determined by thermodynamic and diffusion kinetic databases47.
The free energy function generally includes the following,

F ¼
Z

Γ

½f loc þ f grad þ f add�dV (9)

where the local free energy density f loc is a function of various
field variables, i.e., composition ci , long-range ordered parameters
ηi , polarization pi , magnetization mi , strain εij , etc. The quantitative
models for real alloys require careful identification of parameters
and constitutive relations from thermodynamic databases, CAL-
PHAD, experiments, or other computational methods.
The gradient energy term describes the energy contribution at

interface or domain,

f grad ¼
XN
j

κi
2
j∇ci j2 þ

XM
j

κj
2
j∇ηjj2 (10)

Fig. 31 Schematic of the multi-scale model for simulating grain/sub-grain structure during solidification in the laser molten pool190.
a The macro-scale 3D heat transfer and fluid flow model. b The relationship between 3D macro-scale model and 2D micro-scale PF model.
c The 2D micro-scale PF model. Copyright Elsevier, 2019.
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where κi and κj are the gradient coefficient, which can affect the
interface width and interface energy. N and M are the number of
conserved and non-conserved field variables respectively.
f add is additional energy including elastic strain energy, plastic

deformation energy, magnetic energy, or electrical energy, etc.
The competition between the contributions of these different
physical phenomena to the total energy quickly and efficiently
outlines the colorful microstructure morphology, making up for
the lack of experimental measures that are difficult to dynamically
capture information from nano to mesoscopic scales.
Recently, from the perspective of various order parameters,

coupling of multi-physical fields and integration with some advanced
algorithms or machine learning methods, the integrated phase-field
method (IPFM)184 can be included in the framework of materials
genome initiative (MGI) and integrated computational materials
engineering (ICME), which is more conductive to better application of
phase-field method in more engineering materials design.
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