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An interpretable deep learning approach for designing
nanoporous silicon nitride membranes with tunable
mechanical properties
Ali K. Shargh 1 and Niaz Abdolrahim 1,2,3✉

The high permeability and strong selectivity of nanoporous silicon nitride (NPN) membranes make them attractive in a broad range
of applications. Despite their growing use, the strength of NPN membranes needs to be improved for further extending their
biomedical applications. In this work, we implement a deep learning framework to design NPN membranes with improved or
prescribed strength values. We examine the predictions of our framework using physics-based simulations. Our results confirm that
the proposed framework is not only able to predict the strength of NPN membranes with a wide range of microstructures, but also
can design NPN membranes with prescribed or improved strength. Our simulations further demonstrate that the microstructural
heterogeneity that our framework suggests for the optimized design, lowers the stress concentration around the pores and leads to
the strength improvement of NPN membranes as compared to conventional membranes with homogenous microstructures.
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INTRODUCTION
Nanoporous silicon nitride (NPN) membranes are freestanding
ultrathin films that offer outstanding combination of high
permeability and strong selectivity based on molecular size or
charge1–3. Such properties make NPN membranes attractive in a
broad range of applications including rapid detection of intact
SARS-CoV-2, biological separations, DNA translocation, and
miniaturization of hemodialysis4–6. Despite their growing use, it
is well-established that for practical application of NPN mem-
branes in some of the fields, their mechanical properties must be
carefully tuned. For instance, high strength is needed for
successful application of NPN membranes in wearable hemodia-
lysis devices, while enhanced deformability is desired for high-
throughput applications. The mechanical properties of NPN
membranes are highly dependent on their microstructure. As a
result, the first step in designing NPN membranes with desired
mechanical properties is to understand the relationships between
the microstructural descriptors of the NPN membranes such as:
pore shape, pore pattern, and pore density with their mechanical
properties. In practice, it is excessively easier to conduct such
forward design approach through physics-based simulations
including molecular dynamics (MD) or finite element (FE)
simulations in comparison with the experiments7–12. In our earlier
works13–15, we used MD simulations to investigate the mechanical
behavior of NPN membranes with different microstructures. We
revealed that the deformability of the NPN membranes can be
significantly improved using hexagonal pore patterns with same-
size circular pores. Our simulations further demonstrated that the
amorphous microstructure provides better opportunity for tuning
the deformability as compared to crystalline microstructure, and
the strength of NPN membranes could be mildly tuned via
changing the porosity or pore separation ratio. The possibility of
improving the deformability or controlling the strength of NPN
membranes by tuning their microstructure is promising and
provides insightful guidelines for production of the future

generation of NPN membranes. It can also provide a physics-
based guideline for tuning the performance of other 2D
membranes upon imposing complementary modifications. In this
paper, our objective is to design NPN membranes with improved
or prescribed strength values. In comparison with our earlier
designs13–15, our new designs will better resemble the micro-
structure of experimental NPN membranes. We should note that
although one clear path to increase the strength of NPN
membrane is to simply decrease their porosity, our focus is to
increase their strength at a fixed porosity. The reason behind is
that the permeability of NPN membranes decreases with the
decrease of porosity1 which is not often favorable in the
biomedical filtration applications.
The microstructure of an experimental NPN sample under

scanning electron microscope (SEM) is shown in Fig. 1. As is clear
from the figure, the pores in the microstructure of NPN
membranes are mostly elliptical with different morphologies (size,
aspect ratio, and orientation) and pore density is dissimilar at
different regions.
As a result, in this work we aim to consider elliptical pores with

different morphologies (size, aspect ratio, and orientation) as well
as dissimilar pore density at different regions in our design
process. It is shown that mechanical properties of other
nanoporous materials such as graphene and hexanitrostilbene
are dependent on morphological properties including pore aspect
ratio, orientation etc.16–18. This implies that those morphological
parameters possibly play a role in determining the mechanical
behavior of NPN membranes as well. Nevertheless, including all
those morphological parameters into the design process of the
NPN membranes with desired mechanical properties requires
many simulations. This is prohibitively challenging due to the
intensive computational time and resources needed to deal with
the sophisticated combination of various microstructural
parameters.
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Machine learning (ML) models are alternative promising tools
that can explore the design space in a significantly faster pace in
comparison with performing massive number of MD simulations
to conduct the forward design approach. Different ML modes such
as: support vector machine (SVM)19, random forest20,21, convolu-
tional neural network (CNN)22–26, multi-layer perceptron (MLP)
neural network27, attention-based transformer neural network28

and graph-based neural networks29 are adopted as surrogate
forward models to relate the microstructures or microstructural
features into mechanical properties in many applications. For
instance, Yang et al.22 combined principal component analysis
(PCA) and CNN to predict the stress-strain behavior of binary
composites up to the failure point. In a different study, Liu et al.27

trained several models including a MLP neural network model
based on the results of MD simulations to predict the Young’s
modulus and tensile strength of graphene-reinforced nanocom-
posites. Based on the results of their well-trained model, the
authors further modified the micromechanics-based Halpin-Tsai
model30 which is a widely used model for predicting the elastic
modulus of graphene-reinforced nanocomposites. Most recently,
Yang and Buehler31,32 used graph neural networks (GNN) to
predict global properties as well as local behaviors of porous
graphene membranes such as atomic stress, and further designed
de novo atomic structures with optimum global properties.
Autoencoder (AE), variational autoencoder (VAE), generative

adversarial network (GAN), and conditional generative adversarial
neural network (cGAN) are another types of ML models that are
widely used to design materials33–39. For instance, Mao et al.35

used GAN to design architectured materials with elastic stiffness
corresponding to the Hashin-Shtrikman upper bounds for a range
of porosities. In another study, Shen and Buehler38 used StyleGAN
combined with genetic algorithm to design architected materials
with optimized effective modulus. Importantly, the performance
of these generative models in designing materials with mechan-
ical properties that are close to the properties of the training
dataset is promising40. However, it is more desirable to design
materials with maximum possible mechanical properties wherein
those values are oftentimes outside of the range of the
mechanical properties of the training dataset. In this case, further
modifications are often needed so that those models can design
materials with improved properties that are outside of the range
of the properties of the training dataset35–41. Examples of such
modifications include considering a large enough training dataset
that covers the entire design space, or gradually augmenting the

small initial training dataset to the region that contains the
optimal design while retraining the network simultaneously.
In this work, we implement a deep learning framework that

combines GAN and CNN to design NPN membranes with
improved or prescribed strength values. In the new designs of
NPN membranes, all the pores are elliptical with different
morphologies (size, aspect ratio, and orientation) and the pore
density is dissimilar at different regions. The NPN membrane with
improved strength is called ‘optimized design’ through the rest of
this paper. The reason for combining the GAN and CNN in this
work is that the GAN component can generate many NPN
membranes in an efficient manner and thus accelerates the
sampling of the excessively large design space while the CNN
component acts as the surrogate model that can quickly evaluate
the strength of the membranes. As a result, the CNN component
of our framework guides the GAN component to design NPN
membranes with our desired strength. It should be noted that the
combined GAN-CNN framework was used in several earlier works
for property optimization or image diagnostics33,41–47. In compar-
ison to earlier works that used GAN-CNN framework, we further
add a physics-based interpretation step in the current work which
helps to justify the output of our machine learning model based
on physics-based simulations. Furthermore, our dataset genera-
tion framework can quickly generate many labeled datapoints
resembling most of the features of NPN experimental samples,
and can be applied easily to investigate other problems in
materials science community. As for the training process, we
prepare a large dataset of NPN membranes and label them with
strength using FE simulation which is computationally more
efficient and robust in labeling large dataset as compared to MD
simulations. We then train the two components of our deep
learning framework based on the labeled dataset wherein the
CNN learns to predict the strength of the input NPN image, while
the generator of the GAN learns to create generated NPN images
from an input random noise vector. Once trained successfully, we
use our deep learning framework to design NPN membranes with
improved or prescribed strength values. In addition, we compare
the strength of the optimized design of the NPN membrane with
the strength of common pore patterns such as: cubic and
hexagonal pattern. In final, we cross-validate the outcome of our
framework by comparing the stress-strain curve of the optimized
design with those common pore patterns using MD simulations.
The remaining parts of the paper are organized as follows: The

results of our framework including the training process, the
designs corresponding with improved or prescribed strength
values, as well as the comparison of the optimized design with
common pore patterns are discussed in the results section. The
discussion section summarizes the work with key conclusions.
Finally, the methods section discusses the details of the deep
learning framework including the data generation and labeling as
well as the setups of our FE and MD simulations.

RESULTS
Validation of framework accuracy
As it is discussed in the methods section, the two components of
our deep learning framework were to be first trained separately
before evaluating the performance of our deep learning frame-
work in designing NPN membranes with improved or prescribed
strength values. In the first step, we train the CNN component of
our deep learning framework on the training dataset for several
epochs with batch size of 64 while its performance is evaluated on
the validation dataset as is explained in the methods section. The
learning curve of the training process for 50 epochs is shown in
Fig. 2(a). From the figure, it is seen that the loss value of the
training dataset defined based on the mean square error (MSE)
drops in the first 15 epochs after which it reaches a plateau.

Fig. 1 SEM image of the microstructure of NPN sample. Porosity
and average pore diameter of the sample are calculated as
φ= 11.7% and D= 44.82 nm respectively, and the image was
presented in our earlier work13.
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Interestingly, the loss value of the validation dataset shows a
similar trend with a minimum value at epoch of 13. The early
stopping technique48,49 is used to verify that the CNN component
starts to over-fit during the training process beyond epoch of 13.
Our analysis confirms that epoch of 13 is the first epoch wherein
the value of the model’s loss on the validation dataset does not
improve for ten epochs. This indicates that the CNN has possibly
learned the salient features of the labeled NPN images during the
training process at this epoch. To better quantify the performance
of the CNN component at this epoch, ground-truth strength
values of the testing dataset obtained from FE simulations are
plotted versus the predicted strength values obtained from the
CNN network in Fig. 2(b) as the ‘parity plot’. From the figure, it is
seen that the CNN predicts the strength of the NPN membranes
with good accuracy as most of the points lie very close to the
diagonal y= x line. This indicates that the CNN component has
successfully learned the salient features of labeled NPN images
during the training process. It is notable that the values of R2, MSE,
as well as average relative error for the testing dataset are
calculated as 0.8201, 0.0049 and 0.0539 respectively. Nevertheless,
one should note that while the overall performance of the CNN is
encouraging, the accuracy drops for those data points with high
strength values (σs > 1 GPa) which is clear from Fig. 2(b). Such a
drop could be justified based on the strength distribution of the
labeled NPN images of the initial dataset. As is clear from Fig. 9(c)
in the methods section, the strength distribution is not completely
balanced wherein only few of the NPN membranes possess
strength values greater than 1 GPa. This implies that the CNN
component receives few datasets with high strength value during
the training process. Therefore, the CNN learns the salient features
of the labeled NPN images with low strength values better than
the ones with high strength. It is worthwhile to note that the
number of the convolution layers, depth of the layers, number of
the fully connected layers, number of the neurons in the fully
connected layers and probability of the drop-out technique that
are reported in the methods section along with the value of the
batch size are all fined-tuned based on the overall performance of
the CNN component on the validation dataset.

In the next step, the generator component is trained for several
epochs following the steps that are explained in the methods
section to generate NPN images that are indistinguishable from
the real labeled dataset. It should be underlined that the NPN
images that belong to the initial dataset, are referred as ‘labeled
images’ while the images that do not belong to the initial dataset
and are created by the generator, are referred as ‘generated
images’. Here, the dimension of the latent vector and the batch
size are chosen as 25 and 64 respectively and are fined-tuned
based on the overall performance of the generator.
To evaluate the performance of the generator during the

training process, the Fréchet Inception Distance (FID) score
method is implemented50. FID is a commonly used metric for
evaluating the quality of the generated images that the the
generator creates. This method uses the activation distributions of
the Inception-v3 model51 to quantify the differences between
labeled and generated images. Activation distribution is the
output of the Inception-v3 model from the last pooling layer prior
to the final output layer. We use the pre-trained Inception-v3
model available in Keras52 to obtain the activation distributions for
10,000 generated NPN images that the generator creates at
different epochs. In addition, the activation distributions of 10,000
labeled NPN images randomly chosen from the real labeled
dataset are also obtained. The FID score is then calculated as
follows:

FID ¼ kμ1 � μ2k2 þ TrðC1 þ C2 � 2
ffiffiffiffiffiffiffiffiffiffi
C1C2

p
Þ (1)

Where μ1 and μ2 are the mean of the feature vector prepared
from the activation distribution for the labeled and generated
images, and C1 as well as C2 are the covariance matrix prepared
from the activation distribution for the labeled and generated
images. The lower the FID score, the better the quality of the
generated NPN images from the generator. The FID score is
calculated for 50 epochs and is shown in Fig. 3(a). From the figure,
it is seen that the generator leads to lowest FID score at epoch 18.
To further visualize the performance of the generator at this
epoch, several representative examples of the generated NPN
images that the generator creates, are shown in Fig. 3(b).

Fig. 2 Performance of the CNN component of the deep learning framework. a Learning curve of the CNN component during the training
process. b Parity plot of the testing dataset at epoch= 13 wherein the red line is the reference line.

Fig. 3 Performance of the generator component of the deep learning framework. a The FID score during the training process of the
generator component at various epochs. b Representative examples of the generated NPN images that are created via the trained generator
at epoch= 18.
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Interestingly, it is seen from the figure that the pores in the
generated NPN images are elliptical with different morphologies
and are distributed heterogeneously. In addition, there is no
overlapping between the pores, as well as between the pores and
the edges of the membranes. This thus implies that the trained
generator successfully creates generated images that encompass
the salient features of the labeled NPN images. It is worthwhile to
note that the distribution of porosity and pore number of 40,000
generated NPN images are shown in Supplementary Fig. 3 and is
further compared with the distribution of the porosity and pore
number of labeled NPN images to confirm that they are
statistically comparable and thus the generator is well-trained.
Also, one of the major challenges of training GAN networks is the
occurrence of mode collapse wherein the generator is only
capable of generating one or a small subset of distinct images. For
the 50 epochs investigated in the current work, mode collapse
was not observed based on the latent space size of 25.

Design performance for prescribed strength values
The two components of our deep learning framework are trained
successfully as it was demonstrated in the earlier section. Toward
investigating the performance of the framework, we couple those
two well-trained components and aim to first evaluate its
performance in designing microstructures of NPN membranes for
prescribed strength values. Designing materials for prescribed
properties is important for various operating conditions. For
instance, designing porous membranes with prescribed filtration
rate is desirable in filtration applications. We thus choose four
strength values of 0.4 GPa, 0.7 GPa, 1 GPa, and 1.3 GPa that are all
within the strength range of our initial dataset and execute the deep
learning framework following the steps explained in the methods
section to design NPN membranes for prescribed strength values.
The final generated NPN images that the deep learning framework
creates for each of the input strength values are shown in Fig.
4(a–d). From the figure, it is seen that the microstructure of the new
NPN membranes possesses a combination of circular and elliptical
pores with different morphologies depending on the prescribed
value of the strength. We recall that the microstructure of
experimental membranes also possesses elliptical pores with
different morphologies and the pore density is dissimilar at different
regions. This thus confirms that our framework successfully
designed NPN membranes for prescribed strength values that are
closely correlated with the experimental membranes.

We then calculate the porosity of the generated NPN images for
the prescribed strength values. For the microstructures shown in
Fig. 4(a–d), we obtain the porosity value of 0.194, 0.190, 0.187, and
0.174 respectively. As is discussed in the Supplementary dataset
generation, the range of porosity for our initial dataset is
(0.1709–0.1842). This implies that while our deep learning
framework is only trained on labeled NPN images porosity range
of (0.1709–0.1842), once trained, it creates generated NPN images
with comparable strength to the labeled data but at even higher
porosity. Since strength is traditionally lowered with the increase
of porosity, such designs would be useful in designing NPN
membranes with improved strength at higher porosity values.
We further explore the initial training dataset to find the labeled

NPN images that share similar strength with the four generated NPN
images shown in Fig. 4(a–d). Upon comparing the generated NPN
images of Fig. 4(a–d) with their correspondent labeled images in Fig.
4(e–h), it is seen that the microstructures of the generated NPN
images are completely different from those labeled NPN images of
the initial dataset. As a result, our framework learns to not only create
generated NPN images with realistic microstructure for prescribed
strength values, but also the generated microstructures are distinct
from those labeled NPN images of the initial training dataset.

Design performance for improved strength
Another goal of this work is to design the microstructure of NPN
membranes for improved strength which is expected to be higher
than the strength values of most of the labeled NPN membranes of
the initial dataset. Here, we thus evaluate the performance of the
proposed deep learning framework to conduct this task following
the steps explained in methods section. The final generated NPN

Fig. 4 Evaluation of the deep learning framework in designing NPN membranes for prescribed strength. a–d Four generated NPN images
corresponding to strength of 0.4, 0.7, 1 and 1.3 GPa. e–h Four labeled NPN images from the initial dataset that are comparable with generated
images of (a–d) in terms of strength.

Fig. 5 Evaluation of the deep learning framework in designing
NPN membranes for improved strength. a The generated NPN
image corresponding to optimized strength. b,c NPN images from
the initial labeled datasets with strength higher than 1.5 GPa.
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image that the deep learning framework creates for improved
strength value is exhibited in Fig. 5(a). This optimized design with
porosity of ϕ= 0.189 includes one semi-circular and one elliptical
pore in which the CNN component of our framework predicts its
strength as 1.58 GPa. We recall from the methods section that the
highest strength of our labeled NPN images was also 1.58 GPa
wherein the porosity of this labeled NPN image, shown in Fig. 5(b),
is ϕ= 0.176 and it includes four pores. As a result, this indicates that
our deep learning framework learns to create generated NPN image
with optimized design wherein its strength is comparable with the
strength of the labeled NPN image with highest strength in the
initial dataset. More importantly, such optimized design possesses a
lower number of pores and a slightly higher porosity in comparison
with the labeled NPN image with highest strength. This implies that
while the strength is generally proportional with the porosity in an
inverse manner, it is possible to improve the strength of NPN
membranes at a fixed porosity by properly engineering their local
pore morphology such as pore pattern, shape etc. As for our
optimized design, the strength improvement is related to the local
decrease of stress at the stress concentration points as it will be
explained in the next section. Similar conclusion was reported
based on the MD simulations in our earlier work13 as well.
One interesting note here is that in our initial labeled dataset,

there are only two labeled NPN images with higher strength than
1.5 GPa. Those labeled NPN images are shown in Fig. 5(b,c)
wherein their strength values are 1.58 GPa and 1.53 GPa
respectively. This implies that during the training process of our
framework, the generator and CNN components received a
negligible number of labeled NPN images with higher strength
than 1.5 GPa. Upon training, the framework interestingly learns to
create new generated NPN image with optimized design that not
only possesses higher strength than 1.5 GPa, but also the
microstructure of this generated NPN image is distinct from those
two labeled NPN images with higher strength than 1.5 GPa.
To further cross-validate the predicted value of the strength of

our optimized design from the deep learning framework, we then
use FE simulation to compute the strength of the optimized design.
From our FE simulation, the strength of the optimized design is
obtained as 1.56 GPa which agrees with the value of 1.58 GPa that is
predicted from the deep learning framework. The obtained value of
strength from FE simulation clearly confirms that our deep learning
framework can produce reliable and robust generated NPN images
with improved strength comparing with the labeled NPN images of
the initial dataset.

Comparison with common pore patterns
Porous membranes with ordered pore patterns such as: cubic and
hexagonal patterns are employed widely in different biomedical
applications such as: smart filters for bioanalytical devices,
plasmonic sensing, cryoEM, flexible electronics, etc.53,54. In the
microstructure of those porous membranes, all the pores share
similar morphology, and the pore density is similar at different
regions which is different than the microstructure of the

generated or labeled NPN images of our current work. Here, we
compare the performance of our optimized design of NPN
membrane with the supercell of those conventional membranes
to understand the effect of microstructural heterogeneity on the
strength of the NPN membranes. Such fundamental under-
standing provides clear insights to produce the future generations
of NPN membranes. The supercells of following four cases of NPN
membranes with similar porosity and membrane size as our
optimized design are thus constructed and further stretched using
FE simulations: (1) Case 1 with cubic pattern and circular pore
shape, (2) Case 2 with cubic pattern and elliptical pore shape. The
morphology of the elliptical pore including the aspect ratio and
orientation is chosen to be consistent with the morphology of the
elliptical pore of our optimized design of NPN membranes, (3)
Case 3 with hexagonal pore pattern and pore separation ratio of
3.36. It should be noted that case 3 is comparable with the first
case of our MD simulations in the earlier work13 which was shown
to possess highest strength among different patterned mem-
branes. (4) Case 4 with hexagonal pore pattern and pore
separation ratio of 0.3. It should be noted that case 4 is
comparable with the third case of our MD simulations in the
earlier work13 which was shown to possess second highest
strength among different patterned membranes. The strength of
those four cases is calculated from FE simulations as: 1.18 GPa,
1.06 GPa, 1.04 GPa, and 0.83 GPa respectively. The strength of our
optimized design from FE simulation is 1.56 GPa. Interestingly, this
corresponds with 32% increase in the strength of NPN membranes
as compared to the conventional membranes with cubic pore
pattern and circular pore. This clearly implies that our optimized
design of NPN membrane exhibits higher strength as compared to
the common pore patterns. As a result, the microstructural
heterogeneity in our optimized design contributes positively to
the performance of the NPN membranes. We further exhibit the
stress concentration contour of those four cases at small strain in
Fig. 6(a–d) to explore the mechanism of the strength improve-
ment of NPN membranes. Upon comparing those stress
concentration contours with the stress concentration contour of
our optimized design that is shown in Fig. 6(e), it is seen that the
stress concentration factor at the stress concentration points is
lower for our optimized design. Specifically, the maximum stress
concentration factor of the four cases is obtained as 3.12, 3.49,
3.56, and 4.50 while the corresponding value for the optimized
design is 2.39. The stress concentration factor is thus lowest for
our optimized design in comparison with all four cases. As a result,
the optimized design is expected to reach a higher strength in
comparison to common pore patterns. This indicates that the
microstructural heterogeneity of our optimized NPN design
facilitates the stress distribution inside the NPN membrane and
lowers the stress concentration in comparison with microstruc-
tural homogeneity of the common pore pattern.
In the final section, we use MD simulations to mimic the uniaxial

tensile loading on the five NPN membranes and further cross-
validate the performance of our optimized design in comparison
with the investigated common pore patterns. The stress-strain

Fig. 6 Physics-based interpretation of the optimized design of the deep learning framework. a–e Distribution of stress concentration (SC)
factor of our optimized design along with case 1–4 of common pore patterns calculated with FE simulations. The details of FE simulations
were discussed in the Supplementary dataset generation.
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curves of the samples up to 6% of strain are thus shown in Fig. 7.
From the figure, it is seen that the stress-strain behavior of our
optimized design outperforms the behavior of common pore
patterns. MD simulations thus provide additional support for the
strength superiority of our optimized design as compared to the
common pore patterns. As a result, the deep learning framework
presented in this study shows not only a good accuracy in terms
of predicting the strength of NPN membranes with different
microstructures, but also offers avenues to generate optimized
design with improved strength that outperforms conventional
membranes with common pore patterns.

DISCUSSION
NPN membranes are amorphous brittle materials with growing
applications that are not well-studied yet. The mechanical
properties of the current generation of these membranes need
to be improved for further extending their biomedical application
in life-saving areas such as: wearable hemodialysis devices.
Computational design of NPN microstructures with improved
strength that are closely correlated with the microstructures of
experimental samples is a challenging task owing to the
complexities of their microstructure. We proposed a deep learning
framework to design NPN membranes for optimized or prescribed
strength values. The framework employed a deep learning design
approach combining the generator of GAN to generate NPN
images and a deep CNN to predict the strength of the generated
NPN images. Below are the conclusive highlights of our work:

● The deep learning framework learned to not only generate NPN
images with realistic microstructure for prescribed strength
values, but also it generated NPN images distinct from the
labeled NPN images of the initial training dataset. In addition,
our framework was able to design an optimized NPN membrane
with a heterogeneous microstructure and strength higher than
almost all the labeled NPN images of the initial dataset.

● We added an interpretation step to our framework and justified
the output of our deep learning model using physics-based
simulations. Excellent agreement between the strength value of
our optimized design predicted from the deep learning
framework and FE simulation confirms that the framework
was able to generate reliable and robust NPN image with
improved strength comparing with the initial dataset. Using FE
simulations, we compared the strength of our optimized design
with the supercell of conventional membranes that possess
homogenous microstructure. Our results unveiled that the
optimized design outperforms the conventional membranes.
Our FE simulations revealed the reasoning behind this key
finding and showed that the microstructural heterogeneity of
the optimized design, lowers the stress at the concentration
points around the pores which results into significantly increase
of the strength. As a result, our framework was able to design

NPN membranes with improved strength, while the physics-
based interpretation showed that the deep learning framework
correctly learned that microstructural heterogeneity is a key for
the optimized design.

● Apart from FE simulations, the strength superiority of our
optimized design was cross-validated with MD simulations as
well. Although our framework is trained based on the linear
elastic behavior, our MD simulations confirmed that our
optimized design performs better than the common pore
patterns beyond the elastic regime as well.

● The framework we developed in this work can easily be
applied and generalized to design other materials for different
applications. For instance, in a separate work we have been
currently utilizing the framework to design materials that can
survive in the environments that involve severe irradiation
such as nuclear fusion and fission reactors. The advantages of
using CNN alongside a generator are: (1) we only need a
limited amount of sample space for training the two
components of our deep learning framework. (2) The frame-
work can provide a quick and brand-new optimized design for
the inverse design problem. Our data-driven model suggests
practical solutions to materials design using computationally
inexpensive models as compared to the expensive physics-
based simulations, and could significantly save the time and
cost to discover new materials.

METHODS
Deep learning framework overview
Toward the goal of this work in designing NPN membranes for
improved or prescribed strength values, we need to design a
framework that can create thousands of NPN microstructures and
evaluate their strength performance in a fast pace. The framework is
required to be able to: (1) predict the strength of NPN membranes
based on their microstructures, (2) generate NPN microstructures
that encompass elliptical pores with different morphologies and
dissimilar pore density at different regions, (3) connect the earlier
two tasks to design NPN membranes for improved or prescribed
strength values. For the first purpose, we choose to add a CNN
network into our framework which is known to be good at
predicting the output properties from input images upon learning
the salient features of the images during the training process. The
architecture of the CNN network in our deep learning framework
highlighted in Fig. 8 is adopted from the work of LeCun et al.55 and
is further fine-tuned for predicting the strength of NPN membranes.
We choose this architecture due to its great performance as is
reported in the earlier works56–58 along with its simplicity. As for the
second purpose, we choose to add a generator network of GAN into
our framework which is known to be good at generating images
from input noise vector wherein the generated images encompass
the salient features of the real labeled images of the training dataset.
The architecture of the generator in our framework is adopted from
the work of Radford et al.59 and is highlighted in Fig. 8. As for the
third purpose, we couple the two network and further minimize the
gradient of the following loss functions with respect to the
components of the latent vector:

Loss ¼ ðσP
s � σsÞ2 (2)

Loss ¼ �σs (3)

Where σPs is the prescribed strength and σs is the predicted
strength from CNN network. The obtained latent vector is then
used as an input for the generator to create the microstructure of
the NPN membrane corresponding to the prescribed or improved
strength values. It is noted that our deep learning framework is
implemented in Tensorflow60.

Fig. 7 Cross-validation of the optimized design of the deep
learning framework with MD simulations. Stress-strain curves of
the NPN membranes with different common pore patterns as well as
the generated NPN image (optimized design) with improved
strength obtained from MD simulations.
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Deep learning framework development
The following steps are carried out to develop our framework:

Dataset preparation. The first step in developing our deep
learning framework is to prepare a dataset that is labeled with
strength. For that, a similar method that is proposed by Wang
et al.61,62 is used to generate a dataset of 40,000 grayscale images
with 64 × 64 × 1 pixel shown in Fig. 9(a). The average porosity of
the dataset is 0.177 and the range of the pore numbers is
1 < N < 25, shown in Fig. 9(b), that are both comparable with the
MD simulations of our earlier paper13. In this paper, all the NPN
images from this dataset will be presented with red color and will
be referenced as ‘labeled NPN image’ to avoid any confusion with
generated NPN images from the generator component of our
framework that are colored in black. The NPN membranes of the
initial dataset are then labeled with their corresponding strength
values via carrying out FE simulations using open-source Python
packages SfePy63 to conduct the FE simulations and GMSH64 to
mesh the NPN microstructures. Details of the dataset generation
and their labeling process are discussed in the Supplementary
dataset generation. Briefly, linear elasticity is assumed in the FE
simulations and the inclusion of nonlinear elasticity, plasticity, and
crack propagation are left for future studies. In addition, plane
stress assumption is imposed on the FE simulations to mimic the

thinness of NPN membranes. To simulate the uniaxial loading, the
displacement of all the left edge nodes of the NPN membranes,
such as the one shown in Supplementary Fig. 2(b), is constrained
along x while all the degrees of freedom (DOF) of the central node
on the left edge is constrained. We then impose a uniform
displacement field on the right edge nodes. Once the local normal
strain of the element with highest strain value, i.e., critical element
which is near the pores, reaches the failure value, the strength is
calculated via following equation65,66:

σs ¼ 1
N

XN

i¼1

σi (4)

Where σi is the stress of the ith element and N is the number of
total elements. The strength distribution for all 40,000 NPN
membranes of the initial dataset is shown in Fig. 9(c). This
distribution resembles a Gaussian distribution with a mean value
of 0.54 GPa. It is notable that while the lower-end and higher-end
tails reach 0.14 GPa and 1.58 GPa respectively, the number of data
points around the tails are negligible. Specifically, there are only
two NPN membranes in which their strength exceeds 1.5 GPa.

CNN training. The architecture of the CNN network, i.e., the
predictive component of our deep learning framework, is shown

Fig. 9 Visualization of the initial dataset obtained from the dataset generation step. a Representative examples of the labeled images from
the initial NPN dataset. b Distribution of pore number for the initial NPN dataset. c Distribution of strength for the initial NPN dataset.

Fig. 8 Schematic of the architecture of the deep learning framework. This architecture combines the generator of GAN59 and a deep CNN55

wherein the convolutional layers, max-pooling layers, and neurons are shown with blue, brown and circles respectively. The depth of the
convolution filters is mentioned over the double arrows.
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in Fig. 8 which contains five convolution layers and two fully
connected layers with 128 and 32 neurons respectively. The
rectified linear unit (ReLU) activation function which is followed
with a max-pooling layer is applied on all convolution layers, and a
filter size of 3 × 3 is used. In addition, drop-out technique67 with
probability of 0.5 is imposed on the final convolution layer as well
as first fully connected layer to prevent the overfitting in the
training process. 80% of the real labeled dataset is randomly
chosen as the training dataset while the rest 20% is used as the
validation dataset which helps to detect the overfitting and
perform model selection during the learning process. In addition,
a separate dataset of 8000 labeled NPN images is prepared as the
testing dataset to examine the performance of the final well-
trained model. In this approach, the CNN learns to predict the
strength of the NPN images via minimizing the mean square error
(MSE) loss function through backpropagation. In this work, the
architecture of the LeNet CNN model55 is used and further fine-
tuned for predicting the strength of NPN membranes as is
mentioned in the earlier part of the methods section.

Generator training. The generator network, i.e., the generative
component of our deep learning framework, generates NPN
microstructures from the input random noise vector with
bounded elements between (−1, 1). The architecture of the
generator component is shown in Fig. 8 which is based on deep
convolutional generative adversarial network (DCGAN) that is
proposed by Radford et al.59 as is mentioned in the earlier part of
the methods section. Briefly, the latent vector is first projected and
reshaped into a feature map with 4 × 4 × 512 dimensions which is
then fed into four fractionally-strided convolution layers, and the
output is 64 × 64 × 1 pixel image. To accelerate the training speed
of feature extraction, batch normalization is applied to all layers,
and a filter size of 5 × 5 is used. The rectified linear unit (ReLU) is
utilized as the activation function of the first four layers while Tanh
is imposed on the final layer. To train the generator, it is coupled
with another network known as discriminator and both networks
are trained adversarially via minimizing the binary cross entropy
loss function through backpropagation68. In this approach, the
generator learns to generate NPN images that are indistinguish-
able from the real labeled dataset, while the discriminator learns
to classify the labeled images from the generated NPN images
simultaneously. The architecture of the discriminator is compar-
able with the generator and contains four convolution layers.
However, it is fed by 64 × 64 × 1 pixel images and results in one-
dimensional output to classify the generated NPN images from
the labeled ones.

Inverse design process. After training the CNN and generator
networks separately, we combine the two networks to
complete our deep learning framework. To design the micro-
structure of the NPN membranes for improved or prescribed
strength values, the gradient of the loss functions defined as Eq.
(2) and Eq. (3) should be minimized with respect to the
components of the latent vector respectively using Limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm
(L-BFGS) method69. Upon successful minimization of the loss
function, the obtained latent vector will be then used as an
input for the generator to create the corresponding micro-
structure of the NPN membrane.

MD simulations
MD simulations are conducted using the open-source program
package Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS)70. 3-body Vashishta interatomic potential71 is
chosen from the available interatomic potentials to model the
mechanical behavior of amorphous NPN membranes. The ability
of this potential to realistically mimic the mechanical behavior of

amorphous silicon nitride structures has been verified in several
studies before71–73. Periodic boundary conditions are applied
along in-plane directions while free boundary condition is applied
in the Z direction to mimic the thin thickness of the NPN
membranes along z direction. Amorphous NPN membranes are
prepared following the approach that is explained with detail in
our earlier work13. Prepared NPN membranes are then relaxed to
their minima following a 100 picosecond equilibration in an NPT
ensemble (i.e., constant number of particles, constant pressure,
and constant temperature) equilibration at 300 K74. The tensile
test is performed through NPT ensemble with a strain rate of
5 × 108 s−1.

DATA AVAILABILITY
The data used and/or analyzed during the current study are available from the
authors upon request.

CODE AVAILABILITY
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