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Polymer graph neural networks for multitask property learning
Owen Queen1,2, Gavin A. McCarver3, Saitheeraj Thatigotla1,2, Brendan P. Abolins4, Cameron L. Brown 4✉, Vasileios Maroulas 1✉ and
Konstantinos D. Vogiatzis 3✉

The prediction of a variety of polymer properties from their monomer composition has been a challenge for material informatics,
and their development can lead to a more effective exploration of the material space. In this work, POLYMERGNN, a multitask machine
learning architecture that relies on polymeric features and graph neural networks has been developed towards this goal. POLYMERGNN

provides accurate estimates for polymer properties based on a database of complex and heterogeneous polyesters (linear/
branched, homopolymers/copolymers) with experimentally refined properties. In POLYMERGNN, each polyester is represented as a set
of monomer units, which are introduced as molecular graphs. A virtual screening of a large, computationally generated database
with materials of variable composition was performed, a task that demonstrates the applicability of the POLYMERGNN on future studies
that target the exploration of the polymer space. Finally, a discussion on the explainability of the models is provided.
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INTRODUCTION
The ubiquitousness of polymers in modern technology highlights
their importance in and for the modern world. The features that
are responsible for their widespread use and applicability are
favorable mechanical and thermal properties, high durability, and
general resistance to corrosion1. Within the broad category of
polymeric materials, there is a subgroup of polymers known as
polyesters, which are composed of ester repeat units2–4. The most
common polyester produced is polyethylene terephthalate (PET),
which can be found in a host of applications including packaging,
textiles, thermoplastic resins, and photovoltaic devices5–7. PET is
comprised of repeating units of terephthalic acid and ethylene
glycol. The versatility of the esterification reaction allows many
different types of multifunctional acids and glycols to be
polymerized into polyesters and indeed some applications make
use of multiple acids and multiple glycols in the same composi-
tion. Adding to this complexity are the various molecular weights
and end-group distributions, as well as branching of the polymer
backbone that have been realized. Together, this gives rise to an
ever-increasingly large materials design space.
For the exploration of such a large materials space, machine

learning (ML) can be utilized in order to derive highly nonlinear
relationships between the polymeric materials and their corre-
sponding properties8–16. The glass transition temperature (Tg),
molecular weight (MW), the molecular weight distribution or
polydispersity index (PDI) and the inherent viscosity (IV) are such
properties that are correlated with the functionality and perfor-
mance of the material. In order to develop polyesters, which have
favorable Tg, MW, and IV values for a given application, a costly
and time-consuming approach is often utilized, which involves
testing many different combinations of diacids and diols in
different experimental setups, including synthesis conditions,
catalyst selection, and different monomer ratios. This can take
hours or days for a single batch and is not able to cover a large
number of targeted materials in a single instance. To circumvent
such demanding processes, ML can be utilized to map the
correlation between a given structural input (identities of the

diacids and diols used) and output (the desired properties such as
Tg, MW, and IV) in order to help guide experimental work on the
targeted synthesis of materials with enhanced properties.
Previous work has demonstrated great performance of ML

models on the prediction of glass transition temperatures14,16–20.
Tao and coworkers tested a large array of ML models with varying
structure and feature representations in order to provide Tg
predictions14. Using a dataset of about 7000 homopolymers, they
developed a ML model with good predictability and were able to
provide estimates on ~5700 homopolymers with unknown
experimental Tg values. A similar study examined polyacrylamides
with quantum chemical descriptors in order to provide Tg
predictions16. A Gaussian process regression model was devel-
oped from a small dataset (20 instances) to estimate Tg using
thermal energies and the total electronic energies of the repeat
units as input values.
A task that still remains elusive for ML applications on polymers

is the prediction of multiple properties by a single model, which
can lead to more effective material optimization15. Another
important challenge is the accurate prediction of IV values. ML
models that are based solely on monomer composition ignore
important structural information such as the number of end-
groups or the polymer chain length (often approximated by the
molecular weight) and struggle to differentiate between values
within a narrow range (between 0.2 and 0.4 dL/g). In this range,
the relationship between Tg and IV can vary substantially21 and
while Tg accuracy is fairly straightforward, predictions for IV are
more challenging. Few studies have targeted IV values using
ML9,11 with limited success and thus, alternative methodologies
should be considered. Recent work has shown that graph neural
networks (GNNs) provide increased predictability regarding
thermal and mechanical properties of polymers22,23, on other
families of materials24,25, as well as on molecular properties26–30.
As a result of the success of GNNs, graphs provide a promising
direction for representing molecules. Neural networks are
particularly well suited to combine molecular graphs into
macromolecules in a similar manner to how representation
methods such as BigSMILES31,32 represents polymers. Another
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approach that has been recently explored covers ML models on
feature-engineered polymer data that capture higher-order
structural interactions between monomeric units14,33.
In this work, we have developed a multitask ML architecture

that aims to provide reliable values for polymer properties. To
access these complex structure-function correlations, we have
utilized a GNN-based model (POLYMERGNN), which has been tested
on a dataset of experimentally measured properties of polyesters
(Tg and IV values). We demonstrate the generality of this model in
its ability to predict Tg and IV as single tasks as well as both Tg and
IV in a multitask learning framework. POLYMERGNN outperforms other
molecular embedding techniques in the tested prediction tasks,
while it has the ability to work in low-data availability regimes. In
addition, we demonstrate the robustness of POLYMERGNN through an
explainability study, showing that the model appears to learn
chemically relevant patterns and features in the dataset. This
proposed methodology, while demonstrated for polyester predic-
tion, is transferable to other families of materials. While GNN-
based models for machine learning predictions of polymer
properties have been previously developed and successfully
tested22,23,33, the pooling mechanism introduced here further
advances these models (vide infra). This mechanism creates a
centralized vector enriched with information from all monomers
and allows POLYMERGNN to make predictions on monomer input
without any direct modeling of polymers.

RESULTS
The polymer database
A diverse database of polyester resins that includes experimental
data was generated. These materials contain between 1 and 4
different diacids (referred to in the next paragraphs as acids) and
between 1 and 4 diols (glycols), while a small number also
includes trimethylolpropane (TMP) that allows the synthesis of
branched polymers (Fig. 1a, the full list of all monomers is given at
the Supplementary Note 1). The overall database contains 186
linear polymers (62.8%) and 110 branched polymers (37.2%). The
linear polymers can be further classified as “homopolyesters”,
which only have 1 acid and 1 glycol (24.0%), and “co-polyesters”,
which have multiple acids and/or glycols (38.8%). A small
percentage of the linear polyesters (21.3% of the total database)
include high molecular weight polymers with a characterized
amount of cyclic oligomers (referred in the next sections as
“cyclic”). Pictorial representations of the subsets of polyester resins
are shown in Fig. 1b–d. The polymer properties collected for each
material include Tg, IV, and weight-average molecular weight (Mw)
(as a function of polystyrene), acid number (AN) and hydroxyl
number (OHN). Figure 1e, f, and g show the distribution of the Tg
and IV values for each subset (linear, branched, and “cyclic”,
respectively), while representative examples of the three subsets
are given in Fig. 1h, i, and j, respectively. It is thus evident that the
compiled database has extensive diversity with respect to the
material composition and structure, as well as with respect to the
targeted properties. In addition, not all data entries have
measured Tg and IV values. 210 instances in the database contain
measured Tg values, 243 instances have measured IV values, and
163 instances have both Tg and IV values.

Initial model analysis
Using the diverse polyester resin dataset, we initially performed a
wide-scale study to examine how different machine learning
architectures, molecular representations, and polyester chain
lengths affected the prediction of Tg and IV values (Supplementary
Note 2). With regards to the machine learning architecture, we
found that the kernel ridge regression (KRR) method resulted in
the highest or near-highest predicted R2 values for Tg and IV with
values of 0.8624 and 0.7067, respectively. From this study, we

found that the inclusion of Mw values in the input vector improves
the ability to predict IV values significantly whereas it does not
improve the prediction of Tg values: IV was predicted with R2

values of 0.4288 and 0.7067 without and with Mw while Tg was
predicted with R2 values of 0.8624 and 0.8582 without and with
Mw using the KRR model. We also found no systematic increase in
property accuracy when lengthier oligomers were used as input to
the ML model since the use of individual acids and glycols
monomers resulted in the highest R2 values for both Tg and IV.
Thus, these are the values that will serve as a baseline for the
POLYMERGNN architecture.

POLYMERGNN architecture
We introduce POLYMERGNN, a neural network and general training
procedure to predict properties of polymers of known monomer
composition. The overall data modality introduces a challenge as
it is not straightforward to represent the polymer composition as
simple vectors or mathematical objects that can naturally be input
to machine learning algorithms. For that reason, POLYMERGNN

leverages graph neural networks (GNNs) and a pooling mechan-
ism to produce outputs for varying numbers of inputs (number of
acids and glycols in a given resin). Importantly, POLYMERGNN

separates acid and glycol inputs and combines representations
from both of these sets of monomers to produce downstream
representations with rich chemical information. As POLYMERGNN

utilizes a neural network, it can also perform multitask learning to
produce embedding vectors that are optimized for predicting
multiple properties.
The full POLYMERGNN architecture consists of three separate units:

(1) a molecular embedding block, (2) a central embedding block,
and (3) a prediction network, as seen in Fig. 2. Each unit is
presented separately in the following paragraphs.

Molecular embedding block
The molecular embedding block is responsible for transforming
input molecular graphs into vectors, or representations of the
molecular structures. Each resin is represented by its constituent
monomers—initial inputs into the synthesis of the resin. The
molecular structure of each monomer is then encoded into a
molecular graph where nodes, or vertices, correspond to atoms,
and edges correspond to chemical bonds. A GNN with two graph
convolutional layers is used for each acid and glycol. Through
rigorous testing of various GNN layers, we found that a two-layer
GNN, with a Graph Attention Network (GAT) layer34 followed by a
GraphSAGE layer35, provided exceptional performance. Following
standard GNN design principles suggested by You, Ying, and
Leskovec36, we use a Parameterized ReLU activation function37

and a Batch Normalization layer38 between graph convolutional
layers within the GNN. These previous steps work to embed the
nodes of each molecular graph, and to produce a graph-level
embedding, we use a Self-Attention Graph Pooling
mechanism39,40.
We train two GNN blocks, one to embed the molecular structure

of acids (Φa) and one to embed the molecular structure of glycols
(Φg). These GNN components share an identical architecture. We
present two ways of using these separate GNN blocks. The first
considers training of both Φa and Φg with the same weights,
updating them simultaneously within the model. In the second
approach, each block is trained separately where weights are not
shared across each of the models. Intuitively, this corresponds to
learning two different models that embed acids and glycols in a
way that is more advantageous for the downstream prediction
network.
We obtain sets of molecular embeddings Az ¼ fza1; ::; zan j zai 2

Rdg and Gz ¼ fzg1 ; ::; zgm j zgi 2 Rdg for the acids and glycols,
respectively, with the size of each set n,m varying with each input
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sample. Both sets of acids and glycols are permutation invariant,
i.e., the ordering within each set is arbitrary.
While the GNN shows the best performance in subsequent

experiments with the proposed architecture, we note that any
type of molecular embedding technique can be used in this
pipeline, as long as the output is a one-dimensional vector of
constant size. Therefore, this model can be easily amended to
future developments in molecular representations, including more
advanced GNN architectures. The advantage of the GNN embed-
ding tool over deterministic molecular fingerprinting methods is
that the model can be trained in an end-to-end fashion, i.e., the
molecular representations can be tuned to different tasks and
datasets.

Central embedding block
The central embedding block of POLYMERGNN combines all molecular
embeddings into a chemically informed, constant-size vector for
use in downstream tasks. The output Az and Gz sets from the GNN
blocks are permutation invariant sets of variable length. Thus,
combining the embeddings requires a permutation-invariant
aggregating function, or pooling function POOL(⋅). Some exam-
ples of these pooling operations are the element-wise SUM, MAX,
or MEAN. We choose to use an element-wise MAX pooling in
POLYMERGNN for predicting Tg and IV as early experiments showed

slight gains in performance with this pooling method. Applying
the POOL(⋅) function to both Az and Gz produces constant-size
output vectors denoted as za and zg.
The final portion of the central embedding layer incorporates

the resin properties. Three key resin properties that are
characteristic of polyesters were encoded in POLYMERGNN in addition
to the structural information of each monomer. The considered
properties are the weight-average molecular weight (Mw), the
terminal acid number (AN), and terminal hydroxyl number (OHN)
of the polymer chains. An additional property considered is that of
explicit percentage of TMP that facilitates the synthesis of
branched polymers. The introduction of branching can signifi-
cantly change the shape of the polymer architecture since
increasing the level of branching agent (TMP in this case) causes
Mw to build more rapidly than the average molecular weight Mn as
a function of reaction progress (decreasing OHN and AN), which
leads to significant difference in the polydispersity index and
IV41,42. The TMP percentage is relevant for nearly half of the
dataset and ranges from 0.0% (linear chains) to 15.7%. Explicitly
providing TMP in the input gives the model a direct method to
account for the approximate amount of branching in the final
product of the synthesis. We will generally denote resin properties
as p 2 Rn ´m, for n samples in the dataset and m properties. The
resin properties for sample i are denoted as pi 2 Rm. Denoting⊕

Fig. 1 The polyester database. a Polyesters are composed by combinations of diacid (red) and glycol (blue) monomers, and they can form
b linear, c branched, and d cyclic chains that are present in linear polyesters. For branched polyesters, a small amount of trimethylolpropane
(TMP, blue/white striped monomer) is required. The distribution of Tg and experimentally refined IV values for the e linear, f branched, and
g “cyclic” polyesters demonstrate the heterogeneity of the total database. Representative examples of input/output values of a h linear,
i branched, and j “cyclic” polyester. Each sample consists of a set of acid and glycol monomers together with their corresponding percentage,
and a vector of resin properties: end-group statistics (AN and OHN) and weight-average molecular weight (Mw). Tg in ∘C, IV in dL/g, Mw in g/mol.
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as the concatenation operator, we construct one vector zagp=
za⊕ zg⊕ pi for sample i. Note that this vector zagp is a constant
size, as all constituent vectors composing it are also of constant
size. We then use a fully connected neural network layer to
transform this zagp into a central embedding vector, zcentral, which
is enriched with information from the acid embeddings, glycol
embeddings and resin properties of the given sample. This vector
serves as input to downstream prediction models. In addition to
resin properties, additional information can be added in the
central embedding block, such as experimental data related to the
differential scanning calorimetry parameters, the quenching rate
used for measuring the glass transition temperature Tg, or the
temperature under which IV values were obtained. Since a
constant rate and a fixed temperature of 25o were applied for
the Tg and IV measurements, respectively, our data are
independent of the experimental conditions.

Prediction network
The prediction network predicts a given target value (Tg and/or IV)
from the central embedding vector. We have explored whether it
is advantageous to predict each property of interest separately
(Fig. 2b, c for Tg and IV and, respectively) or both in a jointly
trained model (Fig. 2d).
The prediction network for Tg consists of two separate branches,

the prediction branch and the multiplier branch (Fig. 2b). In the
prediction branch, the model uses a two-layer neural network to

learn an output Tg value, transforming the output with an
exponentiation. This exponentiation is motivated by observations
of a log-log relationship between some of the resin properties
such as Tg and Mw as well as results from the ablation study (see
Supplementary Note 5).
The prediction network for IV is a simple two-layer neural

network with PReLU activation functions (Fig. 2c). We experiment
with the same log-log transformation applied to the Tg network, as
inspired by the Mark-Houwink Equation43 relating Mw to IV.
However, it was found through ablation studies that log-log
transformation of input data and model output decreased
performance of the IV model, so we use standard scaling of resin
properties to produce the best results.
Finally, the joint model is trained to predict simultaneously both

target values and shares similarities with the individual models.
The difference from single-task models lies after the pooling and
concatenation operation. After applying a linear layer and a PReLU
activation function37, the network diverges into two prediction
branches—the Tg and IV branch. Each branch adopts an identical
architecture to the prediction networks for Tg and IV.

Model behavior and performance
We experiment with replacing the model’s molecular embedding
layer with several types of molecular representations, the simplest
of which involves application of one resin property (Mw) to predict
another property (Tg or IV). In addition, we encode the
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composition of each resin using a binary approach. This is done by
placing a 1 in the input vector at the location of each monomer
(acid or glycol) that is present and a 0 in the input vector if the
monomer is not present. This forms a vector of length twenty-five
(thirteen different acids and twelve different glycols), which can
be used as an identification of the specific resin in the dataset. To
augment this approach, we have also added the Mw value at the
end of this input vector to analyze its effect on the model
accuracy. These two approaches are referred to as the ‘Binary’
method and the ‘Binary + Properties’ method, respectively.
Four additional molecular representations were tested, Cou-

lomb Matrices (CM)44, Smooth overlap of atomic potentials
(SOAP)45, Persistence Images (PI)46, and Many-body Tensor
Representations (MBTR)47, which are popular non-deep learning
methods to vectorize molecular structures. To keep comparisons
similar to POLYMERGNN trials, we use the same resin features for each
respective task that were found to be optimal for prediction with
POLYMERGNN (see Methods). A kernel ridge regression algorithm is
used to predict values for CM, SOAP, PI, and MBTR, as this was
found to be the optimal model for learning on these representa-
tions in our previous wide-scale analysis.
Figure 3 shows a comparison of distributions of performance

metrics across 50 trials of 5-fold cross validation on the dataset
using the previously mentioned methods. POLYMERGNN outperforms
other methods, yielding a higher R2 score for both Tg and IV
prediction tasks and an approximate 0.25 dL/g lower mean
absolute error (MAE) when predicting IV. MBTR yields the next-
best performance, even outperforming POLYMERGNN in MAE for the
Tg prediction task. The distribution of POLYMERGNN metrics are wider
—have a higher standard deviation—than for other approaches
such as CM and MBTR. This is because the training of neural
networks is more unstable under cross validation than a method
such as kernel ridge regression, which is used to predict values for
the other representations.

In order to test the joint prediction model, the molecular
representations described in the previous experiments for Tg and
IV model comparison were applied and their performance was
evaluated. This modification replaced the “Molecular Embedding”
block in Fig. 2 with different molecular representations. The
downstream architecture of the joint prediction model was held
equal in order to maintain the joint prediction task across each
trial. The results are shown in Fig. 4. The POLYMERGNN model
ultimately outperforms other methods across both tasks, produ-
cing the lowest R2 and MAE errors for both Tg and IV prediction
tasks. However, several embedding techniques perform well on
this task, especially MBTR, demonstrating that the proposed
model architecture can sufficiently learn both Tg and IV jointly
with multiple types of molecular embedding techniques.

Computational screening of polymers
In order to demonstrate the applicability of POLYMERGNN, we have
screened a virtual database of 1000 materials with variable
compositions. We chose isophthalic acid (IPA), teraphthalic acid
(TPA), adipic acid (AA), 2-methyl-1,3-propanediol (MP Diol), and
1,4-cyclohexanedimethanol (1,4-CHDM) due to their widespread
use in polyester materials. In addition, we varied the OHN value in
the input vector while the AN was kept fixed (value of 1),
effectively varying the molecular weight by changing the
stoichiometry of diacids and diols. We train a joint POLYMERGNN

instance on the entire labeled dataset described in section
“Results”; this model is then used to predict Tg and IV values on
the large virtual database. This procedure is performed ten
separate times on the same dataset in order to provide confidence
levels for each sample in the set.
In Fig. 5a, we plot the results of our screening analysis for Tg and

IV predictions. This plot shows the strong correlation between Mw

and IV prediction, which is expected based on classical relation-
ships43. Interestingly, POLYMERGNN identifies several candidates
falling into the high-Tg, low-IV region (top left) of the plot, a

Fig. 3 Ridgeline plots of performance comparisons across different models for polymer property prediction. Tg results are shown on the
top row while IV results are shown on bottom. In these trials, each task is a singular output, thus the top row shows results predicting only Tg
while the bottom row shows results predicting only IV. The two left plots show the R2 scores while the two right plots show the mean absolute
error. Results are sorted by lowest mean MAE across each prediction task. Supplementary Table 13 shows the numerical results of these model
comparisons. “PGNN” is an abbreviated notation for POLYMERGNN model.
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region that could be of interest to some niche applications. We
provide additional information on the composition of these
interesting polymers along with other experimental details in
Supplementary Note 7.
Figure 5b shows the inverse relationship between adipic acid

and Tg. As the concentration of more flexible monomers such as
adipic acid increase in the composition, the polymer backbone
will require less thermal energy to move around and thus will
resist forming glasses at lower temperatures. Increasing the
concentration of more rigid, stiffer components will have the
opposite effect. A small region of the plot seems to contradict this
largely negative correlation, namely the polymers above 60%
adipic acid; these polymers seem to increase in Tg as the
percentage of adipic acid increases. However, these samples have
higher standard error relative to the entire plot. While Mw

distributions seem to be the same, the OHN values are slightly
lower on average for the outliers (see Supplementary Note 7). This
discrepancy might be causing some out-of-distribution effects
since OHN typically directly correlates with Mw. It is reasonable to
conclude that these samples were simply out-of-distribution from
the original training data, thus causing the model to predict
outside of the expected relationship between adipic acid and Tg.
This shows the utility of using standard error as an uncertainty
statistic for predictions in the screen.

Explainability
We examine the attribution scores given to the resin properties for
a given material using the Grad-CAM attribution method48.
Attribution scores in this context can be interpreted as the
relative importance of all variables, with more positive values
indicating the highest importance.
In the Tg plot (Fig. 6a), we see that Mw is important for the

prediction, but less important than having information on the
molecular structure of the acids and glycols. For the IV prediction,
Mw has the largest overall attribution of all variables, including
acid and glycol embeddings (Fig. 6b). As a result, it is reasonable

to conclude that Mw is very important for predicting IV, which
matches chemical intuition based on the Mark-Houwink equa-
tion43 directly relating IV to Mw and the strong correlation seen in
Mw and IV predictions in the computational screening. AN, OHN,
and TMP seem to have less of an importance in predicting IV
values, which mirrors results seen in the ablation study. This also
highlights the fact that although these parameters can be used to
calculate a theoretical Mw

41,42, additional variables that are
difficult to experimentally capture in complex copolymer compo-
sitions must be considered (i.e., the presence of additional end-
groups beyond COOH and OH and non-statistical distributions of
monomers throughout the polymer backbone). Finally, both acid
and glycol embeddings are shown to have great importance for
both prediction tasks. Glycol embeddings are slightly more
important than acid embeddings in the IV prediction task, but
both acid and glycol embeddings seem to be equally important
for Tg prediction.

DISCUSSION
This work proposes POLYMERGNN, a general framework, GNN-based
machine learning model for single-task and multitask learning of
polymer properties. POLYMERGNN uses as input a graph-based
representation of each monomer present in a material, and it is
able to provide high accuracy for predicting polymer properties.
The model can embed and process an arbitrary number of input
monomers as sets that are permutation-invariant, i.e., the order of
molecular inputs is not relevant. In addition, POLYMERGNN computes
embeddings that are useful in downstream tasks. This benefit is
demonstrated in the joint POLYMERGNN model, where a model is
trained to predict both Tg and IV with performance metrics close
to that of the model trained on a single task. Because of superior
joint prediction performance, representations learned by the
model may be transferable to differing downstream tasks.
Therefore, POLYMERGNN could potentially learn properties on which

Fig. 4 Ridgeline plots of performance comparisons across multiple representations used for the joint learning task of Tg and IV. Tg results
are shown on the top row while IV results are shown on bottom. The two left plots show the R2 scores while the two right plots expose the
mean absolute error. Results are sorted by lowest mean MAE across each prediction task. Supplementary Table 14 shows the numerical results
of these model comparisons. “PGNN” is an abbreviated notation for POLYMERGNN model.
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there is limited data (few-shot learning) by using embeddings from
a model pre-trained on another task with more abundant data.
For this project, more than 240 polyesters were synthesized and

their properties such as glass transition temperature (Tg) and
intrinsic viscosity (IV) were compiled in a database. POLYMERGNN

demonstrated remarkable accuracy for both properties, indepen-
dently if it was trained on one or both properties. In addition,
combination of the POLYMERGNN architecture with other commonly
used molecular representations managed to provide increased
performance when compared to models that do not use the
architecture that was developed for this project. Further develop-
ment of POLYMERGNN can include the use of self-attention
mechanisms49, a useful approach to encode dependencies
between monomer inputs. Finally, this type of design is not fixed
to polyesters, as is described in this work, but can rather be
transferred to the prediction of other types of polymers and
properties.

METHODS
Polyester resin synthesis
The polyols were produced using either a resin kettle reactor
setup via solvent-assisted polycondensation or a resin rig reactor
setup via melt polycondensation, both of which were controlled
with automated control software.
The solvent-assisted resins were produced on a 3.5 mole scale

using a 2 L kettle with overhead stirring and a partial condenser
topped with total condenser and Dean Stark trap. Approximately
10 wt% (based on reaction yield) azeotroping solvent of high
boiling point (A150 and A150ND) was used to both encourage
egress of the water condensate out of the reaction mixture and
keep the reaction mixture viscosity at a reasonable level using the
standard paddle stirrer. Chemical reagents were added to the
kettle, which was then completely assembled. The Fascat 4100
(monobutyltin oxide) catalyst was added via the sampling port
after the reactor had been assembled and blanketed with
nitrogen for the reaction. Additional A150/A150ND solvent was
added to the Dean Stark trap to maintain the ~10 wt% solvent
level in the reaction kettle. The reaction mixture was heated
without stirring from room temperature to 150 oC using a set
output controlled through the automation system. Once the
reaction mixture was fluid enough, the stirring was started to
encourage even heating of the mixture. At 150 oC, the control of
heating was switched to automated control and the temperature
was ramped to 230 oC over the course of 4 h. The reaction was
held at 230 oC for 1 h and then heated to 240 oC over the course of
1 h. The reaction was then held at 240 oC and sampled every 1–2 h

upon clearing until the desired acid value was reached. The ~
90%-solids resins were ground into 6mm pellets and thoroughly
dried in a vacuum oven at 150 ∘C for 24 h prior to characterization.
The melt polycondensation resins were produced on a 0.5 mole

scale. A 500mL, one-neck, round-bottom flask was carefully
charged with all chemical reagents and Fascat 4100 (monobutyltin
oxide) catalyst. The flask was equipped with a polymer head
adapter with stainless steel mechanical stirrer and securely
clamped to the polymerization rig. To the polymer head, a
distillation side arm and Erlenmeyer flask were attached. The
automated-controlled vacuum system was attached to the flask
side arm to allow for a reduction in pressure of the reaction vessel.
The Belmont metal bath was preheated to 20 oC above the recipe
starting temperature (180 oC). The apparatus was subjected to two
iterations of a nitrogen (N2) purge to remove oxygen and then
dunked into the metal bath to begin. The flask was held at 180 oC
for 10 min to melt the starting materials and then stirring was
started to encourage even heating on the mixture. The flask was
heated to 240 oC over 4 h and then held there for an additional
hour. Pressure in the reaction flask was reduced to 1.5 torr over
45min and then the reaction was held at 1.5 torr until the final
acid value was reached. Dry-ice was used to ensure that the
solvent traps were sufficiently cold to prevent any solvent/organic
matter from going to the vacuum pump. After completion, the
flask was slowly brought back to atmospheric pressure and
removed from the hot metal bath. Upon solidification, the
polymer was pulled from the round-bottom flask by partially
melting the edges, then the glass flask was broken with a hammer
to give the solid polymer ‘lollipop’ on the stir rod. The polymer
was cooled in dry-ice, removed from the stir-rod, and ground into
6 mm pellets prior to characterization.

Polyester resin characterization
Acid number (AN) was determined using colorimetric titration in
pyridine with phenolphthalein indicator and 0.1 N KOH titrant
administered with an auto-dispensing titrator. Hydroxyl number
(OHN) was determined via 1H NMR end-group analysis on a Bruker
500 MHz spectrometer or by reaction of hydroxyl groups with
p-toluenesulfonyl isocyanate and subsequent potentiometric
tritration of the acid carbamate product. The OHN results obtained
are then corrected for contributing acid number. The inherent
viscosity (IV) of all polymers was determined in 0.5 wt% PM 95 (60/
40 phenol/1,1,2,2-tetrachloroethane) solution at 25 oC. Molecular
weights were determined by gel permeation chromatography
(GPC) with 95/5 methylene chloride/HFIP mobile phase and
calibration curves for polystyrene standards. Monomer

Fig. 5 Results of a large-scale screen of POLYMERGNN on a computationally generated dataset. a is colored by Mw to accentuate the strong
positive correlation of Mw and IV learned by the model. b shows how adipic acid is negatively correlated to Tg; points are colored by standard
error to highlight a low-confidence region in the high-adipic acid, high-Tg scenario.
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composition was determined via gas chromatography (GC)
hydrolysis. The glass transition temperature (Tg) was determined
using differential scanning calorimeter (DSC) at 20 oC/min. ramp
rate with a N2 sweep. The Tg was based on second heat
thermograms.
Linear polyesters typically have a polydispersity index (PDI)

between 1.5–2.5 and branched polyesters can have a much wider
range depending on how much branching agent is added, the
degree of polymerization, and other factors. Our polyester dataset
includes both linear and branched resins. IV is affected by both
resin composition and molecular weight, with Mw more strongly
affecting IV than the average molecular weight Mn. As Mw

increases, typically so does IV. In our dataset, increased PDI is
usually associated with increased Mw due to branching and this
consequently increases the IV. Similarly, Tg increases as Mw and IV
increase and begins to plateau at higher IVs and Mws. These
relationships can be quantified for specific polyester compositions,
but becomes very complicated in complex datasets such as
described in this paper and therefore machine learning can help
make useful predictions in this design space.

Quantum chemical calculations
The individual monomers for each resin were optimized using
metadynamics to sample the conformational space of the
monomer. The Conformer-Rotamer Ensemble Sampling Tool
(CREST)50 was utilized in order to sample the conformational
space of each monomer and generate a list of minimum energy
conformation using semiempirical density functional tight binding
(DFTB). Tight convergence criteria was utilized for both the
geometry optimizations and the self-consistent-field cycles of
DFTB. The lowest energy conformer generated was then used as
the input structure for the different molecular representations.

Graph neural network
We will establish some preliminaries for graph neural networks.
Let G= (V, E) be a graph with V nodes and E edges. If G is a
molecular graph, we consider V to consist of all atoms in the
molecule, and E to comprise all bonds between those atoms.
Indeed, if vi and vj are atoms in V, a bond between them would be
denoted by the edge (vi, vj)∈ E. It is also useful to define the
neighborhood of a node vi, denoted NðviÞ. The neighborhood is
the set of all nodes for which there exists an edge connecting to vi,
i.e., NðviÞ ¼ fvj j ðvi; vjÞ 2 Eg. For each vi∈ V, we have a d-
dimensional feature xi. The collection of node features for all n
nodes in a graph is denoted by X ¼ fx1; :::; xng; xi 2 Rd and may

include atomic properties such as atomic charge, atomic mass, or
scalar properties associated with each atom in the molecule. In
POLYMERGNN, we use six properties: the charge, degree, mass,
aromaticity—a Boolean variable indicating whether the atom is
found within an aromatic portion of the molecule—the explicit
number of hydrogen atoms bonded with the atom, and the
number of valence electrons. All features are extracted auto-
matically using RdKit51. In a similar manner to node features, edge
features can also be introduced into the graph construction;
however, we omit any additional edge features in this work since
preliminary benchmarking showed no empirical boost in perfor-
mance. This described formulation allows us to treat molecular
representations as a graph onto which we can apply graph
machine learning algorithms and methods, namely graph neural
networks.
A graph neural network (GNN) is a machine learning algorithm

that learns embeddings of nodes within a graph. These so-called
node-level embeddings can be combined into a graph-level
embedding that represents the entire graph G. Graph-level
embeddings can be used in downstream prediction tasks, such
as predicting Tg or IV. We specifically focus on graph convolutional
neural networks, thus when mentioning the term “GNN” in this
work, it is assumed that a graph convolutional neural network is
being discussed.
A GNN model consists of iterations of AGGREGATE-COMBINE

steps that update the representation of nodes by aggregating
information from the local topology of the graph. We denote hðlÞi
as the representation for node vi at layer l of the network. As an
initial step, we set hð0Þi ¼ xi . Each layer l then performs the
following functions to obtain the successive layer’s node
embeddings: aðlÞi ¼ AGGREGATEðlÞðfhðl�1Þ

j j vj 2 NðviÞgÞ, such that
hðlÞi ¼ COMBINEðlÞðhl�1

i ; aðlÞi Þ. Intuitively, the AGGREGATE and
COMBINE functions work to mix information between neighboring
atoms within the molecule. Different GNN layers introduce
variations to the AGGREGATE and COMBINE functions. Common
functions for the AGGREGATE step are MEAN and MAX while
COMBINE is commonly performed by a single, fully connected
neural network, as in refs. 52,34, and ref. 35. To produce a graph-
level embedding, hG, a READOUT function is used to pool all node
representations from the graph, i.e., hG ¼ READOUTðfhðLÞi j vi 2
VgÞ: After the READOUT operation, it is guaranteed that hG is a
constant-size vector regardless of the size of G. READOUT can be
performed by simple, permutation-invariant function such as
MEAN, MAX, or more advanced pooling methods39,53. In this work,
we utilize the self-attention pooling mechanism39. After the
READOUT function is performed, the resulting hG should contain

Legend
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75th Percentile
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(a) Attribution for PolymerGNN Tg model (b) Attribution for PolymerGNN IV model
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Fig. 6 Attribution scores. POLYMERGNNTg model (a) and POLYMERGNN IV model and (b) attribution scores computed by Grad-CAM on the central
embedding layer of the model. A log-scale is used in b to show the separation between components with small attribution scores.
Distributions are shown for attributions from every trained model for 50 5-fold cross validations on the dataset.
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information about the entire graph in question, making this
representation useful in downstream prediction tasks.

Loss function
Both Tg and IV tasks utilize the Mean Squared Error (MSE) loss
function to train the networks. The joint model was trained using
the following loss function, L ¼ γLIV þ LTg ; where LIV is the MSE of
the IV prediction with respect to the true IV value and LTg is the
MSE of the Tg prediction with respect to the true Tg value. The γ
constant serves as a weighing factor to scale the IV loss in
proportion to how much the models should prioritize learning IV
relevant features. The IV and Tg learning tasks have different units
that have varying scales. The scale of Tg values is much larger than
that of IV; this would result in MSE being very large for Tg while the
MSE is very low for IV, even if the performance is equal for each of
them. Therefore, we set γ to a very large arbitrary value (10,000
herein) to offset the effect of units for this joint learning problem.
Another rationale for a large γ is because it prioritizes the IV task,
which is more difficult to learn based on previous trials.

DATA AVAILABILITY
All DFTB-optimized geometries are available in the Supplementary Information.
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