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Enabling rapid X-ray CT characterisation for additive
manufacturing using CAD models and deep learning-based
reconstruction
Amirkoushyar Ziabari 1✉, S. V. Venkatakrishnan 1, Zackary Snow 1, Aleksander Lisovich2, Michael Sprayberry 1, Paul Brackman2,
Curtis Frederick2, Pradeep Bhattad2, Sarah Graham3, Philip Bingham 1, Ryan Dehoff3, Alex Plotkowski4 and Vincent Paquit1

Metal additive manufacturing (AM) offers flexibility and cost-effectiveness for printing complex parts but is limited to few alloys.
Qualifying new alloys requires process parameter optimisation to produce consistent, high-quality components. High-resolution
X-ray computed tomography (XCT) has not been effective for this task due to artifacts, slow scan speed, and costs. We propose a
deep learning-based approach for rapid XCT acquisition and reconstruction of metal AM parts, leveraging computer-aided design
models and physics-based simulations of nonlinear interactions between X-ray radiation and metals. This significantly reduces beam
hardening and common XCT artifacts. We demonstrate high-throughput characterisation of over a hundred AlCe alloy components,
quantifying improvements in characterisation time and quality compared to high-resolution microscopy and pycnometry. Our
approach facilitates investigating the impact of process parameters and their geometry dependence in metal AM.
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INTRODUCTION
Characterisation is critical for understanding the processing, micro-
structure, and properties of materials and then correlating them with
their performance. 3D X-ray computed tomography (XCT) is a
commonly used characterisation process for non-destructive evalua-
tion of additive manufacturing (AM) components1–3, characterisation
of batteries4,5, components in automotive6–9, casting10,11, aero-
space12–14, and nuclear industries15,16. During an XCT process, the
object under study is centered on a stage and then rotated around
its vertical axis. At predetermined view angles during rotation, a 2D
projection of the X-ray source passing through the part is captured
by the detector. From the stack of 2D projection data, an algorithm is
used to reconstruct a 3D attenuation coefficient map as a
representation of the scanned object. An analytical algorithm,
known as Feldkamp, Davis, and Kress (FDK)17, is commonly used
by commercial industrial XCT systems for 3D reconstruction.
In AM, the reconstructed 3D volumetric image from an XCT scan

of the object is used to extract information about dimensional
accuracy18,19, defect distribution and density20–24, and surface
roughness25–27 of the printed parts. XCT can also be beneficial in
enhancing modeling and simulation capabilities to enable
predictive design of materials and manufacturing processes28,29.
Evaluating AM parts as soon as they are printed allows for tracking
the changes after assembly that cannot easily be achieved with
other characterisation methods30–32.
Despite its prevalent use, XCT has several limitations that

continue to degrade its performance when applied to metal AM
components. For example, high-quality FDK reconstructions
require long scan duration and complex post-processing image
analysis, which has significant cost implications33. Reducing scan
times, either by reducing the number of 2D projections acquired
(sparse-view CT) or by reducing the integration time for each
projection (low-dose CT), reduces FDK image quality and

introduces severe artifacts. These issues further complicate the
post-processing image analysis and defect detection tasks
required for characterisation of the parts32.
Another major challenge in metal additive manufacturing (AM)

is the beam hardening (BH) effect for dense metal parts34,35.
Conventional XCT algorithms implicitly assume a monochromatic
X-ray source, but the polychromatic nature of the X-ray source
causes this assumption to fail for thick, dense materials like metals.
The resulting BH effect creates severe artifacts in reconstructed
XCT images, particularly for metal AM parts due to their complex
geometry and photon starvation from low exposure times. These
artifacts complicate accurate image analysis and inference tasks
such as pore and defect detection.
Some sophisticated algorithms, mainly developed for medical XCT

imaging, can account for nonlinear effects, e.g., BH, but are not easily
adapted for industrial XCT systems due to computational costs or
applicability limitations. For example, model-based iterative recon-
struction (MBIR) with statistical parameter estimation36 is computa-
tionally expensive and requires high-quality preliminary segmentation
that can be challenging for sparse and noisy measurements of dense
metal parts with complex geometries. A recent statistical approach37

does not require segmentation but only works for medical imaging of
tissues where bone thickness is small compared to tissue. Metal
artifact reduction38–40 approaches are not suitable for objects that are
comprised of only dense materials, and they only work when the
metal part can be identified perfectly from a preliminary scan.
Linearisation methods41,42 solely depend on offline calibration, and
deep learning-based methods require significant numbers of real
measurement data sets for training, which may not be feasible for
industrial XCT applications. Furthermore, Supervised deep learning
(DL)43–46 methods often require high-quality reference reconstruc-
tions, which requires aforementioned non-DL-based approaches to
create training data. Recently, iterative DL-based approaches47 have
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been proposed to address BH, but they are computationally
expensive and require substantial memory when processing large
data sets in industrial XCT. Industry-standard solutions require an
expert user to correct BH by manually selecting the coefficients of a
polynomial filter after reconstruction48.
In this work, we developed a supervised DL-based approach that

leverages computer-aided design (CAD) models of the printed
parts, as well as physics-based information for XCT reconstruction
of metal AM parts to address these challenges. In this approach, we
designed and trained a residual 2.5D49 convolutional neural
network (CNN) built on a modified U-Net architecture50 to find a
nonlinear mapping from a limited number of sparse FDK
reconstructions of select reference parts to corresponding high-
quality CAD-assisted MBIR51,52 reconstructions of densely sampled
scans of the same parts. The trained network, CAD-based Deep
Learning MBIR (CAD-DLMBIR), produces fast (on par with analytical
approaches) and accurate 3D volumetric reconstruction images of
the parts, with reduced metal artifacts and BH, from their
respective sparsely measured (i.e., with a low number of views)
XCT scans. In a case study, we demonstrate that even when we
reduced the number of views by a factor of three from 580 views
to 193 views per coupon, we were able to obtain more accurate
and higher quality characterisation (verified using multiple
techniques) compared to the traditional algorithms. Further, in
order to obtain the same quality of characterisation as ours using
the traditional algorithm, we would require a factor of more than
three denser scan53–57 compared to the scan with 580 views,
suggesting that our approach leads to an overall acceleration of
high-quality characterisation by a factor of more than nine times.
The improved contrast and artifact reduction also resulted in

notable improvements in post-processing analysis of the recon-
struction data. We demonstrate that our method using sparse
scans allows for detecting more than about 78% of flaws larger
than 50 μm, and 100% of the flaws larger than 90 μm, while the
corresponding numbers for the standard FDK X-ray CT reconstruc-
tion, for the same scan setting, is 18% (for larger than 50 μm) and
about 70% (for larger than 90 μm), and can only detect 100% of
pores that are larger than 170 μm.
The key contributions of this work are as follows:

1. Fast and accurate sparse-view XCT algorithm for metal
parts

– A CAD and physics-based BH and metal artifact reduction
method was developed (CAD-BHMBIR) to correct the raw,
measured XCT projection data used in MBIR algorithms for
high-quality reconstruction of parts.

– A 2.5D residual network based on a modified U-Net was
designed and trained to learn a nonlinear mapping
between FDK reconstruction and CAD-BHMBIR reconstruc-
tion of pairs of data for training volumes (three parts in
this study).

2. Extensive validation of XCT using proposed approach

– Independent pycnometry and optical microscopy measure-
ments were used to evaluate and verify the enhanced defect
detection capability offered by the proposed approach.

– We demonstrate rapid and reproducible characterisation of
parts using non-destructive XCT imaging, automated image
analysis, and reporting to enable accurate analysis of porosity,
pore size/shape distribution, and deformation mapping.

3. Enabling rapid and high-quality batch characterisation of
more than a hundred metal parts, that can be leveraged
in systematic studies in AM.

– Using this method we were able to experimentally shed
light on geometry dependence of the impact of process
parameters on the quality of the printed parts.

RESULTS AND DISCUSSIONS
DL framework for XCT reconstruction
An overview of the proposed framework is shown in Fig. 1, that
consists of three main blocks. Figure 1a highlights the first block,
CAD-BHMBIR (CAD-based Beam Hardening corrected MBIR), which
uses the CAD model of the scanned parts along with physics-
based information to produce a high-quality reconstruction of the
part. Figure 1b shows our supervised DL approach, CAD-DLMBIR.
In this second block, the network learns a nonlinear mapping from
the low-quality analytical reconstruction (FDK), which suffers from
artifacts and noise owing to the sparsity of the scans (fast scans
with a limited number of projection views) as well as BH, to the
high-quality iterative reconstructions generated by CAD-BHMBIR,
which leverages the CAD models of the parts to reduce the noise
and BH artifacts. The last block, shown in Fig. 1c, is the trained
network under deployment during testing, where new sparse
measurements are input to the trained CAD-DLMBIR network and
the output will be the high-quality reconstruction approximating
CAD-BHMBIR output. In the following sections, we provide more
details about each of these blocks.

CAD-BHMBIR
MBIR51,52 is a powerful approach for obtaining high-quality
reconstructions in challenging scenarios, such as in low signal-
to-noise ratio, limited-view, and sparse-view data sets across
applications58. MBIR approaches cast the reconstruction as a
minimisation of a cost function that has two sets of terms—one
that enforces fidelity of the reconstruction to the measured data
and the other that regularizes the solution to have some desirable
properties. Specifically, we cast the reconstruction as

x̂ argmin
x

1
2
ky� Axk2W þ rðxÞ

� �
(1)

where y is the measured CT data, A is a forward model describing
the cone-beam CT geometry, W is a diagonal noise covariance
matrix set so that Wii= λi, λi is the dark-field corrected raw count
data, and r(x) is a regularizer based on the q-generalised Gaussian
Markov random field model59.
While in the past, and mainly in the context of medical XCT

imaging, MBIR techniques have been used to address BH36,37, they
cannot be readily applied to industrial XCT of metal AM parts
because the techniques require a perfect à priori segmentation of
the parts, as well as a significant computational burden for
estimating the BH correction factors.
In contrast to existing approaches, in this study, we leveraged

the CAD model of the part to be scanned to estimate an accurate
filter to correct for BH. Furthermore, we assumed that the source
spectrum and detector characteristics are not known. Once the
correction BH filter was obtained, we filtered the projection data
and used it in MBIR to produce a high-quality reconstruction of
the parts. Figure 2a summarizes the BH removal process. We
began by simulating the projection data of XCT measurement
corresponding to the CAD model of the object. We used the
phenomenological bimodal energy model proposed by Van de
Casteele et al.41 to accurately approximate the beam propagation
using two dominant energies in the X-ray source beam. Assuming
E1 and E2 as the two dominant energies of the source, one can
write

� log
I
I0

� �
¼ μðE2Þd þ log

1þ α

1þ αe�ðμðE1Þ�μðE2ÞÞd

� �
(2)

where I is the attenuated intensity, I0 is the reference bright image
intensity (a projection with no object in between), and d is the
thickness. μ(E1), μ(E2), and α are the model BH parameters and can
be obtained by fitting a simulation of the CAD model to the
experiment. We ran simulations with a CAD model and compute
μ(E1), μ(E2), and α to fit a slice from the reconstruction output to a
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corresponding slice from the real data set35. As shown in Fig. 2a,
we iteratively adjusted the parameters so that the final
reconstruction obtained from the simulated data had a similar
profile to the experimental data.
Once we optimised the BH model, so that the reconstruction

from the CAD model–based simulated data matched the
experimental data, we used the coefficients of an eighth order
polynomial to correct the simulated data and suppress BH artifacts
in the reconstructions from the simulated projection. We then

used this learned filter to correct the projection data obtained
from the experimental XCT scans, which were passed to MBIR for
final high-quality reconstruction. An example slice from the 3D
volume of the simulated data is shown in Fig. 2b. The data were
registered and compared with a corresponding slice from a real
measured XCT (as shown in Fig. 2c) with a standard reconstruction
algorithm (FDK). Even though the measurement settings were set
to run the scan in a reasonable amount of time while producing
good contrast and noise properties by industrial standards, the

Fig. 2 Procedure to suppress BH using CAD model and physics-based simulation and example results. a The diagram shows that optimum
BH parameters are calculated and updated until simulation fits real measurement. Then knowing the parameters, we can correct the
measured projections (see the text) and perform the final reconstruction. A slice from, (b) FDK reconstruction of the CAD-based simulated part
with BH and noise. This simulation is done with the final fitting parameters; (c) FDK reconstruction of a real data set with no correction applied
for BH; (d) FDK reconstruction of a real data set after BH correction; (e) MBIR reconstruction of a real data set after BH correction; (f) Line profile
comparison between slices shown in panels (b-e) along the vertical dashed line.

Fig. 1 Overview of the proposed approach, which consists of three blocks. a The first block allows us to produce high-quality reference
reconstructions via CAD-BHMBIR (details provided in Fig. 2). b In the second block, we train the network on multiple pairs of training data,
where the input is the inferior quality FDK reconstruction from sparse scans and the target is the corresponding CAD-BHMBIR reconstruction
of densely sampled scans (details of architecture provided in Fig. 3). c The third block shows how the network is being deployed to produce
high-quality reconstruction on new sparsely measured data. The novelties and contribution of this work are highlighted in green.
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typical FDK reconstructionwas limited by BH, scattering, and noise.
The corresponding CAD-assisted, BH-corrected reconstructions
using FDK and MBIR are shown in Fig. 2d, e. A comparison for
profile lines along the slices is shown in Fig. 2f. The cupping effect
at the center (brighter edges and darker interior) is clearer in the
profile corresponding to Fig. 2b, c (blue and orange profile lines),
which is removed in the profiles corresponding to Fig. 2d, e (green
and red profile lines). The FDK reconstruction with the corrected
projection data resulted in a BH-corrected but noisy image
volume. The lower noise and better quality of a profile (green line
in Fig. 2f) across an MBIR slice in panel (e) are also evident.

2.5D CAD-DLMBIR
Although it produces high-quality reconstructions, performing
CAD-BHMBIR for characterisation of hundreds of parts is
computationally prohibitive and would take several weeks to
complete for typical high resolution XCT scans even when using
an eight GPU-based system described in methods (sub-section i).
Instead, we used CAD-BHMBIR to produce reference high-quality
reconstructions for training our DL-based approach. As shown in
Fig. 1b, the main goal of the DL-based approach is to suppress the
significant noise and BH artifacts from low-quality analytical (FDK)
reconstructions of the sparse data to produce a high-quality
reconstruction approximating CAD-BHMBIR reconstruction of
densely sampled data while being able to run in near real time
due to the low computational complexity. To achieve this goal, we
trained our network on pairs of FDK reconstruction of sub-
sampled scans (FDK-Sparse) to CAD-BHMBIR of densely sampled
scans. The architecture for the deep learning convolutional neural
network is shown in Fig. 3, which was designed based on a
modified U-Net architecture50. Details of training, testing, as well
as training and test data sets and parts are provided in methods
(sub-sections a-d).
For the sake of comparison and evaluation of our approach, we

also trained a second network between pairs of FDK and CAD-
BHMBIR reconstructions of densely sampled data. This network
was used to create high-quality reference data for each individual
test part and to evaluate the performance of the proposed
approach. To summarise, the two trained networks are as follows:

1. CAD-DLMBIR-Sparse: trained on pairs of FDK of sub-
sampled scans (FDK-Sparse) to CAD-BHMBIR of densely
sampled scans

2. CAD-DLMBIR-Dense: trained on pairs of FDK of densely
sampled scans (FDK-Dense) to CAD-BHMBIR of the same
scans (only for creating reference and avoiding the need to
perform long iterative reconstruction for every test part)

Printed test parts
The geometry of the test specimen is shown in the inset of Fig. 4d,
where we color-coded and identified individual geometric
features. It contains a cylinder with approximately 15 mm
diameter and a flat surface to simplify the registration between
measured data and the CAD model. Furthermore, on top of the
cylinder, three distinct geometries were printed: walls (fins) of
different widths, inclined bars at different angles, and small rods of
different diameters. Overall, the full geometry fits approximately in
a 15 × 15 × 15mm3 full cylinder. The special design of this
specimen serves three purposes. First, the thick cylinder portion
is to cause significant beam hardening. Second, the top geometric
features allow for creating complex XCT reconstruction artifacts.
And third, this design aids in investigating the impact of geometry
on optimising the printing process parameters for a new material.
Specifically, the solidification and cooling rates during print for
these features are expected to be different than the bulk part, and,
in turn, their porosity levels should be different as a function of
printing process parameters. We printed 123 test specimens on
two build plates using various process conditions and parameters
of interest using an LPBF system. Details of process parameters are
provided in SI.

Case studies
Here, we present case studies highlighting the importance of the
proposed approach. The main goal of the case studies is to show
that the proposed approach considerably reduces scan time while
producing high-quality results with reduced noise and BH artifacts.
We also show that the high-quality reconstruction enables
superior defect detection and more consistent characterisation
capabilities, which are critical for confirmation of this tool for
certification and qualification of metal AM parts.
First, to determine the efficacy of the CAD-DLMBIR technique,

we compared the XCT reconstructions of a part with a
corresponding high-resolution micrograph obtained through
optical microscopy. To that end, a test part was XCT scanned

Fig. 3 2.5D CAD-DLMBIR architecture based on a modified U-Net architecture. Network trained on pairs of N patches of M ×M × 5 FDK
slices and M ×M × 1 slices from the CAD-BHMBIR. These patches are created from 3D volumes. Compared with the original U-Net architecture,
the modified U-Net architecture uses batch normalisation in the middle layers, and three convolutional layers are added at the end.
The softmax function at the end layer is also dropped because the network is trained for residual between ground truth and FDK input.
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and then cut and prepared for optical microscopy to capture its
polished surface. A semi-automatic registration approach was
used to register the 2D micrograph to 3D XCT volumes. Details of
the registration approach and some comparisons between
reconstructions are provided in the methods (sub-section f) and
the Supplementary Fig. 5, respectively.
Close inspection of the reconstructions indicates that CAD-

DLMBIR facilitated the detection of smaller flaws compared with
traditional FDK reconstruction. This is shown quantitatively in the
probability-of-detection (PoD) curves in Fig. 4a, where we plotted
the probability density function–like (pseudo-PDF) representations
of the PoD curves for the four XCT reconstructions (see sub-
section b in methods for calculation of PoD values and graphs).
Figure 4 shows that the CAD-DLMBIR reconstructions signifi-

cantly outperformed the standard FDK reconstructions in terms of
their ability to detect flaws—despite the application of an
identical flaw detection algorithm tuned to favor FDK. For
example, the FDK-Sparse reconstruction was only able to
successfully detect approximately 80% of flaws with circular
equivalent diameters 100 μm (about 6 pixels at a voxel size of
17.3 μm used in these scans noted in methods) or larger.
Increasing the number of views resulted in a 96% detect rate for
flaws 100 μm or larger, whereas both CAD-DLMBIR reconstruc-
tions, regardless of their number of views, were successfully able
to detect all flaws with circular equivalent diameters (CEDs)
100 μm or larger. Below flaw sizes of 100 μm, flaw detectability in
the two FDK reconstructions dropped precipitously. The FDK-
Dense reconstruction only achieved PoDs of 20% for flaws larger

than 25 μm, and 32% for flaws larger than 50 μm. The FDK-Sparse
reconstruction only achieved PoDs of 12% for flaws larger than
25 μm, and 18% for flaws larger than 50 μm. In contrast, the CAD-
DLMBIR-Sparse reconstruction was successfully able to detect 50%
of flaws larger than 25 μm (slightly larger than 1 pixel), 78% of
flaws larger than 50 μm (about 3 pixels), and 100% of the flaws
larger than 90 μm (about 5 pixels). Thus, even with a sparse scan
with only 193 views, the CAD-DLMBIR volume demonstrated a
marked 2.5–4.3 × improvement in flaw detectability compared
with the FDK-Dense and FDK-Sparse reconstructions, with 580 and
193 views, respectively. The superior detection capability furn-
ished by CAD-DLMBIR-Sparse reconstruction is shown qualitatively
in Fig. 4b, which compares the flaws that were successfully
detected by the FDK-Dense and CAD-DLMBIR-Sparse volumes.
Next, we compare the 3D XCT reconstruction results from

different algorithms. Figure 5 depicts three slices from X-Y, X-Z,
and Y-Z views of the 3D volume, reconstructed using the four
aforementioned algorithms. As noted, we trained a second
network, CAD-DLMBIR-Dense, that serves as the reference data
to avoid the necessity of performing a computationally expensive
iterative reconstruction for every part. FDK-Dense is the output of
the standard reconstruction algorithm being used, and FDK-
Sparse is the standard reconstruction output when reducing the
number of views by a factor of 3. More figures and volumes are
provided in the Supplementary Figs. 2–4.
The figures demonstrate that the CAD-DLMBIR-Sparse produced

high-quality reconstructions (comparable to CAD-DLMBIR-Dense)
and showed significant improvement compared with the standard

Fig. 4 Comparison of the flaws successfully detected by the FDK and CAD-DLMBIR reconstructions. a Probability of Detection (PoD)
curves74 (see methods, subsection b) for the four XCT reconstructions using different algorithms for one of the parts (identified in the inset of
the panel (c)); and (b) an overlay of the successfully detected flaws in both the FDK-Dense and CAD-DLMBIR-Sparse reconstructions. c Density
comparison with pycnometery for 123 parts printed with different printing process parameters. The proposed approach shows 43%
improvement in RMSE, while using a sparse scan with 193 views. Segmentation for each FDK-Dense reconstruction may be individually tuned
and improved, but it will take a significant amount of time and effort. On the other hand, the consistency of reconstructions by CAD-DLMBIR-
Sparse simplifies the automation and high-throughput analysis of scanned parts. The inset in panel (c) corresponds to density values for the
part used in panels (a) and (b). d Analysis of porosity in different geometric features of the printed parts (features are named on the geometry
on the bottom left). Multiple sets of optimal printing parameters in the same build as a function of geometry were observed. The
segmentation (flaw detection in X-ray CT) was performed using algorithm described in methods subsection d.
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reconstruction algorithms. These results are highlighted with
arrows and dashed circles in the figure panels. These figures
shows that despite reducing scan time by a factor of three, the
proposed approach can maintain the quality of the reconstruction.
To further quantify the improvements observed, we segmented

the flaws (e.g., defects, cracks, pores) in different reconstructions
for all parts in the set. The segmentation (flaw detection in X-ray
CT) was performed using the algorithm described in methods
(sub-section d). From those segmentation results, we calculated
the density of flaws in the parts and compared the results with
pycnometry. Helium pycnometry60 is a standard method for
density measurement of AM parts (see details in methods). The
main drawback of pycnometry is that it is a point measurement
and cannot provide any details regarding the spatial or
morphological distribution of part defects. To obtain the density
of the volumes (Δ) from segmentation of flaws in reconstruction,
we used Δ= 100*(1− Vp/V), where Vp is total computed volume
after segmenting out the pores/defects, and V is the volume with
all the flaws filled. We normalised density values based on the
median of the pycnometry data. The results are shown in Fig. 4c.
The root-mean-squared-error (RMSE) between density extracted
by CAD-DLMBIR-Sparse and pycnometry is 0.01445, and for FDK-
Dense and pycnometry is 0.0255, which is about 43% improve-
ment across all the parts. The inset in Fig. 4c shows the density for
the part used in Fig. 4a, b, which shows a seemingly small change
in the extracted density could be correspond to a large detection
capability between the two reconstructions. Note that pycnometry
measurements are mostly affected by the presence of large
internal voids, such as lack-of-fusion, due to the cubic scaling of
volume with flaw size. Therefore, even a small difference in
measured density can correspond to a large effect on detection
capability due to the rapid degradation of the PoD for smaller flaw
sizes. Although the results (both pycnometry and PoD calculation)
suggest a significant improvement in porosity analysis and flaw
detection using CAD-DLMBIR-Sparse compared with FDK-Dense
and FDK-Sparse, this is not the sole goal since segmentation for
each FDK reconstruction may be individually tuned and improved.
This individual process will, however, take a significant amount of
time and effort, which adds to the already complex and time-
demanding task of printing process parameter optimisation.
Conversely, the consistency of reconstructions by CAD-DLMBIR

(both Sparse and Dense scans) simplifies the automation and
high-throughput analysis of scanned parts.

Fast and high throughput characterisation
In addition to generating high-quality 3D reconstruction volumes
with reduced noise and artifacts, the proposed approach allows
for fast and consistent reconstructions, which simplifies the
automation of fast characterisation and parameter optimisation
process of AM parts. Such high-quality, fast and consistent
reconstruction enables accurate quantification of flaw sizes and
morphology, and study their effects on the mechanical perfor-
mance and properties of the printed part. This is a major step
toward qualification and certification of AM parts that has
historically been a bottleneck preventing AM from reaching its
full potential61.
Previous work has demonstrated development of the Al-Cu-Ce(-

ZR) family of alloys which produce a desirable combination of
mechanical properties and printability62,63. Here, to illustrate the
impact of our method, we use CAD-DLMBIR to optimize process
parameters for a new alloy, Al-9Cu-6Ce-1.85Zr, in this family. In
Fig. 4d, we plot the porosity values for two printing parameters,
velocity and laser power, for four of the geometrical features in all
123 printed parts. The figure emphasizes the importance of 3D
geometry in selecting the optimal process parameters by
comparing the porosity values for the cylindrical body of the part
to the porosity in the smallest rod, smallest fin, and 15∘ inclines
printed on top. The results indicate that the optimal process
parameters can differ depending on the geometry even within the
same part. More importantly, Fig. 4d highlights that the approach
developed in this work enables analysis and high-quality
characterisation of these small features in a larger metallic
component, while performing batch non-destructive 3D X-ray CT
scanning with sparse number of views in each scan. This approach
provides extensive access to studying the 3D geometry depen-
dence of process parameters in metal AM. Further comparisons
and correlative studies can be made between porosity levels in
different geometric features and various process parameters (refer
to Supplementary Figs. 7–9 and corresponding text in supple-
mentary note 5 for some examples).
One can achieve the same reconstruction quality by using

iterative reconstruction on each measurement or performing a

Fig. 5 Qualitative cross section comparisons across different views. FDK and CAD-DLMBIR reconstructions are shown both for Sparse and
Dense scans. (a) X-Y slice and (b) expanded view of highlighted region in (a). c X-Z slice and (d) expanded view of highlighted region in (c).
e Y-X slice and (f) expanded view of highlighted region in (e). Noise was significantly reduced and several of the pores/defects that were less
clear in FDK-Dense data and completely smeared in FDK-Sparse data were restored in CAD-DLMBIR results with high contrast (in both CAD-
DLMBIR-Dense and CAD-DLMBIR-Sparse). Some examples are marked with an arrow (smaller flaws) and are highlighted inside a circle.
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new, very dense view scan and using FDK. The latter is a tedious
task and would require significant testing and new measurements
to achieve the same quality as the iterative reconstruction with
fewer views. In fact, one popular choice for number of views to be
used for a CT scan, under the assumption of a high signal-to-noise
ratio (SNR), is setting the value to be equal to the number of
detector columns53 - which is 1840 in our case. Thus, to achieve an
accurate reconstruction using the FDK algorithm, one needs to
perform scans with at least a factor of three (1840/580 ≈ 3.1) more
views than what we have used in our “dense scan” experiments.
This in turn results in an overall scan time which is at least 9.3
times more than our experiments using sparse-view data
combined with CAD-DLMBIR.
The alternate approach of using a sparse view scan, like in our

studies, combined with fully iterative reconstructions, is also not
trivial and would require prohibitive amount of computation for
fast reconstructions using currently available open-source imple-
mentations. Iterative approaches in the literature64–66 take at least
several hours to complete one volume (at least 6 hours per
volume for the data in this work) using an eight GPU computing
resource as noted in subsection e in methods. These scenarios are
time-consuming, making high-throughput batch characterisation
cumbersome. Our proposed approach significantly shortens the
total characterisation time for the 123 coupons, which would take
more than 10 days using the standard approach with FDK
(2h × 123). Using our approach, the total time is about 1.2 days for
123 scans and 123 reconstructions using CAD-DLMBIR. One day
dedicated to model training increases the total time for the first
run to 2.2 days. Note that the training step can be performed
offline. Also, every new scan will only take about 14 min total for
scan and reconstruction.
An interesting observation in the results is the fact that the

training was done on three parts with maximum 0.14% porosity,
about 3300 flaws and 0.0007mm3 average pore size. During
testing, however, the network produced consistent and accurate
results for parts as porous as 6.7% with more than 22,000 flaws
and 0.006mm3 average pore size. It is worth noting that the part
used in Fig. 4a is 1.5% porous with about 16,000 pores and
average pore size of 0.0018mm3, which are all well-above what
the network was trained on. In addition, while the network
training is offline and can be trained for different materials, we
tested the model’s generalisability by applying the same trained
network in the shown case studies to other alloys. To that end, we
tested the network on parts printed using AlSi, Inconel, and
316 steel alloys. In the case of similar alloys or alloys that are
measured with the same measurement setting (even with a
different geometry than what we trained on), we only need to
ensure that the median of the intensity values of two modes
available in the images (material and background/air) matches
between training parts and the inference parts. Therefore, before
inference, we apply a pre-processing step that performs a simple
Otsu threshold67 on the input images, clusters them to two
groups, and linearly matches the median of the input to median of
the clusters recorded during training. The inverse of this linear
operation will be applied to the output to return actual intensities.
An example demonstrating the generalisability of the approach is
shown in Supplementary Figure 11. We emphasise that these are
only preliminary results and a thorough investigation of generali-
sability of the approach is a subject of our future studies.
In summary, this study demonstrates a powerful approach for

characterisation of metal AM that can be applied to produce
consistent characterisation of AM parts and be used to find optimal
printing process parameters for novel alloys in LPBF. We quantified
the significant improvement in scan quality and scan acquisition
time using high-resolution optical microscopy images as refer-
ences. Comparison with pycnometry demonstrated remarkable
agreement that (to the best of our knowledge) has not been
achieved in previous reports comparing XCT and pycnometry. Such

improvement will lower the cost of characterisation (for both labor
and maintenance) and provide consistency for qualification and
certification of AM parts, which is currently preventing AM from
reaching its full potential. The method allowed us to investigate
regions of optimum process parameters and their geometry
dependence for LPBF printing of Al-9Cu-6Ce-1.85Zr alloy from Al-
Cu-Ce(-ZR) family of alloys. The proposed approach paves the way
for automating the inline characterisation of AM parts and
providing seamless feedback to the printing systems.

METHODS
Training
The DL architecture for our network is shown in Fig. 3, which was
designed based on a modified U-Net architecture50 to perform
residual learning to suppress artifacts and noise. Compared with
the original architecture50, the last softmax layer was omitted
since we did not perform classification. Rather, we needed full size
images, so three additional convolution layers (Conv2D, Relu, and
BatchNorm) were added before the final 1 × 1 convolution. Batch
normalisation was also added in the intermediate layers to
stabilize the network and to provide better convergence. More
importantly, and inspired by our prior work68, we trained the
network in a 2.5D manner. 2D networks learn a nonlinear mapping
between pairs of 2D input/target images (all the convolutions are
in 2D), while 3D networks learn a nonlinear mapping between
pairs of 3D input/target images (all the convolutions are in 3D).
Unlike 2D and 3D networks, 2.5D networks learn a mapping
between a 3D input and 2D output. A sliding window strategy was
employed to create 3D patches of training data. The patch size in
our work was 256 × 256 in the in-plane direction (X-Y), and 5 in the
cross-plane (Z) direction. The stride for the patches size was 128 in
the X-Y direction and 1 in the Z direction. Therefore, each training
pair included a n × n × 5 FDK input and n × n × 1 MBIR target,
where n is 256. The network absorbed the 3D information by
taking 5 neighboring slices as input, and from each 5 neighboring
slices, it learned the mapping to the center target slice. The
number of neighboring slices was chosen based on the analysis by
Ziabari et al.68. This approach allows for the 2.5D network to be
nearly as accurate as a fully 3D network with significantly reduced
computational cost (all the convolutions are in 2D). In fact, the
2.5D network is approximately the same inference speed as a 2D
network and approximately the same quality as a 3D network.
The network minimizes a mean squared error (MSE) residual

loss function

ℓðθÞ ¼ 1
2N

XN
i¼1

Rðx i ; θÞ � ðPcenterx i � yiÞð Þ2: (3)

Here, x 2 RN ´M ´M ´ 5 and y 2 RN ´M´M are N batches of input
and target training patches. A batch size of 32 was used during
training of our neural network. Each batch of xi contains 5
neighboring slices as input to incorporate the 3D spatial
information, and y corresponds to the ground truth for the center
slice of these neighboring slices. R(x; θ) is the nonlinear mapping
learned by the network with θ as network parameters. It takes
batches of 5 neighboring slices and outputs the center residual
slice estimated by the network. Pcenter is an operator projecting
input x from 5 neighboring slices to the center slice in the batch i,
which corresponds to the residual between the center slice of
input and the target ground truth image.
We used 256,000 patches of data using a 80/20 cross-validation

approach69 for training. The 256,000 patches are created by
extracting patches from the original data and performing 7 data
augmentations. Since the original training volumes of data are of
sizes 1000 × 1000 × 1000, we crop them to individual patches of
256 × 256 × 5 with a in-plane stride of 128 and cross-plane stride
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of 3, that increases the number of training data. The 7
augmentations include in-plane, cross-plane, up-to-down, and
left-to-right flips, rotations at 90, 180, and 270 degrees, and
combinations of flips and rotations of the image patches. The
augmentation of the validation set was separated from training
set, so no common data were included in validation and training
sets. To minimize the mean squared error residual loss function,
we used the Adam optimiser70 with an initial learning rate of 0.001
and default momentum setting. If the validation loss stagnated for
15 consecutive epochs, we reduced the learning rate by 2 × .
Compared with the architecture discussed by Ziabari et al.68, the

new U-Net architecture learns local features better and renders
more consistent results. An example comparison is provided in the
Supplementary Fig. 1.

Testing
The last part of this framework is deployment for test parts, as
shown in Fig. 1c. During testing, sparsely measured data is input
to the framework and first reconstructed by the FDK. The FDK
reconstruction is then input to the trained network to suppress
noise and BH, producing a high-quality reconstruction.

Training data sets
To prepare training data, we scanned 3 parts produced by a metal
AM printer. The level of porosity in the three parts used for
training were 0.081%, 0.14%, and 0.12% with 1300 to 3,300 pores
in the volume and an average pore volume between 0.0001 and
0.0007mm3. The standard setting recommended by the XCT
system expert operator is set to 580 views at approximately every
0.35∘ with 1 s integration time and 4 image averaging per view
angle. One scan takes nearly 39 min. It is worth noting that expert
operators typically determine the setting empirically while
considering trade-offs between quality of scans, cost and labour.
The detector comprised 1456 × 1840 (rows × columns) with a
pixel size of 0.127 × 0.127 mm2. CAD-BHMBIR was used to
produce high-quality reconstructions that acted as target ground
truths for training the DL network. Furthermore, as suggested in
Fig. 1b, we produced input for training pairs of the DL network by
sub-sampling the reference XCT raw projection data by a factor of
3, i.e., every 3 projections from 580 views in the scans were used
to imitate an accelerated scan that acquired sparse data in a third
of the default scan time (i.e., 193 views or almost 13 min). The
sub-sampled sparse data were reconstructed using the FDK
algorithm, which generated a reconstruction with significant BH
artifacts as well as streak artifacts and noise due to the under-
sampling. The three pairs of FDK reconstructions from the sub-
sampled data and CAD-BHMBIR reconstructions from the densely
sampled data served as a training set for CAD-DLMBIR. Unlike in
the case of real-world natural images used to train deep neural
networks, we have extremely limited training data comprising
three volumetric reconstructions that have a size of approxi-
mately 1000 × 1000 × 1000 voxels.

X-ray CT scanning
All the XCT scans were collected by ZEISS’s Metrotom CT scanner.
A shortscan49,71 was used where only projections were acquired
over a [0, 180+ 2α] range of projection angles. α is the cone beam
fan angle. For these scans, the fan angle was ≈ 16∘, the tube
voltage was set at 180 kV, and the current was set at 113 μA. In
total, 580 projections were acquired for reference scans, and a
third of those (i.e., 193 views) were for sparse scans. The
specification for the flat panel detector used in the system can
be found here: https://www.vareximaging.com/wp-content/
uploads/2022/03/2520DX-I-Industrialpds.pdf. A 0.25 mm copper
filter was used to reduce BH, and the voxel size in the scan was
17.3 μm.

Micrograph registration to X-ray CT and PoD
Post-build microscopy data were registered to the XCT data by
applying differential evolution72 to optimise a geometric trans-
formation matrix mapping the micrograph to the XCT volumes.
Additional details of the microscopy registration process are
provided in the Supplementary Note 3. Once the micrograph was
registered, flaws were identified in both the micrograph using
thresholding algorithms, and compared against the flaws
detected in the X-ray CT volumes using the segmentation
approach described in methods subsection d. Flaws in the optical
micrograph that were successfully detected by each XCT
reconstruction were identified using the matching algorithm
described by Sundar et al.73. The XCT PoD curves were generated
by binning the flaws detected in the optical micrograph according
to their circular equivalent diameter74. For each XCT reconstruc-
tion, the number of successfully detected micrograph flaws in
each size bin were determined, and the PoD curves were
generated by dividing the number of successfully detected flaws
in the XCT data by the total number of optical micrograph flaws in
that size bin. The PDF PoD curves can be interpreted as the
probability of detecting flaws of a given flaw size, whereas the
CDF PoD curves can be interpreted as the probability of detecting
flaws of a given flaw size or above.

Pycnometry
In this work, helium pycnometry60 served as ground truth for
computing the overall density of the part to evaluate the density
obtained by measuring the segmented pores from the recon-
structed volumes. We used the Micromeritics AccuPyc II 1340 to
perform pycnometry and measure skeletal density, which is the
ratio of the mass of a solid material to the sum of the volumes of
the solid and blind pores within the material (e.g., powders) (ASTM
D3766). Using helium gas displacement as the mode, the system
used the volume–pressure relationship of Boyle’s law to calculate
density. This process is relatively simple, but the greatest
challenges to rapid turnaround are manual testing setup and
data collection (despite access to new technologies).

Segmentation
The defect segmentation algorithm uses the image pre-filtering
described by Sato et al.75, which is based on computing the image
Hessian and then applying the shape and size specific filtering
selectively amplifying 3D objects of certain morphology, including
elliptic shapes (i.e., pores), thread-like shapes (i.e., channels), and
plates (i.e., cracks), followed by multilevel adaptive Otsu segmen-
tation76, allowing us to extract the objects that most likely belong
to the given shape class.

Computational resources
All the FDK, MBIR, CAD-DLMBIR training and testing are done on
an NVIDIA DGX with eight A100-SXM4-40GB GPUs with Ampere
architecture.
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