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Generalization of the mixed-space cluster expansion method
for arbitrary lattices
Kang Wang1✉, Du Cheng 1 and Bi-Cheng Zhou 1✉

Mixed-space cluster expansion (MSCE), a first-principles method to simultaneously model the configuration-dependent short-
ranged chemical and long-ranged strain interactions in alloy thermodynamics, has been successfully applied to binary FCC and BCC
alloys. However, the previously reported MSCE method is limited to binary alloys with cubic crystal symmetry on a single sublattice.
In the current work, MSCE is generalized to systems with multiple sublattices by formulating compatible reciprocal space
interactions and combined with a crystal-symmetry-agnostic algorithm for the calculation of constituent strain energy. This
generalized approach is then demonstrated in a hypothetical HCP system and Mg-Zn alloys. The current MSCE can significantly
improve the accuracy of the energy parameterization and account for all the fully relaxed structures regardless of lattice distortion.
The generalized MSCE method makes it possible to simultaneously analyze the short- and long-ranged configuration-dependent
interactions in crystalline materials with arbitrary lattices with the accuracy of typical first-principles methods.
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INTRODUCTION
The site occupation of atoms on parent lattice determines the
thermodynamic interaction, and thus the variation of the site
occupation gives rise to the configurational degrees of freedom
for alloy thermodynamics1–6. The equilibration from disordered
state to thermodynamically favored alloy configurations give rise
to short-, long-ranged ordering or clustering, all of which are
closely related to the phase stability and physical, chemical and
mechanical properties of materials.
It has been proven that, for anm component system on a lattice

of N sites, the total energy of mN possible configurations can be
exactly mapped onto a generalized Ising model based on the
energetic contributions of atomic clusters on parent lattice7. With
the popularization of first-principles total energy calculations
based on density functional theory (DFT)8,9, the energetic
contributions of atomic clusters, or effective cluster interactions
(ECIs), can be obtained given the total energies of a few coherent
structures10. This method is commonly known as cluster expan-
sion (CE)4,5,11. In theory, infinite number of clusters and ECIs are
needed to exactly map the energy of ordering structures for any
nonlinear dependence12. In practice, applications of CE to wide
varieties of materials show that the energy of ordering structures
can be parameterized with adequate accuracy using relatively
simple clusters (e.g., pairs, triplets, and quadruplets) with small
diameters (i.e., largest two-site distance in a cluster). In addition,
only a small number of energies for coherent structures with small
unit cell (~10 atoms) are required in the training set of CE11.
In materials, long-ranged interactions, other than short-ranged

chemical interactions, may play important roles in phase stability
and morphology. In some size-mismatched systems, the displace-
ment field due to relaxation decay slowly along particular
directions, leading to long-ranged strain interactions13,14. Such
long-ranged strain interactions can affect the phase stability and
shape of phase diagram, hence are non-negligible for size-
mismatched alloys15. Modeling such long-ranged strain interac-
tion using DFT is proven to be challenging, as only structures with
relatively small cells (up to hundreds of atoms if high accuracy is

desired) can be efficiently handled. To incorporate the medium-
ranged strain interactions in CE of Al-Cu system, the structures
with large supercells (256 atoms) optimized by DFT are included in
the training set of CE16. The practical challenges of CE with
supercells in the training set arise due to the computational cost
of DFT for larger structures and longer cut-off distances for
clusters in CE. Energetics of large structures (e.g., hundreds of
atoms) are needed to properly parameterize the magnitude and
orientation dependence of the long-ranged interactions. Apart
from the larger structures, longer cut-off distances for the clusters
means significantly large number of clusters and the correspond-
ing ECIs need to be included in the CE training. For any lattices,
the number of symmetrically distinct clusters increases dramati-
cally with cut-off distances; see Supplementary Fig. 1. As the cut-
off distance is increased, the number of fitting parameters
increases quickly and can easily exceeds the number of training
structures, making the fitting process meaningless due to the
infinite number of solutions for such situations. Even with large
structures in the training set, cut-off distances for clusters are still
needed in CE, making it incapable of modeling the long-ranged
interactions14.
In order to incorporate long-ranged strain interactions in CE,

Laks et al. performed the Fourier transform to the pair interaction
terms in CE and obtained the interaction energy in reciprocal
space (k-space) based on the static concentration wave method14.
The interaction parameters in k-space are obtained based on the
strain energy required for alloy constituents to maintain
coherency in the epitaxial configuration, which is termed
constituent strain energy (CSE). Such formulation corresponds to
the AqBq type ordering in the long-periodicity limit (q ! 1).
Further incorporating the attenuation for medium-ranged inter-
actions17, the CSE captures the strain interactions beyond the cut-
off distance in real space (r-space) CE (e.g., ~15 Å). This method is
called mixed-space cluster expansion (MSCE)18–20, since the short-
and long-ranged interactions are modeled in r- and k-space,
respectively. The name mixed-basis cluster expansion is also
adopted in some papers21–23. The MSCE has been applied to many
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systems, i.e., Ga1-xInxP14,24,25, Cu-Pd24,26, Cu-Au20,27,28, Cu-Ag20,27,28,
Ni-Au20,27,28, Ag-Pd29, Al-Cu19,30, Al-Zn19,31, Al-Mg18, Ga1-xInxN21,32

alloys on FCC lattice and Mo-Ta22, V-Nb33, V-Ta33, and Nb-Ta33

alloys on BCC lattice. Note that the calculations for Ga1-xInxP or
Ga1-xInxN are essentially binary, since only the sites for Ga or In in
Ga1-xInxP or Ga1-xInxN are subjected to change of occupations.
The application of MSCE is scarce in recent years. In the original

publication14, the k-space energy was formulated for the case of
single sublattice and the method for the orientation dependence
of CSE was designed for cubic systems with harmonic elastic
response. The algorithm for CSE was later generalized to the case
of anharmonic elastic response due to large lattice mis-
matches27,28,34 and hexagonal systems35,36. In the current work,
the theory of MSCE is extended to systems with multiple
sublattices and combined with a crystal-symmetry-agnostic
algorithm for CSE. The generalized CSE is applied to Mg-Zn alloy
and accurate parameterization of the formation energies is
achieved.

METHODS
Formulation of k-space pair interactions for multiple
sublattices
The convergence of r-space CE becomes very challenging when
the long-ranged interaction is strong in the system13,14. Although
some medium-ranged components of interactions can be
incorporated in r-space CE to some extent using larger structures
in training sets16, the long-ranged interactions beyond the cut-off
distance and its long periodicity limit cannot be correctly
incorporated. To resolve this issue, the MSCE approach was
proposed to simultaneously consider the configuration-
dependent short- and long-ranged interactions, including the
long periodicity limit14. In MSCE, the long-ranged interaction is
reformulated in k-space and can be solved over a few k-points in
the first Brillouin zone (BZ) of the parent lattice, as long as the
alloy configuration follows periodic boundary conditions.
Previous formulation by Laks et al. was derived for phases with

a single sublattices14, i.e., only one atom corresponds to each
Bravais lattice site. In general, there can be multiple atoms in the
basis of each lattice site and, in this case, the crystallography is
usually described by multiple interpenetrating simple Bravais
lattices, i.e., multiple sublattices. For a crystalline structure with
multiple sublattices, the Fourier transform of the spin variable (i.e.,
the structural factor) follows37,38,

Sk;m σð Þ ¼ 1
N

XN
l¼1

Sl;m σð Þ � e�ik�Rl (1)

where N is the number of primitive cells of the parent lattice in the
crystal (or the number of basis), v is the number of sublattices (the
number of atoms in the primitive cell or in the basis of the parent
lattice), Rl denotes the coordinate of the origin of the l-th primitive
cell in the structure and m is the index for the m-th atom in the
basis of the primitive cell. Following Eq. (1), the inverse Fourier
transform is,

Sl;m σð Þ ¼
X
k

Sk;m σð Þ � eþik�Rl
(2)

Although long-ranged multi-body interactions can be important
in principle, the long-ranged interaction in MSCE is formulated
using only pair interactions, due to the mathematical complexity
and additional physical parameters associated with multi-body
interactions in k-space1,14,38. For the case with multiple sublattices,

the interaction from a pair of atoms at Ri þ hm and Rj þ hn follow,

E2ðσÞ ¼ 1
2

P
i;j

P
m;n

Jm;nðRi ;RjÞ � Si;mðσÞ � Sj;nðσÞ

¼ 1
2

P
i;j

~S
T
i ðσÞ � ~JðRj � RiÞ � ~SjðσÞ

(3)

where i and j run over the basis and m and n run over the
sublattices. Jm;n Ri ;Rj

� � ¼ Jm;n Rj�Ri

� �
is the pair interaction

between atoms on m- and n-th sublattice. The last line in Eq. (3)
gives the pair interaction in matrix form, where eSi σð Þ is the column
vector of the spin variables of atoms in the basis located at Ri and
the superscript T denotes transposition. eJ Rj � Ri

� �
is the v ´ v

matrix of pair ECIs. Since the spin variable must be real numbers in
r-space, Sk;p ¼ S��k;p where the superscript * indicates the complex
conjugate. Substitute Eq. (2) into Eq. (3) leads to the pair
interaction in k-space,

E2ðσÞ ¼ N
P
k

P
m;n

Sk;mðσÞ � Vm;nðkÞ � S�k;nðσÞ

¼ N
P
k

~S
y
k � ~VðkÞ � ~S

�
k

(4)

where superscript y indicates the conjugate transpose of complex
matrix, Rl ¼ Rj � Ri and Vm;n kð Þ is the Fourier transform of r-space
pair interaction energy,

Vm;n kð Þ ¼ 1
2

X
l

Jm;n Rlð Þ � e�ik�Rl (5)

And eSk ¼ 1
N

P
l
eSl � e�ik�Rl is the Fourier transform of eSl , i.e., the

column vector of the r-space spin variable corresponding to site
Rl . eV kð Þ is the v ´ v matrix of the Vm;n kð Þ. In the derivation of Eqs.
(4) and (5), the translational invariance of Jm;n Rlð Þ andP

j e
�i k�k0ð Þ�Rj ¼ Nδk;k0 are used. For the case of single sublattice

(i.e., v ¼ 1), Eqs. (1–5) reduce to the formulation by Laks et al.14. So
far, Eqs. (4, 5) are equivalent to the pair interactions in r-space CE,
since the Fourier transform simply gives k-space description of
pair interactions. Consequently, both formulations share the
convergence issue for systems with long-ranged interactions.

Long-ranged strain interactions in k-space
Besides the computational challenges due to large structures
and longer cut-offs for clusters (see INTRODUCTION), the failure
of the r-space CE for long-ranged interactions can also be
interpreted in k-space in the long periodicity limit for compound
AqBq (q ! 1)14. Non-vanishing interactions in the long periodi-
city limit means that the interaction is non-analytic at the origin
of k-space (i.e., Γ). Since long-ranged interactions are generally
orientation-dependent, they approach Γ with different values
along different orientations and lead to varying magnitudes of
interactions in the neighborhood of Γ. Using spherical coordi-
nates, the value of CSE only depends on the azimuthal or polar
angle of k-point, but stays constant along the radial direc-
tion14,39,40; see RESULTS for the case in Mg-Zn alloy.
The CSE arising from the size-mismatch of alloy constituents is

long-ranged in nature, and cannot be accounted for by any r-
space method, where a cut-off for the interaction distance is
always required. To overcome the incapability of r-space CE for
long-ranged interactions, Laks et al.14 proposed MSCE to attribute
the long-ranged CSE to pair clusters, separate it from the total
energy and model all the pair interactions in k-space, while the
non-pair cluster interactions are modeled in r-space. In this way,
the calculation of pair interactions in k-space requires Fourier
transform of the r-space ECIs. In the current modeling, the CSE
from the long-ranged pair interactions (modeled in k-space) is
explicitly separated from the relatively short-ranged pair interac-
tions (modeled in r-space, i.e., Eq. (9)). After separating the short-
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and long-ranged interactions, the pair interaction follows

E2ðσÞ ¼ ESR2 ðσÞ þ ELR2 ðσÞ
¼ N

P
k

P
m;n

Sk;mðσÞ � ½VSR
m;nðkÞ þ VLR

m;nðkÞ� � S�k;nðσÞ (6)

where VSR
m;n kð Þ and VLR

m;n kð Þ are the short- and long-ranged parts of
the pair interactions in k-space. The goal of such separation is to
let VLR

m;n kð Þ contain the singularity of Vm;n kð Þ at Γ, so that, after
separation, VSR

m;n kð Þ is zero at Γ and can be handled by r-space
methods with a cut-off distance. In practice, VSR

m;n kð Þ is interpreted
as the chemical interactions of pair clusters and can be obtained
by the Fourier transform of the r-space pair ECIs using Eq. (5).
Meanwhile VLR

m;n kð Þ is considered as the long-ranged interactions
due to the size-mismatch between alloy constituents along k, and
must be obtained independent of r-space CE. Therefore, the
configuration dependent CSE follows,

ΔECS σð Þ ¼ N
X
k

X
m;n

Sk;m σð Þ � VCS
m;n kð Þ � S�k;n σð Þ (7)

Once the long-ranged strain interaction parameters in k-space
VCS
m;n kð Þ are known, Eq. (7) along with the definitions of structural

factors (Eqs. (1–2)) is sufficient to calculate the CSE for a given
structure.
To model the strain interaction arising from size-mismatch

between alloy constituent, the long-ranged interaction parameter
VCS
m;n kð Þ in Eq. (7) needs to be calculated for each pair of

endmembers for the underlying lattice. For example, for a
complex lattice of (A,B)2(C,D,E)3, there are 6 endmembers and
VCS
m;n kð Þ for 15 binary combinations of the endmembers needs to

be calculated. If all the sites within the primitive cell (or the
sublattices) are equivalent, VCS

m;n kð Þ becomes independent of the
sublattice on which atoms reside, i.e., VCS

m;n kð Þ ¼ VCS kð Þ, in the
long-range limit. In this case, the long-ranged interaction is
modeled using pairs of primitive cells, rather than pairs of atoms.
This means that the long-ranged interaction energy is zero
between two atoms within the same primitive cell, since long-
ranged interaction is expected to have much larger length scales
than the primitive cell. Therefore, the removal of the dependence
on sublattice for VCS

m;n kð Þ in the long-ranged limit is only applicable
to the case where all sublattices are equivalent, which does not
lead to the loss of resolution on the description of configuration
dependent strain energy. Moreover, the vector connecting the
origins of primitive cells, rather than the vector using the spatial
positions of atomic pairs, is used for the orientation of the
interaction, since the difference in between is vanishingly small for
long-ranged pair interaction. Later, a method to calculate VCS kð Þ
for long-ranged CSE from DFT will be presented.

Anisotropic attenuation of the long-ranged interactions
Combining the r-space CE and the formulation of long-ranged
interactions, the expansion formula of MSCE can be written as,

EMSCEðσÞ ¼ N
P
F

0DFJFΠ
�
FðσÞ þ N

P
k

P
m;n

Sk;mðσÞ � VSR
m;nðkÞ � S�k;nðσÞ

þN
P
k
�VCSðkÞP

m;n
Sk;mðσÞ � S�k;nðσÞ

(8)

On the right-hand-side (RHS) of Eq. (8), the first term is the r-
space CE and the summation (with prime sign) runs over all the
non-pair clusters. And the symmetrically equivalent clusters are
grouped into a class of clusters (or figures F), DF is the number of
equivalent clusters (or multiplicity) in F, JF is the corresponding ECI
for the equivalent clusters in F, ΠF is correlation function by
averaging the product of spin variables. The second term on the
RHS of Eq. (8) is the chemical interaction from pairs and the third
term is the CSE, both modeled in k-space.

To perform calculations using Eq. (8), Fourier transform of the r-
space pair interactions is needed to obtain VSR

m;n kð Þ, as in Laks
et al.14. Note that the second term on RHS of Eq. (8) is equivalent
to the pair interaction in r-space CE if the derivation in Eqs. (4) and
(5) is inversed. In this way, the expansion of configuration-
dependent energy using MSCE follows,

EMSCE σð Þ ¼ N
X
F

DFJFΠF σð Þ þ N
X
k

VCS kð Þ � exp � kj j2
A kð Þ2

" #X
m;n

Sk;m σð Þ � S�k;n σð Þ

(9)

From Eqs. (6–9), a question arises concerning the modeling of
the medium-ranged interactions that are not explicitly included in
r-space CE or VCS kð Þ, since r-space CE is short-ranged and VCS kð Þ is
formulated in the long periodicity limit. Analysis by Ferreira et al.
showed that the CSE decays exponentially with magnitude of the
major wave vector with largest Sk σð Þj j, when applied to medium-
ranged structures17. In the formula by Ferreira et al.17 and others
that followed18,30, it is assumed that the attenuation coefficient is
orientation independent. However, it is reasonable to expect that
attenuation of VCS kð Þ as a function of kj j may vary along different
orientations due to anisotropic response to long-ranged interac-

tions. In Eq. (9), an exponential factor exp � kj j2
A kð Þ2

h i
for the decay of

VCS kð Þ is added so that medium-ranged strain interactions can be
modeled as well. In the current application to HCP system, the
orientation-dependent decay coefficient is parameterized using
A kð Þ ¼ P

i ciHi kð Þ, where Hi kð Þ is the hexagonal harmonic
function and ci is the coefficient. The coefficients ci are optimized
together with r-space ECI during the fitting of MSCE.

Calculation of the CSE for arbitrary mismatch and crystal
symmetries
With Eqs. (7) and (9), the MSCE method is incomplete without the
knowledge of the long-ranged interaction VCS kð Þ. In size-
mismatched alloys, VCS kð Þ represent the long-ranged limit of the
CSE for a compound AqBq as q ! 1, in which case AqBq becomes
an epitaxial configuration as visualized in Fig. 1. Previously, the
CSE from DFT were incorporated in MSCE for binary cubic systems

A

B

,

∥

∥

,

Fig. 1 Schematic illustration of the epitaxial configuration. This
schematic diagram is used to illustrate the algorithm to calculate the
orientation dependence of the CSE along G. Generally, there are two
independent lattice parameters on the epitaxial plane with normal
G, i.e., a?;1 and a?;2. The lattice parameters on the epitaxial plane
(a?;1 and a?;2) are fixed to maintain coherency, while the lattice
parameter along G (aAk or aBk ) is free to relax.
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and the anharmonic lattice response due to large lattice mismatch
were analyzed comprehensively18,19,27,28,34. The corresponding
method is already implemented in Alloy Theoretic Automation
Toolkit (ATAT)41,42. The CSEs for HCP Mg-Ca and Mg-Y systems
were calculated previously, but the details of the calculation
process were not reported35. Herein, a crystal-symmetry-agnostic
algorithm for the calculation of CSE is detailed.
For a given crystallographic orientation G (i.e., normal of the

epitaxial plane), we can find two orientations perpendicular to G,
namely V1 and V2. Here V1 can be any vector perpendicular to G
and V2 ¼ G ´V1. Similar to the previous calculations, the shear
strain is not considered here in epitaxial deformations. Along V1
and V2, the lattice parameters on the epitaxial plane are a?;1 and
a?;2, which are stretched from the end member with smaller
lattice parameter to the one with larger lattice parameter. For
example, if aA?;1 <aB?;1, then aA?;1 � a?;1 � aB?;1. In practice, several
values of a?;1 serve as the grid points between aA?;1 and aB?;1. Once
the values of a?;1 and a?;2 are picked, they are kept constant
while the lattice parameter along G for both end members, i.e., aAk
or aBk , are relaxed to minimize the energy of the distorted cell. For
an end member with lattice parameters of a?;1, a?;2 and ak along
V1, V2 and G, the 3 × 3 matrix for the distorted lattice vector L0
follows,

L0 ¼ L0 � Q � S � QT
� �

(10)

where L0 is the 3 × 3 matrix for the lattice vectors of the end
members at equilibrium (defined in the same coordinate system
as G, V1 and V2), S is the 3 × 3 matrix with dimensionless stretch of
the lattice along G, V1 and V2, and Q is the 3 × 3 matrix for the
orientation of the epitaxial configuration using normalized
vectors.

S ¼
ak=a0k 0 0

0 a?;1=a0?;1 0

0 0 a?;2=a0?;2

2
664

3
775; Q ¼ G

Gj j ;
V1

V1j j ;
V2

V2j j
� �

(11)

Here G, V1 and V2 are given by 3 × 1 column vectors. With the
lattice vectors of the distorted cell, DFT calculation can be
performed to obtain the distortion energy as a function of the a?;1
and a?;2 for both A and B, i.e., ΔEAepi a?;1; a?;2

� �
and ΔEBepi

a?;1; a?;2
� �

. The orientation and composition dependence of CSE
follows,

ΔECS G; xð Þ ¼ min
a?;1; a?;2

1� xð ÞΔEAepi a?;1; a?;2
� �þ xΔEBepi a?;1; a?;2

� �n o
(12)

where x is the molar fraction of B in A-B system. In the
calculations, ΔEAepi and ΔEBepi are calculated using the primitive
cell for A and B on a pre-defined lattice.
The composition and orientation dependence of the CSE in Eq.

(12) (i.e., ΔECS G; xð Þ) needs to be converted to obtain VCS k; xð Þ.
Since the long-ranged interaction is non-analytical at Γ, we define
the long-ranged interaction at Γ to be zero following Laks et al.14.
This definition does not affect the fitting results by MSCE, since
k ¼ 0 does not represent the orientation dependence. Following
the argument in Laks et al.14, VCSðk̂; xÞ can be obtained as,

VCSðk̂; xÞ ¼ ΔECSðk̂; xÞ=4xð1� xÞv (13)

Once the parent lattice and spin variables are defined for a
system, the structural factor can be readily calculated, and Eq. (13)
can relate ΔECS G; xð Þ to VCSðk̂; xÞ for a structure with composition
x. Since the ΔECS k; xð Þ and VCS k; xð Þ are only dependent on the
orientation of k, but not the magnitude, the orientation is
presented using only the normalized vector k̂ ¼ k= kj j.
In MSCE, the CSE surface that changes continuously with the

orientation in k-space is needed. This can be accomplished using

the spherical harmonics adapted to the symmetry of the
lattice14,43,44. In principle, any data on spherical coordinates can
be fitted if infinite number of spherical harmonic functions are
used. With prior knowledge of the symmetry of the lattice,
spherical harmonics adapted to certain symmetry can be used to
eliminate the redundant terms. For a structure with a given
composition, the orientation dependence of VCSðk̂; xÞ are para-
meterized by the symmetry-adapted spherical harmonics and the
long-ranged CSE (without attenuation) for the structure can be
calculated by Eq. (7). For HCP Mg alloys, the hexagonal harmonic
functions (HHFs) will be used45; see Supplementary Fig. 3.
Generally, there are two independent lattice parameters on the

epitaxial plane (e.g., for hexagonal crystals). The number of
independent lattice parameters can be reduced to one as long as
the symmetry of lattice points on crystallographic plane G is
retained. For a lattice with cubic symmetry, there is only one
independent lattice parameter on high-symmetry planes (e.g.,
f001g and f111g) and two for the low-symmetry planes (e.g.,
f110g). For the former, the above process can be simplified and
reduces to the existing algorithm in ATAT41,42. In the current
approach, the deformation energies, i.e., ΔEAepi a?;1; a?;2

� �
and

ΔEBepi a?;1; a?;2
� �

are calculated based on DFT and is not limited to
small size-mismatch between constituents, crystal symmetry or
the number of sublattices.
In the calculation of CSE, the deformation energy of the

endmember stretched or compressed on the epitaxial plane and
along the plane normal is needed from DFT. However, the ground
state DFT calculations become problematic if the endmembers are
mechanically unstable, i.e., the relaxed structure does not
resemble the corresponding structure on the parent lattice. In
this case the output energy from DFT does not reflect the stability
of the endmember on parent lattice. For the energy of unstable
endmembers, van de Walle et al.46 proposed to use the energy of
the inflection point along the transition path from the initial
mechanically unstable structure to the relaxed stable structure
that does not resemble the initial structure. In principle, this
method can solve this problem though the computational cost
would increase.

Regularization of the ECIs
To ensure the smoothness of interaction parameters in k-space,
Laks et al., proposed a smoothening term and added it as a
penalty to the loss function in the optimization process14. In the
current method, the smoothening of Vm;n kð Þ after separating the
CSE at any k-point is equivalent to minimizing the magnitude of
the secondary derivative (or the curvature) with respect to the k-
point,

∇2
kVm;n kð Þ ¼ � 1

2

X
l

Jm;n Rlð Þ � R2l � e�ik�Rl (14)

From Eq. (14), smoothening of ∇kVm;n kð Þ�� �� is equivalent to
prioritizing the small clusters over larger ones, which is in
accordance with the physical intuition that smaller clusters tend
to have larger contribution to short-ranged chemical interaction.
The loss function (ρ) in the training of MSCE follows,

ρ ¼
X
σ2s

wσ EDFT σð Þ � EMSCE σð Þ�� ��2 þ t
α

X
l

Rl
4
X
k

J2k Rlj jð Þ (15)

where wσ is the weight of a configuration σ, α � P
lR

4
l is a

normalizing factor and t is a scaling factor for the smoothness
term. Note that, to regularize multi-body ECIs, the inner
summation in the second term is over all clusters with size (or
largest two-site distance) of Rlj j. Compared with pair clusters, the
number of multi-body clusters increases more rapidly as a
function of cut-off distances. The number of symmetrically distinct
clusters as a function of cut-off distances for the lattice of HCP Mg
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is shown in Supplementary Fig. 1. Consequently, the multi-body
clusters adopted in CE are generally much smaller than the largest
pair and regularization of multi-body ECIs will only slightly shrink
their magnitudes. Note that the smoothness condition is similar to
the ridge technique (or L2 norm) used in machine learning to
avoid overfitting47. In machine learning community, L1 norm is
also frequently used in regularization of parameters. MSCE with L1

norm for regularization leads to the loss function of

ρ ¼
X
σ2s

wσ EDFT σð Þ � EMSCE σð Þ�� ��2 þ t
α

X
l

Rl
4
X
k

Jk Rlj jð Þj j (16)

Compared with techniques in machine learning literatures, the
current penalty terms are weight averaged by the 4th power of
the diameter of clusters. This term can enforce the physical
intuition that, in general, clusters with small Rlj j tends to have
larger ECIs and is different from the compressive sensing
approach. Therefore, the smoothness term acts as a shrinkage
technique for the chemical ECIs in r-space, i.e., the ECIs with
smaller magnitudes will be favored over the larger ones if the loss
functions are the same. The regularization of ECIs helps to reduce
the prediction error for the testing dataset. With the regulariza-
tion, the number of fitting parameters (i.e., ECIs) can be larger than
the number of energies in the training set, thus significantly
improves the fitting capability.

RESULTS
The steps of implementing the current MSCE is similar to that of
ATAT42,48 and is detailed in Supplementary Methods 2. The MSCE
is combined with MC to sample the configurational space
considering both chemical and strain interactions. The role of
CSE on morphology of solute clusters is demonstrated using a
hypothetical HCP Mg-X system. Lastly, the MSCE approach is
applied to the size-mismatched Mg-Zn alloys.

Effects of CSE on solute clusters in HCP Mg-X system
To test the generalized MSCE theory and algorithm, the current
MSCE and MC are applied to a hypothetical Mg-X system with
manually tuned MSCE parameters to reveal the effect of long-
ranged CSE on the morphology and orientation of the coherent
solute clusters in HCP Mg alloys. The variation of the chemical ECIs
for the 1st and 2nd nearest neighbors (NN) can induce
morphological changes of the solute clusters, as shown in
Supplementary Figs. 8 and 9. In principle, chemical interactions
alone can lead to solute clusters with large aspect ratios (e.g.,
plate- or rod) if, in the hypothetical system, the 1st and 2nd NN
interactions have relatively large magnitudes, but opposite signs
(e.g., repulsive vs. attractive). The goal here is to show the trend of
chemical interactions on the morphologies of solute clusters and it
may be difficult for real alloys to meet such extreme conditions.
Using the chemical interaction that favors the solute cluster of

ellipsoids with the long axis along ½0001�, the roles of CSE on basal
and prismatic planes are analyzed. In addition to the chemical
ECIs, CSE is manually tuned to examine its effects. The details are
shown in Supplementary Discussion 5. The effect of the CSE on
the solute clusters are shown in Fig. 2. In all the three orientations,
the CSE gradually pushes the solute cluster from ellipsoid towards
plates on elastically soft orientations. As the CSE is reduced on
specific planes, the plates of solute cluster on the corresponding
plane becomes thinner. The effect of CSE has been demonstrated
theoretically and verified experimentally in Al-Cu alloys30, where
preferential arrangement of single layer of Cu atoms on 001f g
plane is dominant in the early stages of aging. Therefore, it is
expected that CSE also affects the morphology and orientation of
solute clusters or coherent precipitates in size-mismatched HCP
Mg alloys, especially when CSE is strongly anisotropic.

Application to Mg-Zn system
In this section, MSCE and MC are applied to Mg-Zn alloys, which is
chosen due to the large lattice mismatch between Mg and Zn.
Defining the lattice mismatch as δa ¼ aZn � aMg

� �
=aMg, the lattice

mismatch between Mg and Zn is −16% along a-axis and −4%
along c-axis. Therefore, it is expected that the magnitude of CSE is
large in this system. Additionally, δa ¼ �16% is beyond the limit
of harmonic elastic response34.
First-principles calculations based on DFT were employed to

calculate the ground state structures and energies of ordering
phases on HCP Mg-Zn alloys. The ion-electron interaction was
described by the projector augmented plane-wave method49 and
the exchange-correlation functional was described by an
improved general gradient approximation of Perdew-Burke-
Ernzerhof50, as implemented in the Vienna Ab-initio Simulation
Package (VASP, version 5.4)51,52. The cell shape, volume, and
internal atomic positions of structures are relaxed. The maximal
residual forces on atoms are smaller than 0.002 eV/Å. The
computational details of DFT can be found in ref. 53.
Choosing seven crystallographically independent orientations35,

the orientation and composition dependence of CSE in Mg-Zn
system is calculated based on DFT, as shown in Fig. 3a. The
maximum of CSEs along different orientations are within
0:5< x < 0:75 and the maximum values are between 44 to
50meV per atom. The magnitude of CSE is dependent on both
the lattice mismatch along a certain orientation and the stiffness of
the end members. Despite the large magnitude of the CSE, the
anisotropy is not very strong, as the CSEs along different
orientations are very close to each other, especially at the Mg-rich
side. Given the large lattice mismatch on the basal plane, the weak
anisotropy of CSE is counterintuitive. However, for the case of
severe lattice distortion, the response to lattice deformation is
highly nonlinear. Due to the strongly anharmonic distortion, the
epitaxial strain energy on basal plane is much smaller than that
estimated from linear elasticity53. Consequently, it is much close to
the CSE of other planes (i.e., weak anisotropy). Note that plate-like
Guinier-Preston (GP) zones on f0001g, f1010g and f1120g planes
have been experimentally reported in Mg-Zn alloys53. This indicates
that, unlike the Al-Cu system30, there is no single crystallographic
plane in Mg-Zn alloy that is significantly elastically softer than
others, which indirectly validates the weak anisotropy of CSE.
To obtain the continuous change of CSE as a function of

orientations, HHFs were adopted to fit the CSE data in Fig. 3a. The
coefficients of the HHFs can be used to calculate the CSE along any
orientation at the corresponding Zn concentration. As an example,
the CSE surface ΔECS G; xð Þ corresponding to x ¼ 0:75 is shown in
Fig. 3b. Although the anisotropy of CSE is not strong in Mg-Zn
system, the CSE surface clearly shows a hexagonal symmetry.
For a structure with a given Zn concentration, the coefficients

for HHFs can be obtained by fitting the ΔECSðG; xÞ for seven
orientations and then further used to calculate VCSðk̂Þ. In the Mg-
Zn system, the ΔECSðk; xÞ for x ¼ 0:75 is plotted on three planes in
the first BZ of k-space and shown in Fig. 4. Since ΔECSðk̂; xÞ has
different values along different orientations, but stays constant on
the same orientation irrespective of the magnitude of the k-point,
ΔECSðk1; xÞ � ΔECSðk2; xÞ stays constant as k1!0 and k2!0.
Therefore, the curvature of ΔECSðk; xÞ gets infinitely large as k!0,
leading to the so-called singularity and the convergence issue in r-
space CE.
With the composition and orientation dependence of CSE

parameterized by the HHFs, the magnitude of long-ranged
component of k-space interactions VCSðk̂; xÞ needs to be
calculated from ΔECSðk̂; xÞ using Eq. (13). In Fig. 5, the k-space
interaction parameter as a function of Zn concentration for seven
orientations are shown. Clearly, VCSðk̂; xÞ is composition depen-
dent, which is the general case and implicitly incorporates all the
terms when expanding ΔECSðσÞ as a function of composition14.
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The current MSCE is tested with various numerical settings and
compared with r-space CE. The tested effects include: (1) the
exclusion of structures far away from HCP lattice using the
criterion in ATAT42,48; (2) the regularization using L1 vs. L2 norm in
the penalty term of the loss function (i.e., Eqs. (15) and (16)); (3)
short-ranged structures (SR-str) and layered structures AqBq

stacked along ½0001�, ½1010� and ½1120� directions in the training
and testing set; (4) changing the weights of structures in the
fitting to lower the training error for ground state structures. The
results are shown in Table 1 and the details are described in
Supplementary Discussion 3. It can be concluded that: (i) MSCE
has higher accuracy than CE irrespective of the regularization

Fig. 3 The constituent strain energy (CSE) of Mg-Zn system. a Orientation and composition dependence of CSE for seven crystallographic
orientations; b The surface of CSE parameterized by hexagonal harmonic functions (HHFs) for xZn ¼ 0:75.

compact 6-layer 4-layer

2-layer3-layer
Rod or
thick platecompact

3-layer4-layer6-layercompact

(a)

(b)

(c)

Fig. 2 Effects of the constituent strain energy (CSE) in HCP Mg-X alloys. Effects of the magnitude of CSE on the orientation and morphology
of solute clusters: a basal plane; b f1010g plane; c f2110g plane. The chemical interaction is fixed with J1stpair ¼ �0:02 eV per atom. The CSE on
specified plane is scaled by parameter s. When s ¼ 1, CSE is isotropic and does not affect the morphology of solute clusters. When s < 1, the
chosen plane is the elastically softest plane and solute cluster is gradually compressed to a plate on this plane as s becomes smaller.
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technique (tests 1–5 vs. 6–9); (ii) the incorporating of CSE can
improve the accuracy of predicted energy (test 3 vs.6 and 4 vs. 8),
especially for layered structures AqBq as q increases (test 5 vs. 7);
(iii) regularization with L2 norm generally leads to higher accuracy
than L1 norm, although the latter gives more regularized ECIs; (iv)
Increasing the weights can help reducing the error of some
structures but increases the overall fitting error, suggesting only
slight adjustment for a few important structures is acceptable.
The formation energies of the training set from DFT calculation

and MSCE fitting with adjusted weights (test 9 in Table 1) are
shown in Fig. 6, with the convex hull of on-lattice structures with
dimensionless lattice distortion d < 0:142,48, convex hull of all the
structures in DFT calculations, and the global convex hull for all
structures in Mg-Zn system. If the structures with d > 0.1 are
excluded from the training set, the convex hull (blue dashed line)
is well above the convex hull with experimentally observed
structures (black solid line). Meanwhile, the current MSCE yields a
more realistic convex hull (red solid line) and accurate description
of the formation energies (red + sign). In the current MSCE
calculations, the numbers of pair to 6-body clusters are 387, 135,
109, 31 and 3, respectively. The number of clusters are gradually
increased to make sure that adding more clusters would not
further improve accuracy of MSCE. The ECIs of pair to 6-body
clusters are shown in Fig. 7. Although the magnitudes of pair ECIs
regularized by L2 norm slightly decrease with diameters, the trend
is not obvious compared with regularization using L1 norm (see
Supplementary Fig. 6). This indicates that long-ranged pairs are

effective in reducing the fitting error in Mg-Zn system. Generally,
L2 norm leads to smaller error while L1 norm leads to more
regularized ECIs. In Mg-Zn system, there are several metastable GP
zones that have similar energies (a few meV per atom)53, it is
necessary to reduce the prediction error of MSCE to ~1meV per
atom and regularization by L2 norm is chosen. If, in another
system, the energies of competing phases are not close and the
requirement on accuracy of energies can be relaxed, MSCE with L1

norm and more regularized ECIs may be preferred.
Using all the structures originated from the HCP ordering, the

ground state structures after relaxation include C37 Mg2Zn and C14
MgZn2, which have dimensionless lattice distortion of 0.19 and 0.11.
These structures would not be included in the training set if the
exclusion criterion is adopted. The structures of the coherent HCP
orderings that lead to C37 Mg2Zn and C14 MgZn2 after structural
relaxation are shown in Fig. 8a, b, respectively. Using VCS kð Þ, the
coefficients of HHFs for attenuation A kð Þ, and the r-space ECIs in
Fig. 7, the equilibrium configuration of solutes can be obtained by
MC. In the current MC, the canonical and semi-grand canonical
(SGC) ensembles were adopted to simulate the case under constant
overall composition and chemical potential, respectively. The initial
configuration is set to be a random configuration for the canonical
mode and the ground state C14 MgZn2 for the SGC mode,
respectively. In all structures equilibrated in MC, two types of solute
configurations are observed at low (less than 3%) and high Zn
concentrations (over 35%), shown in Fig. 8c, d. When the Zn
concentration is low, the local Zn atoms rearrange in a pattern
similar to the Zn orderings that relaxes to C37 Mg2Zn, as shown by
the blue lines in Fig. 8c. The perspective view show that the Zn rods
prefer to be aligned along ½0001� direction. When Zn concentration
is high, the equilibrium arrangement of Zn follows the pattern of
the HCP ordering that leads to C14 MgZn2 after relaxation. In this
case, the local arrangement shows switching pattern of Zn-rich and
Zn-poor layers on the basal plane, which is a key feature in C14
MgZn2, where, in the Zn-poor layer, Zn atoms are surrounded by six
Mg atoms (see the right figure in Fig. 8b). Local orderings along
½0001� that exactly matches that of C14 MgZn2 is shown in Fig. 8d.
These local arrangements of Zn atoms from MC simulation agree
with the ground state structures by DFT.
Despite multiple reports of GP zones in Mg-Zn alloys without

other element additions, direct imaging of GP zones in Mg-Zn
system with atomic scale resolution is challenging. This indicates
the GP zones in this system are not very stable, as compared with
the GP zone in Al-Cu system48. Consequently, the GP zones in Mg-
Zn alloy can easily be obscured by the other more stable
precipitates (e.g., C14 MgZn2). Due to the incorporation of the C37
Mg2Zn, C15 MgZn2 and C14 MgZn2 in the training set, the convex
hull (red line in Fig. 6) is much lower than the energies of potential
GP zone structures with very small amount of relaxation from ideal
HCP lattice (d < 0:1, blue dashed line in Fig. 6), which explains the

(a) (b) (c)
ΔECS (meV per atom)

Fig. 4 The constituent strain energy (CSE) visualized in k-space. The CSE of Mg-Zn system at xZn ¼ 0:75 is shown: a basal plane; b 1010
	 


prismatic plane; c f1120g prismatic plane. The blue line marks the boundary of the first Brillouin Zone.

Fig. 5 The k-space parameters for constituent strain energy (CSE).
Variation of the k-space interaction parameters VCS k; xð Þ are shown
as functions of Zn concentration.
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absence of GP zones in the current MC with MSCE that includes all
structure irrespective of the degree of relaxation. If the training set
is limited to structures with small degree of relaxation from HCP
lattice (d < 0:1), then various GP zones can be identified53.

DISCUSSION
The MSCE method owes the high accuracy, compared with r-space
CE, to three aspects. (1) The long-ranged limit of the CSE due to
size-mismatch are explicitly incorporated using the k-space
formalism. (2) The attenuation of the long-ranged interactions
accommodates for medium-ranged structures, which is the case
for the majority of the structures in the training set. (3) The
regularization of r-space ECIs allow us to include much larger
number of clusters, which enhances the fitting capability.
In recently years, machine learning potentials (MLPs) have been

actively developed for various materials54–57. In terms of purposes,

MSCE focus on the energy of the structures using the lattice model
and the atomic displacements are not considered, while MLP is
designed to describe the energy as a function of the atomic positions
without an underlying lattice. Consequently, MSCE focuses on
configurational thermodynamics, e.g., order/disordering transition,
ordering and clustering of solutes, coherent/semi-coherent precipita-
tions. Meanwhile, MLP is intended for dynamical trajectories by
molecular dynamics. In terms of accuracy, the MLP typically reaches
RMSE of a few meV per atom54–57, while the current MSCE can yield
RMSE and CV of ~1meV per atom (Table 1). In terms of range of
interactions, the MLP often solely relies on the training set from DFT
where long-ranged interactions using large supercells can pose
computational challenges, while long-ranged interactions are mod-
eled explicitly in k-space in MSCE and parameterized using DFT with
primitive cells of end members (e.g., 2 atoms for HCP structures).
In Mg-Zn system, the preferred orderings of Zn atoms are

identified with Zn-rods and local C14 MgZn2 arranged along ½0001�.
Noteworthy, C14 MgZn2 rods here agree with the peak-age
precipitates β10 rods along 0001½ �α with the orientation relationship
of 0001ð ÞC14k 0001ð Þα and 1010

� �
C14k 1210

� �
α
in Mg-Zn system58. In

the current MSCE and MC, all the fully relaxed HCP orderings in DFT
are included in the training set, which enables the energy predicted
by MSCE to be fully incorporate the relaxations from HCP lattice
sites. In the calculations with only moderately relaxed structures
(with d < 0.1), many overly relaxed structures are excluded in r-
space CE (Fig. 6). Such calculation reflects the energies of orderings
very close to HCP lattice sites and coherent orderings resembling
GP zones were revealed53. However, such potential GP zones were
not found in the current MSCE and MC simulations. In Mg-Zn
system, experimental evidences of GP zones were reported59,
which, however, is deemed insufficient60. Comparison of the
calculations using r-space CE and MSCE offers a possible explana-
tion. When Zn atoms start to aggregate in local regions of Mg
matrix, lattice distortion will be involved due to the lattice mismatch
between Mg and Zn atoms. When such distortions are small and
the atoms sit close to the ideal HCP lattice sites, local arrangements
of Zn atoms resembling GP zones can be found. When the local Zn
concentration gets high and local lattice distortion becomes severe,
the local Zn-rich regions prefer to transform to more stable
structures, such as C14 or C15 MgZn2. Considering the lattice

Table 1. Comparison of the accuracies of cluster expansions (CE) and mixed-space cluster expansion (MSCE) with various algorithms.

Test No. Method Penalty in Loss
function

Training set Testing set No. of 2/3/4/5/6-
site clusters

RMSE of training
(meV per atom)

Max. error of training
(meV per atom)

CV (meV per
atom)

1 CE None SR-str,
On-latticea

SR-str,
On-latticea

21, 15, 15, 0, 0 2.90 14.19 3.72

2 CE None SR-str SR-str 23, 15, 4, 0, 0 6.29 69.98 7.80

3 CE L1 norm c Mixedb Mixedb 387, 135, 109, 31, 3 3.12 17.26 3.54

4 CE L2 norm c Mixedb Mixedb 387, 135, 109, 31, 3 1.75 11.77 2.32

5 CE L2 norm c SR-str Layered 387, 135, 109, 31, 3 1.31 6.52 30.98

6 MSCE L1 norm c Mixedb Mixedb 387, 135, 109, 31, 3 2.64 11.32 2.64

7 MSCE L2 norm c SR-str Layered 387, 135, 109, 31, 3 1.38 5.24 1.11

8 MSCE L2 norm c Mixedb Mixedb 387, 135, 109, 31, 3 1.04 4.41 1.12

9 MSCEd L2 norm c Mixedb Mixedb 387, 135, 109, 31, 3 1.06 2.98 1.32

The training set includes two types of structures: (i) 493 relatively short-ranged structures (SR-str) in Mg-Zn system on HCP lattice; (ii) layered structures AqBq
stacked along ½0001�, ½1010� and ½1120� directions with q � 20, where q ! 1 corresponds to the epitaxial configuration on f0001g, f1010g and f1120g planes.
The dataset is randomly divided into 100 batches (each containing 5 or 6 structures), where 99 batches are used in the training sets and 1 batch is used as
testing set. The cross-validation (CV) score is the root of mean square error (RMSE) of the predicted energy for the testing set.
aStructures with dimensionless lattice distortion larger than 0.1 are excluded.
bRandom mixture of SR-str and layered structures.
cRegularizations using L1 and L2 norms correspond to Eqs. (16) and (15).
dWeights are adjusted in the fitting so that the training error for the ground states are smaller than 2.0 meV per atom, and the training error for the rest of the
structures are below 3.0 meV per atom.

Fig. 6 The formation energy vs. composition of ordering
structures in Mg-Zn alloys. The dimensionless lattice distortion (d)
of 0.1 is adopted to evaluate the relxation of HCP ordering from
ideal parent lattice48. The formation energies of stable structures on
the global convex hull are also added for comparison53.
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becomes less rigid when the temperature is elevated, the GP zones
are more likely to be found at low aging temperatures in the
samples with low overall Zn concentrations. This may explain why
concrete evidence of GP zones in Mg-Zn is elusive even with
modern microscopy. A more detailed discussion can be found in53.
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