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Accelerating material design with the generative toolkit for
scientific discovery
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Lauren McHugh3, Alexy Khrabrov5, Payel Das 3, Seiji Takeda4 and John R. Smith3

With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate
scientific discovery. They harness powerful representations learned from datasets to speed up the formulation of novel hypotheses
with the potential to impact material discovery broadly. We present the Generative Toolkit for Scientific Discovery (GT4SD). This
extensible open-source library enables scientists, developers, and researchers to train and use state-of-the-art generative models to
accelerate scientific discovery focused on organic material design.
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INTRODUCTION
The rapid technological progress in the last centuries has been
largely fuelled by the success of the scientific method. However, in
some of the most important fields, such as material or drug
discovery, productivity has been decreasing dramatically1, and by
today it can take almost a decade to discover new material and
cost upwards of $10–$100 million. One of the most daunting
challenges in materials discovery is hypothesis generation. The
reservoir of natural products and their derivatives has been largely
emptied2 and bottom-up human-driven hypotheses have shown
that it is extremely challenging to identify and select novel and
useful candidates in search spaces that are overwhelming in size,
e.g., the chemical space for drug-like molecules is estimated to
contain >1033 structures3.
To overcome this problem, in recent years, machine learning-

based generative models, e.g., variational autoencoders (VAEs4),
generative adversarial networks (GANs;5) have emerged as a
practical approach to designing and discovering molecules with
desired properties leveraging different representations for mole-
cular structure, e.g., text-based like SMILES6 and SELFIES7 or graph-
based8. Compared to exhaustive or grid searches, generative
models more efficiently and effectively navigate and explore vast
search spaces learned from data based on user-defined criteria.
Leveraging these approaches in With a series of seminal works9–13,
research has covered a wide variety of applications of generative
models, including design, optimisation and discovery of sugar and
dye molecules14, ligands for specific targets15–18, anti-cancer hit-
like molecules19,20, antimicrobial peptides21 and semiconductors22.
At the same time, we have witnessed growing community

efforts for developing software packages to evaluate and bench-
mark machine learning models and their application in material
science. On the property prediction side, models, data-mining
toolkits and benchmarking suites for material property prediction,
such as CGCNN23, pymatgen24, Matminer25 or Matbench/Auto-
Matminer26 were released. On the generative side, initial efforts
for generic frameworks implementing popular baselines and
metrics such as GuacaMol27 and Moses28 paved the way for

domain-specific generative model software that is gaining
popularity in the space of drug discovery such as TDC
(Therapeutics Data Commons29,30).
More recently, novel families of methods have been proposed.

Generative flow networks (GFN31–33), a generative model that
leverages ideas from reinforcement learning to improve sample
diversity, provides a non-iterative sampling mechanism for
structured data over graphs. GFNs are particularly suited for
molecule generation, where sample diversity is challenging.
Diffusion models (DM34–36) are generative models that learn
complex high-dimensional distributions denoising the data at
multiple scales. DMs achieve impressive results in terms of sample
quality and diversity for unconditional and conditional vision
tasks. Recently, text-conditional diffusion models37–39 have paved
the way for a new age of human–machine interaction. Leveraging
such advances in conditioning generative models, DMs have been
used in the biological domain for molecule conformation using
equivariant graph networks40, conditioning on a 2D representa-
tion of the molecule to generate the 3D pose in space41, for
protein generation42,43 and docking44.
In this landscape, there is a growing need for libraries and

toolkits that can lower the barrier to using generative models. This
need is becoming significantly more pressing given the growing
models’ size and their significant requirements for considerable
computational resources for training them. This trend creates an
imbalance between a small, privileged group of researchers in
well-funded institutions and the rest of the scientific community,
thus impeding open, collaborative, and fair science principles45.
We introduce the generative toolkit for scientific discovery

(GT4SD) as a remedy. This Python library aims to bridge this gap
by developing a framework that eases the training, execution and
development of generative models to accelerate scientific
discovery. As visualised in Fig. 1, GT4SD provides a harmonised
interface with a singular application registry for all generative
models and a separate registry for properties. This expenses the
need to familiarise with the original developer’s code, thus
significantly lowering the access barrier. Moreover, the high
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standardisation across models eases the integration of new
models and facilitates consumption by containerisation or
distributed computing system. To the best of our knowledge,
GT4SD provides the largest framework for accessing state-of-the-
art generative models. It can be used to execute, train, fine-tune
and deploy generative models, all either directly through Python
or via a highly flexible command line interface (CLI). All pre-trained

models can be executed directly from the browser through web
apps hosted on Hugging Face Spaces. Last, for advanced users,
the GT4SD model hub simplifies the release of existing algorithms
trained on new datasets for instant and continuous integration in
their discovery workflows.
GT4SD offers a set of capabilities for generating novel

hypotheses (inference pipelines) and for fine-tuning domain-

Fig. 1 GT4SD overview and structure. The library implements pipelines for the inference and training of generative models. In addition,
GT4SD offers utilities for algorithm versioning and sharing for broader usage in the community. The standardised interface enables algorithm
instantiation and runs for generating samples with less than five lines of code (top, left panel). Furthermore, the CLI tools ease the run of a full
discover pipeline in the terminal (top, right panel). The library provides (bottom, from left to right) algorithms for inference, a CLI utility, target
domains, a property prediction interface, interfaces and implementations of generative modelling frameworks and training pipelines. In the
blue box, we provide a sample of available frameworks and methodologies for inference algorithms.
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specific generative models (training pipelines). It is designed to be
compatible and inter-operable with existing popular libraries,
including PyTorch46, PyTorch Lightning47, Hugging Face Transfor-
mers48, Diffusers49, GuacaMol27, Moses28, TorchDrug50, GFlow-
Nets33 and MoLeR51. It includes a wide range of pre-trained
models and applications for material design.
GT4SD provides simple interfaces to make generative models

easily accessible to users who want to deploy them with just a few
lines of code. The library provides an environment for researchers
and students interested in applying state-of-the-art models in
their scientific research, allowing them to experiment with a wide
variety of pre-trained models spanning a broad spectrum of
material science and drug discovery applications. Furthermore,
GT4SD provides a standardised CLI, APIs for inference and training
without compromising on the ability to specify an algorithm’s
finer-grained parameters and >15 web apps of various pre-trained
models.

RESULTS
A case study in molecular discovery
Arguably, the most considerable potential for accelerating
scientific discovery lies in the field of de novo molecular design,
particularly in material and drug discovery. With several (pre)
clinical trials underway52, it is a matter of time until the first AI-
generated drug will receive FDA approval and reach the market. In
a seminal study by15, a deep reinforcement learning model
(GENTRL) was utilised for the discovery of potent DDR1 inhibitors,
a prominent protein kinase target involved in fibrosis, cancer, and
other diseases53. Six molecules were synthesised, four were found
active in a biochemical assay, and one compound (in the following
called gentrl-ddr1) demonstrated favourable pharmacokinetics in
mice. As an exemplary case study in molecular discovery, we
consider a contrived task of adapting the hit-compound gentrl-

ddr1 to a similar molecule with an improved estimated water
solubility (ESOL; Delaney54). Low aqueous solubility affects >40%
of new chemical entities55, thus posing major barriers to drug
delivery. Improving solubility requires exploring the local chemical
space around the hit (i.e., gentrl-ddr1) to find an optimised lead
compound.
A summary of how this task can be addressed using the GT4SD

is shown in Fig. 2. In the first step, a rich set of pre-trained
molecular generative models is accessed with the harmonised
interface of the GT4SD. Two main model classes are available. The
first category is represented by graph generative models, such as
MoLeR51 or models from the TorchDrug library, specifically a
graph-convolutional policy network12 and a flow-based autore-
gressive model (GraphAF56). The second model class is chemical
language models (CLM), which treat molecules as text (SMILES6 or
SELFIES7 sequences). Most of the chemical language models in the
GT4SD are accessed via the libraries MOSES28 or GuacaMol27; in
particular, a VAE9, an adversarial autoencoder (AAE57) or an
objective-reinforced GAN model (ORGAN;58). In the first step, we
randomly sample molecules from the learned chemical space of
each model. Assessing the Tanimoto similarity of the generated
molecules to gentrl-ddr1 reveals that this approach, while
producing many molecules with satisfying ESOL, did not
sufficiently reflect the similarity constraint to the seed molecule
(cf. Fig. 2, bottom left). This is expected because the investigated
generative models are unconditional.
As a more refined approach, the GT4SD includes conditional

molecular generative models that can be primed with natural text
queries (Text+Chem T559), continuous property constraints or
molecular substructures (e.g., scaffolds) such as MoLeR51, REIN-
VENT60 or even with combinations of property constraints and
molecular substructures (Regression Transformer;61). The mole-
cules obtained from those models, in particular MoLeR and RT,
largely respected the similarity constraint and produced many

Fig. 2 Case study using the GT4SD for molecular discovery. Starting from a compound designed using generative models by15 (gentrl-ddr1),
we show how GT4SD can be used to swiftly design molecules with desired properties using a battery of algorithms available in the library in
two settings: unconditional (bottom left) and conditional (bottom right). The conditional models can be constrained with chemical scaffolds
or conditioned on desired property values.
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molecules with a Tanimoto similarity > 0.5 to gentrl-ddr1. MoLeR
and the RT improved the ESOL by more than 1M/L (cf. Fig. 2, right).
In a realistic discovery scenario, the molecules generated with the
described recipes could be manually reviewed by medicinal
chemists and selectively considered for synthesis and screening.

DISCUSSION
The GT4SD is the first step toward a harmonised generative
modelling environment for accelerated material discovery. For the
future, we plan to expand application domains (e.g., inorganic
materials, climate, weather62, sustainability, geo-informatics and
human mobility63), and integrate novel algorithms, ideally with
the support of a steadily growing open-science community.
Future developments will focus on two main components:

expanding model evaluation and sample properties predictions;
developing an ecosystem for sharing models built on top of the
functionalities exposed via the existing CLI commands for model
lifecycle management. For the first aspect, we will expand the
currently integrated metrics from GuacaMol and Moses and
explore bias measures to better analyse performance in light of
the generated examples and their properties. Regarding the
sharing ecosystem, we believe GT4SD will further benefit from an
intuitive application hub that facilitates the distribution of pre-
trained generative models (largely inspired by the Hugging Face
model hub48) and enables users to easily fine-tune models on
custom data for specific applications.
We anticipate GT4SD to democratise generative modelling in

the material sciences and to empower the scientific community to
access, evaluate, compare and refine large-scale pre-trained
models across a wide range of applications.

METHODS
Library structure
The GT4SD library follows a modular structure (Fig. 1) where the
main components are: (i) algorithms for serving models in
inference mode following a standardised API; (ii) training pipelines
sharing a common interface with algorithm families-specific
implementations; (iii) domain-specific utilities shared across
various algorithms; (iv) a property prediction interface to evaluate
generated samples (currently covering small molecules, proteins
and crystals); (v) frameworks implementing support for complex
workflows, e.g., granular for training mixture of generative and
predictive models or exceptional for enzyme design. Besides the
core components, there are sub-modules for configuration,
handling the cloud object storage-based cache and error handling
at the top level.

Inference pipelines
The API implementation underlying the inference pipelines has
been designed to support various generative model types:
generation, conditional generation, controlled sampling and
simple prediction algorithms. All the algorithms implemented in
GT4SD follow a standard contract that guarantees a standardised
way to call an algorithm in inference mode. The specific algorithm
interface and applications are responsible for defining implemen-
tation details and loading the model files from a cache synced
with a cloud object storage hosting their versions.

Training pipelines
Training pipelines follow the same philosophy adopted in
implementing the inference pipelines. A common interface allows
implementing algorithm family-specific classes with an arbitrary
customisable training method that can be configured using a set
of data classes. Each training pipeline is associated with a class

implementing the actual training process and a triplet of
configuration data classes that control arguments for model
hyper-parameters, training parameters and data parameters.

CLI commands
To ease consumption of the pipelines and models implemented in
GT4SD, a series of CLI endpoints are available alongside the
package: (i) gt4sd-inference, to inspect and run pipelines for
inference; (ii) gt4sd-trainer, to list and configure training
pipelines; (iii) gt4sd-saving, to persist in a local cache a model
version trained via GT4SD for usage in inference mode; (iv)
gt4sd-upload, to upload model versions trained via GT4SD on
a model hub to share algorithms with other users. The CLI
commands allow to implement a complete discovery workflow
where, starting from a source algorithm version, users can retrain
it on custom datasets and make a new algorithm version available
in GT4SD.

DATA AVAILABILITY
The complete documentation for the GT4SD code base is available at https://
gt4sd.github.io/gt4sd-core/. Pre-trained models and property predictors are available
for automated download via the library itself.

CODE AVAILABILITY
GT4SD source code is available on GitHub (Zenodo). The repository also contains
exemplary notebooks and examples for users, including code and data to reproduce
the presented case study. Pre-trained generative models and property predictors are
also available as Gradio64 apps with the corresponding model cards in the GT4SD
organisation on Hugging Face Spaces: https://huggingface.co/GT4SD.
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