
ARTICLE OPEN

Unraveling effects of electron correlation in two-dimensional
FenGeTe2 (n= 3, 4, 5) by dynamical mean field theory
Sukanya Ghosh1, Soheil Ershadrad1, Vladislav Borisov1 and Biplab Sanyal1✉

The FenGeTe2 systems are recently discovered two-dimensional van-der-Waals materials, exhibiting magnetism at room
temperature. The sub-systems belonging to FenGeTe2 class are special because they show site-dependent magnetic behavior. We
focus on the critical evaluation of magnetic properties and electron correlation effects in FenGeTe2 (n= 3, 4, 5) (FGT) systems
performing first-principles calculations. Three different ab initio approaches have been used primarily, viz., (i) standard density
functional theory (GGA), (ii) incorporating static electron correlation (GGA+ U) and (iii) inclusion of dynamic electron correlation
effect (GGA+ DMFT). Our results show that GGA+ DMFT is the more accurate technique to correctly reproduce the magnetic
interactions, experimentally observed transition temperatures and electronic properties. The inaccurate values of magnetic
moments, exchange interactions obtained from GGA+ U make this method inapplicable for the FGT family. Correct determination
of magnetic properties for this class of materials is important since they are promising candidates for spin transport and spintronic
applications at room temperature.
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INTRODUCTION
Magnetism and spintronics have been the topic of interest for
fundamental studies as well as technological applications. Two-
dimensional (2D) van der Waals (vdW) materials have recently
developed increasing attention, as they are promising candidates
to explore magnetism in low-dimension. Since the discovery of
graphene1, the world of two-dimensional (2D) materials is rapidly
expanding to an enormous variety of systems due to their
interesting properties. The discovery of intrinsic long-range
magnetic order is one of the most exciting recent developments
in 2D materials2,3. In the 2D magnetic materials spin fluctuations
are expected to be strongly enhanced at finite temperature
destroying long-range magnetic order according to Mermin-
Wagner theorem4. Magnetic anisotropy reduces spin fluctuations
and results in finite Curie temperature below which a magnetic
order in 2D can survive and thereby lifting the restrictions
imposed by Mermin-Wagner theorem5,6. Magnetism in 2D has
started a modern era in the field of energy-efficient device
fabrication due to its tunability under small or moderate-scale
external perturbations7.
The 2D magnets play a crucial role in the development of

efficient spintronic devices8 not only by size reduction but also
they exhibit interesting physical phenomena stemming from 2D
confinement. Prior to 2016, doping by magnetic impurities was
the main strategy to induce magnetism in 2D materials, which has
failed to materialize 2D magnets with high Curie temperature9.
The exfoliation of 2D insulating ferromagnet CrI310 and
Cr2Ge2Te65, in 2016, opened the doors to the application of 2D
magnets in semiconducting devices.
However, the relatively low transition temperature (TC ≈ 60 K)

intrinsic to the 2D magnetic insulators and/or semiconductors
limits their utilization. On the other hand, metals exhibiting 2D
magnetism are more promising for practical applications due to
their high transition temperature. The most significant advantage
of the metallic ferromagnets is that their conducting nature
enables an interplay between spin and charge degrees of

freedom, which lies at the heart of spintronics11–13. There are
recent studies on ferromagnetic metals, such as CrTex, Cr2BC,
FeSe2, FeTe, MnSe, and FenGeTe2, reporting high TC
(130–846 K)14–17. The 2D metallic Fe-Ge-Te ternary compounds
or popularly known as ‘FGT’ systems exhibit TC close to room
temperature and gain tremendous attention due to their
interesting magnetic properties18.
Each member belonging to the FGT family exhibits a plethora of

interesting physical properties, and among them, Fe5GeTe2 is the
most complicated system. Recent experimental studies have
found anomalous magnetic behavior in bulk Fe5GeTe2 at
temperature < 100 K, which is speculated as a result of magnetos-
tructural effects19–21. Recently, Liu et al., using the DFT+ U
approach, proposed that a competition between ferromagnetic
(FM) and antiferromagnetic (AFM) coupling can give rise to a
transition below 200 K in Fe5GeTe2, and they show the net
magnetization reduces with a decrease in temperature similar to
the experimental reports. However, they failed to capture the
traces of this transition in Fe4GeTe222. Though the study by Liu
et al can reproduce the magnetization vs. temperature behavior of
Fe5GeTe2, as observed in experiments, the moments of Fe atoms
reported in their study are hugely overestimated (by ~1 μB). This
suggests that the DFT+ U technique cannot correctly predict the
magnetic moments of Fe sublattices present in FGT systems.
Similarly, other first principles studies also revealed that DFT+ U is
not a good approximation for the FGT systems to produce the
correct lattice parameters and magnetic moments23,24.
Electrons occupying the s and p orbitals are strongly itinerant

and their kinetic energies are dominant over the Coulomb
repulsion. Therefore, a static mean field approximation (like DFT)
should be suitable enough to study these weakly correlated
electrons. On the other hand, due to significant Coulomb
interactions between electrons in the d and f orbitals, strongly
correlated electrons become localized on their atomic sites. In this
regime, DFT is no longer a proper approach and can yield
inaccurate results. The possible solutions are DFT+ U in the static
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mean field approximation, mostly applicable for Mott insulators
and dynamical mean field theory with frequency-dependent self-
energy for strongly correlated metals. The presence of itinerant
electrons is the cause of spontaneous magnetism in 2D metals,
which can be explained by the Stoner model25. However, in the
case of metallic FGT systems, some studies show the evidence of
non-Stoner magnetism where the local moments may play crucial
role in the electronic and magnetic properties26,27. These results
hint towards the possibility that the FGT systems could be an
admixture of localized and itinerant electrons, exhibiting moder-
ate electron correlation. Hence, the use of DMFT will be more
justified.
The main peculiarity related to all the FGT systems is their site-

dependent magnetic and electronic properties20. In other words,
based on the magnetic moments associated with different Fe
sublattices, electrons belonging to some Fe atoms are expected to
have more itinerant character than others. All these complications
combined together have made the proper treatment of electronic
structure and magnetic behavior in FGT systems a controversial
issue. Up to this date, researchers have used DFT23,24,28, DFT+ U22

or DMFT29,30 approaches, leaving behind the most crucial
question unanswered, i.e., which method is the most reliable
one to correctly treat the FGT systems. In this paper, we perform a
systematic study, comparing different aspects of electronic and
magnetic properties of Fe3GeTe2, Fe4GeTe2, and Fe5GeTe2, mostly
in their 2D form (except Fe3GeTe2), via GGA, GGA+ U, and
GGA+ DMFT approaches. We put forward a detailed comparative
study to analyse the outcomes of these different computational
techniques and their compatibility with experimental results. Since
atomically thin films or monolayers of FGT systems are not
experimentally studied yet, we considered the well-studied bulk
Fe3GeTe2 as our reference to examine the accuracy of our
calculations, and bridge between 3D and 2D regimes.

RESULTS AND DISCUSSION
Systems
Here we focus on the FenGeTe2 monolayers, where n= 3, 4 and 5,
to investigate the magnetic properties of FGT systems using

different first-principles techniques, e.g., standard density func-
tional theory (DFT), DFT with the inclusion of dynamic and static
electron correlation effects.
In this section, we discuss the structural properties of the

monolayers. In the case of Fe5GeTe2, we study both without and
with the Fe1-Ge split sites, see ref. 31 for details. Figure 1 shows the
side view of the FenGeTe2 monolayers, (a) n= 3, (b) n= 4, (c) n= 5
in UUU and (d) UDU configurations, we label each Fe atom present
in the unit cell of FenGeTe2 monolayers. The lower panel in Fig. 1
shows 3D side view of the monolayers for a better clarification of
the crystal structures. The space-groups (and in-plane lattice
parameters) for Fe3GeTe2, Fe4GeTe2, Fe5GeTe2 UUU and UDU
monolayers are P6m2 (a= 4.05 Å), P3m1 (a= 3.98 Å), P3m1
(a= 3.99 Å) and P31m (a= 7.00Å), respectively. From the type of
space-groups possessed by FenGeTe2 monolayers, it is clear that
Fe5GeTe2 possesses lower symmetry operations, and hence less
symmetric compared to n= 3 and 4.
Each FenGeTe2 system contains different Fe sublattices based

on their structural arrangements. This sublattice classification is
reflected on the electronic and magnetic properties31,32. In the
case of Fe3GeTe2, Fe1 and Fe2 sublattices are equivalent, while
Fe3 is different. Similarly, for Fe4GeTe2, Fe1 and Fe4 species
belong to the same category, whereas Fe2 and Fe3 are similar.
The structural configuration for Fe5GeTe2 is more complex.

Based on the previous experimental and theoretical studies, the
Fe1 species can occupy two possible sites either above or below
Ge, giving rise to Fe1-Ge split-sites19,20,31. Also, depending on the
thermal history during the synthesis process, this system may
show the absence of Fe1-Ge splitting20,33. To incorporate the Fe1-
Ge splitting, a
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cell of Fe5GeTe2 monolayer is constructed,

where two (one) Fe1 are (is) situated above (below) Ge, this
structure is referred to as ‘UDU’ configuration. In the absence of
Fe1-Ge splitting, the Fe1 species is placed at top of the Ge atom,
this structure is named as ‘UUU’ configuration. From our previous
first-principles study, we found that the UDU configuration is
energetically favored over the UUU configuration31, resulting in
the
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superstructure, as already discussed by previous

experimental studies19–21,31,33. Hence, in the following sections,
we mainly focus on the UDU configuration of Fe5GeTe2

Fig. 1 Crystal structure of FenGeTe2 monolayers. Side views of a Fe3GeTe2, b Fe4GeTe2, c UUU Fe5GeTe2, and d UDU Fe5GeTe2 are side views
of monolayers, where orange, yellow, and blue circles represent Fe, Te, and Ge atoms, respectively. Direction of the arrows shown inside Fe
atoms, indicates the easy axis of magnetization obtained from our DFT+DMFT calculations. The half-colored circles in Fig. 1d show the Fe1-
Ge split sites present in the UDU configuration. The green arrow drawn in each system shows the pair of Fe atoms exhibiting the strongest
isotropic symmetric exchange interaction between each other. The lower panel shows 3D side view of FenGeTe2 monolayers.
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monolayer. All the five Fe atoms present in the unit cell of UUU
configuration are different, hence this configuration is the least
symmetric. In the case of UDU, we find the Fe atoms can be
roughly (not strictly) categorized into four sublattices in UDU
configuration: (i) Fe2, Fe5, (ii) Fe3, Fe4, (iii) Fe1U and (iv) Fe1D. The
sublattice classification in FenGeTe2 systems has a direct
consequence on the exchange interactions present in these
systems and also the magnetization vs. temperature behavior as
reported in ref. 31. The black arrows drawn in Fig. 1a–d show the
direction of the easy axis of magnetization for different FenGeTe2
monolayers obtained from our DMFT studies, which we discuss in
the “Results and discussion” section.
From Fig. 1, one can see that the chemical environment,

coordination number and relative position of each Fe atom w.r.t.
the other Fe and Ge atoms present in the FenGeTe2 monolayers
change with n. For example, in the case of Fe3GeTe2, the Fe1 and
Fe2 atoms are situated symmetrically relative to the Ge atom with
Fe1(Fe2)-Ge distance of 2.65 Å. While the Fe3 species is placed in
the same z plane as Ge with a distance 2.34 Å along the xy-plane.
The first nearest neighbor (NN) Fe1-Fe2 and Fe1-Fe3 distances are
2.47 and 2.65 Å, respectively. Due to this small first NN distance
between Fe1 and Fe2, the strongest isotropic symmetric exchange
interaction exists between the first NN of these two species,
shown by the green arrow in Fig. 1a. The scenario is quite different
for Fe4GeTe2, where the Ge atom is placed between Fe2 and Fe3
(shifted along the diagonal direction). The first NN Fe1-Fe2 (Fe4-
Fe3) and Fe1-Fe3 (Fe4-Fe2) distances are 2.55 and 2.49 Å,
respectively. The first NN Fe2-Ge (or Fe3-Ge) and Fe1-Ge (or
Fe4-Ge) distances are 2.40 and 2.92 Å, respectively. Although the
shortest first NN distance exists between Fe1 and Fe3 (Fe4 and
Fe2), the highest isotropic symmetric exchange interaction takes
place between Fe1 and Fe2, instead of between Fe1 and Fe3. The
position of Ge atom relative to the Fe atoms is responsible for
such an unexpected feature. In the case of Fe5GeTe2 monolayer in
both UUU and UDU configurations, the most significant symmetric
exchange interactions take place between the first NN Fe5 and
Fe4. The exchange interactions present in different FGT mono-
layers are discussed in more detail in the “Results and discussion”
section.

Effective Hubbard parameters
As already mentioned in the previous section, the FGT systems
possess site-dependent electronic and magnetic properties. In our
previous first-principles study on Fe5GeTe2 monolayer, we have
found that though the structural properties and magnetic
moments obtained using the standard DFT technique are in good
agreement with the experimental reports, the calculated Curie
temperature (using Monte Carlo simulations solving the Spin-
Hamiltonian) is almost twice of the experimental value reported
for this system31. This hints toward the fact that one needs to go
beyond the standard DFT formalism to correctly capture the
magnetic interactions. One possibility to solve such discrepancy in
Curie temperature is to include the electron correlation effect in
first-principles calculations which might be able to reproduce the
experimental results. Here, we consider both the dynamic and
static electron correlation effects and finally compare the
magnetic and electronic properties obtained using GGA, LSDA,
GGA+ DMFT, and GGA+ U techniques.
As the choice of Hubbard U parameter is always ambiguous to

some extent, we have calculated the effective Hubbard U
parameter (Ueff) for each Fe species in its magnetic ground state
(as obtained from GGA) using the constrained linear response
(cLR) method proposed by Cococcioni et al.34. This method is
focused on the main effect associated with the on-site Coulomb
repulsion U, neglecting the secondary effects related to the
higher-multipolar terms in the Coulomb interaction. The effects of
Hund’s exchange interaction (JH) are incorporated by redefining

the Hubbard U as Ueff= U− JH (see “Methods” for further details).
The site-dependent Ueff values obtained using cLR for each Fe
species belonging to different FGT monolayers are reported in
Table 1.
There are previous reports in literature where the FenGeTe2

systems are studied considering (mostly) the static electron
correlation effect, where the site-dependence of Hubbard U is
not considered30,35, except by Zhu et al., where U= 5.5 eV and
5.0 eV with the common JH= 0.8 eV are considered for two
different Fe sublattices present in Fe3GeTe229. To the best of our
knowledge, apart from our work, so far, there is no other first-
principles study reporting site-dependent U value computed from
either constrained linear response or any other standard
computational technique (e.g., constrained random phase approx-
imation or cRPA) generally followed for such calculations. It should
be noted that the average value of Ueff considered by the previous
authors to study any FenGeTe2 system falls in the range from 4 to
4.5 eV29,30,35, which is close to our calculated Uavg

eff values for the
FenGeTe2 monolayers. Nevertheless, it is worth mentioning that
Fe5GeTe2 shows a much larger variation of site-dependent
U values.
It is known that the size of the magnetic moment is inversely

proportional to the width of the electronic density of states. The
width of electronic density of states of FenGeTe2 system is ~8 eV
(see Supplementary Figs. 1 and 2), and with Ueff ~ 4 eV, U/W ~ 0.5.
Therefore, due to the existence of broad enough Fe-d bands, the
Fe-d electrons are quite delocalized and the applicability of
Hubbard U correction within the DFT+ U formalism is
questionable.
In FenGeTe2 systems, the Fe sublattices can be classified into

different categories based on their magnetic properties. For
example, Fe3GeTe2 contains two types of Fe sublattices with
different magnetic moments29,36,37, e.g., 2.18 μB and 1.80 μB based
on the data obtained from neutron powder diffraction experi-
ments36. From the standard DFT calculations, using GGA a the
exchange-correlation functional, we find the moment of two Fe
sublattices present in Fe3GeTe2 to be 2.49 μB and 1.50 μB. This
implies that the electronic nature or localization of Fe-d states
must be different for these two sublattices (see Supplementary
Fig. 1 in SI). Using the cLR method we find the Fe species with

Table 1. Effective Hubbard U parameter for Fe atoms in FenGeTe2
systems obtained from constrained linear response technique.

System Atom Ueff (eV)

Fe1 4.8

Fe3GeTe2 Fe2 4.8

Fe3 3.9

Fe1 4.5

Fe4GeTe2 Fe2 4.0

Fe3 4.0

Fe4 4.5

Fe1 2.9

Fe2 4.2

Fe5GeTe2 Fe3 4.1

(UUU) Fe4 4.0

Fe5 4.6

Fe1U 3.7

Fe1D 4.0

Fe5GeTe2 Fe2 4.6

(UDU) Fe3 4.1

Fe4 4.1

Fe5 4.6
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larger moment has Ueff= 4.8 eV, while for the other Fe sublattice
Ueff= 3.9 eV, supporting the relationship between the degree of
localization of electronic state and magnetic moment. Similarly,
Fe4GeTe2 and Fe5GeTe2 systems also exhibit site dependent
magnetic properties20,30, and this feature is reflected in our
calculated Ueff, see Table 1.

Role of electron correlation effect: comparison between
DMFT, DFT, and DFT+U approaches
Within the framework of standard density functional theory, the
exchange-correlation functionals (LSDA and GGA) are derived in the
limit of a nearly uniform electron density, which can not correctly
describe the electronic and magnetic properties of localized
electronic states with strong Coulomb interactions. In some systems,
the on-site Coulomb interaction (U) is quite significant and becomes
much larger than the band width (W). When U/W << 1 the system is
weakly correlated and well described by LSDA/GGA. In the case of
strongly correlated regime U/W >> 1, which gives atomic-like
behavior (e.g., Hubbard bands, Mott insulators). The most interest-
ing case is when U/W ~ 1, which is a mixture of both band-like and
atomic-like behavior, this can give rise to exotic phenomena like
Kondo behavior, materials with heavy fermions etc.
DFT+U deals with on-site Coulomb interaction which is

applicable only in the limit of U/W >> 1. While the dynamical
mean field or DMFT covers the entire range of the parameter U/W,
i.e., from uncorrelated metal to Mott insulator. Since the FenGeTe2
systems are metallic in nature, inclusion of static electron
correlation or DFT+ U is not supposed to be a good choice. To
check the applicability of GGA+ DMFT vs. GGA+ U we calculate
and compare the magnetic moments, exchange interactions,
magnetic anisotropies and finally the Curie temperatures.
The concept of dynamical mean-field theory is to replace a

lattice model with many degrees of freedom by an effective
single-site model coupled to a self-consistent bath38. The primary
quantity of DMFT is the local Green’s function GR(z), defined as the
one-electron Green’s function projected to the correlated states at
site R: GR(z)= PRG(z)PR, where PR is the projection operator. G(z) is
the one-electron Green’s function, which is given by:

GðzÞ ¼ ½z þ μ� Heff � ΣðzÞ��1; (1)

where μ is the chemical potential, the term Heff is the effective
Hamiltonian which includes the Hartree, exchange and correlation
terms on the level of the generalized-gradient approximation (GGA).
Σ(z) is the self-energy, which goes beyond GGA and includes
dynamical electronic correlations and z= iωn where ωn is the
Matsubara frequency. The approximation of DMFT assumes the
locality of one-electron self-energy, which can be written as the sum
of local self-energies for all Bravais lattice sites. In DMFT, the problem
of a lattice is substituted by the impurity problem, popularly known
as the effective Anderson model, where a single correlated site in
the self-consistent bath is described by the bath Green’s function
G0ðR; zÞ defined as:

G�1
0 ðR; zÞ ¼ G�1

R ðzÞ þ ΣRðzÞ (2)

Here, we perform fully charge self-consistent GGA or LSDA
combined with DMFT38 by spin-polarized T-matrix combined with
fluctuating exchange approximation or SPTF solver39, which is a
perturbative solver, best suited for weak correlations, computation-
ally less expensive, applicable for spin-polarized case treating crystal
field and spin-orbit effects correctly, and gives accurate DOS and
spectral densities40. We use site-dependent Hubbard Ueff parameters,
obtained from the constrained linear response method, as reported
in Table 1, to perform GGA+DMFT and GGA+U calculations.
In principle, DMFT is based on a mapping of lattice models onto

quantum impurity models and for correlated electrons, this mapping
is exact in the limit of infinite dimensions41. However, in recent days,
DMFT has been proven to be a reliable and well-controlled

approximation to study correlation effects in bulk solids as well as
for two-dimensional systems42. Recent studies on 2D or layered
materials reported that DFT+DMFT technique describes the
electronic and magnetic properties more accurately than DFT+U
or standard DFT43–45.
First, we focus on the magnetic moments calculated using

GGA+ DMFT, GGA, LSDA and GGA+ U techniques. Table 2
reports the magnetic moment of each Fe sublattice for Fe3GeTe2,
Fe4GeTe2, and Fe5GeTe2 (UDU configuration) monolayers
(moments of Fe5GeTe2 in UUU configuration are reported in
Supplementary Table 1 in SI). The influence of structural
symmetries present in FenGeTe2 systems is reflected in the
magnetic moments reported in Table 2. To investigate the
magnetic and electronic properties of FenGeTe2 systems with
different first-principles methods, we use the crystal structures
optimized with GGA, since the unit cell parameters obtained with
GGA are in better agreement with experimental values, reported
in previous first-principles studies as well23,24. LSDA under-
estimates the lattice parameters by ~3% compared to experiment
(see Supplementary Table 1). Therefore, we do not perform any
further calculations with LSDA but with GGA. We find the values of
magnetic moment obtained using GGA+ DMFT and GGA are
quite similar, except for the Fe1U sublattice for Fe5GeTe2 in UDU

Table 2. Magnetic moments associated with each Fe atom in
FenGeTe2 monolayer (computed with different techniques) in units of
μB.

System Species GGA+DMFT GGA
[LSDA]

GGA+U Expt.

Fe3GeTe2 Fe1 2.52 2.49 [2.33] 3.19 2.1836

Fe2 2.52 2.49 [2.33] 3.19 2.1836

Fe3 1.31 1.50 [1.28] 2.50 1.5436

Average 2.12 2.16 [1.81] 2.96 1.6286,
1.7029

Fe4GeTe2 Fe1 2.61 2.57 [2.41] 3.33

Fe2 1.58 1.75 [1.57] 2.62

Fe3 1.58 1.75 [1.57] 2.62

Fe4 2.61 2.57 [2.41] 3.33

Average 2.10 2.16 [1.99] 2.98 1.8030

Fe5GeTe2 Fe1U −0.45 1.23 [1.35] 2.77 Ranges
from

Fe1D 1.76 1.71 [1.53] 3.00 0.8 to 2.520

(UDU) Fe2 2.55 2.51 [2.38] 2.97

Fe3 1.92 2.08 [1.91] 2.85

Fe4 1.85 1.98 [1.78] 2.64

Fe5 2.63 2.57 [2.39] 2.97

Average 2.05 2.42 [1.97] 3.44 1.9587,
1.8070

Fe5GeTe2 Fe1U −0.14 0.11 [0.00] −2.48 Ranges
from

(UUU) Fe2 2.40 2.30 [2.22] 2.77

Fe3 1.95 2.04 [1.75] 2.71

Fe4 1.31 1.46 [1.29] 2.24

Fe5 2.63 2.57 [2.42] 3.29

Average 1.63 1.70 [1.54] 1.71 1.9587,
1.8070

Values reported in square brackets are the moments obtained using LSDA.
The first-principles results are obtained using GGA-optimized structures.
Experimental magnetic moments are reported for the corresponding bulk
FenGeTe2 systems, since experimental data are not availbale for most of the
monolayer systems.
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configuration. It is known from previous studies that this species
exhibits fluctuating moment and is mainly responsible for
magnetic anomaly observed in Fe5GeTe2 at low tempera-
ture19,20,31,33. The magnetic moments of the UUU configuration
are reported in Table 2. More interestingly, both the GGA+ DMFT
and GGA moments are close in magnitude to the moments
obtained from neutron powder diffraction experiments, as we see
in Table 2. There is a small discrepancy between the experimental
and DMFT/DFT results which arises because the DMFT or DFT
moments are calculated at 0 K for the ground state crystal
structure of the monolayers, whereas the neutron powder
diffraction experiments are performed at finite temperatures
(~2–5 K)20,36,37. Note, the moment values calculated using LSDA
are always underestimated compared to GGA, see Table 2, which
is agreement with previous DFT studies on FGT23,24.
In the case of GGA+U, a large deviation between the computed

and experimental moments is observed. Previous DFT+U studies
on FGT systems also report significant discrepancy in structural,
electronic and magnetic properties of FGT systems obtained using
DFT+U compared to experimental results22–24,35,46. Note, in the
GGA+U calculations we use the fully-localized limit as the double
counting (DC) correction to study the electronic and magnetic
properties. We perform further calculations using the around mean
field (AMF) as the DC correction using exactly the same site-
dependent Ueff values. In that case also we find that the magnetic
moments have hugely deviated from the experimental moments.
This implies that GGA+U fails to reproduce the correct ground
state properties of FGT systems.
FenGeTe2 systems are metallic with conducting electrons and

therefore, to correctly describe the electronic properties and
magnetic behavior of such metallic systems inclusion of DFT+U,
i.e., consideration of on-site Coulomb repulsion is not the proper
approach23. Instead, the dynamical electron correlation effect or
DMFT may be a better choice to capture the correct electronic
structure and magnetic behavior, which can properly describe the
site-dependent magnetic behavior present in these systems19,29,30.
There are recent studies on Fe3GeTe2 which have mentioned the
existence of heavy Fermion states due to intriguing interplay
between localized magnetic moments and itinerant electrons47,48.
Also, Zhang et al. have proposed the existence of itinerant
ferromagnetism in Fe5GeTe2.19 These reports hint toward the fact
that the electronic nature of Fe-3d states is sublattice specific. Such
findings and prediction have motivated us to consider the electron
correlation effect in FGT systems incorporating site-dependent Ueff.
There are a few first-principles reports on FGT systems where the
dynamical electron correlation effect is considered29,30, but those
studies do not explain why DMFT should be considered as a better
technique compared to other first-principles methods, for the correct
description of FGT systems. In our study, we show the importance of
the dynamic electron correlation effect for the FGT systems by
calculating the exchange interactions, magnetic anisotropy and
more importantly the Curie temperature of these systems.
Monte Carlo simulations are performed to calculate TC using the

following spin Hamiltonian:

H ¼ �
X
i≠j

Jij e
!

i � e!j �
X
i≠j

D
!

ij � ð e!i ´ e!jÞ �
X
i≠j

K i e
z
i

� �2
; (3)

where Jij and D
!

ij are the symmetric and antisymmetric exchange
interactions, respectively between the ith and jth sites. According
to Eq. (3), positive (negative) sign of Jij implies ferromagnetic
(antiferromagnetic) interaction. Ki is the single-ion anisotropy for
the ith site. In this study, we have used Heisenberg spin model
which is applicable for localized moments. However, we are aware
that the FenGeTe2 systems have mixed localized and itinerant
character, as already speculated by previous authors47–50. There-
fore, it would be interesting to extend the spin Hamiltonian by
considering higher order exchange terms6,51.

We first check how the Jij and Ki values obtained using GGA,
GGA+ DMFT and GGA+ U are different from each other to
influence the value of TC. We do not include the comparison of the
highest magnitude of Dij obtained from different methods, since
the magnitude of Dzyaloshinkii-Moriya interaction (DMI) are quite
small compared to the Jij and MAE values, therefore DM
interactions have negligible influence on TC.
In Fig. 2 the histogram plots show (a–d) the strongest isotropic

symmetric exchange interaction (Jij), (e–h) magnetic anisotropy
energy (MAE) and (i–l) Curie temperature (TC) for FenGeTe2
(n= 3, 4, 5) systems obtained using different first-principles
methods. From Fig. 2a–d we see that the sign of the highest Jij
interactions computed using these different methods remain
unaltered but their magnitudes differ significantly. In the case of
Fe3GeTe2 and Fe5GeTe2, we find the value of the strongest Jij
interaction obtained using GGA+DMFT is almost half of the GGA
value, while this difference is even more GGA+ DMFT ~ 4 times
smaller than GGA) for Fe4GeTe2. The strongest Jij value using
GGA+ U for n= 3, 4, and 5 is overestimated by 6%, 71%, 43%
(UUU) and 26% (UDU), respectively, w.r.t. the standard GGA results
for the corresponding systems.
Magnetic anisotropy energy MAE= E⊥− E∥, calculated using

different computational techniques are plotted in Fig. 2e–h,
positive (negative) sign indicates in-plane (out-of-plane) easy axis.
The standard DFT (both GGA and LSDA) results show that the easy
axis of magnetization is strongly along the out-of-plane and in-
plane directions for Fe3GeTe2 and Fe5GeTe2 monolayers, respec-
tively, while for Fe5GeTe2 monolayer, MAE is weakly out-of-plane
(in-plane) for the UDU (UUU) configuration. The GGA MAE results
for Fe3GeTe2, Fe4GeTe2, and Fe5GeTe2 (UUU configuration)
monolayers agree well with previous GGA results31,31,32,52.
Next we investigate how the DFT computed MAE results get

modified by the inclusion of dynamical electronic correlations. The
direction of easy axis obtained using DMFT and DFT remains same
for any FenGeTe2 monolayer, except for Fe5GeTe2 in UDU
configuration. The DFT result shows weak out-of-plane anisotropy
while DMFT produces small in-plane anisotropy value. The
GGA+ DMFT (GGA) computed MAE for Fe3GeTe2, Fe4GeTe2,
Fe5GeTe2 in UUU and UDU configurations are: −1.51 (−1.22),
0.77 (1.01), 0.05 (0.11) and 0.02 (-0.03) meV/Fe, respectively.
It is important to note that the direction of easy axis for the

Fe3GeTe2 and Fe4GeTe2 monolayers evaluated using GGA+DMFT
and GGA is in good agreement with the experimental results
reported for the corresponding bulk systems30. In the case of bulk
Fe5GeTe2 the scenario is not so straightforward because some
studies report weak in-plane easy axis19, while some mentions
canted out-of-plane20 configuration. This can be attributed to the
complexity related to the structural properties and chemical
composition of Fe5GeTe2. Our previous first-principles study on
Fe5GeTe2 monolayer reported that both the direction and
magnitude of MAE vary depending on the concentration of Fe
vacancy and the presence of Fe1-Ge split sites31. Since the
strength of MAE for this system is quite weak, small structural
changes or weak perturbations can easily tune this property.
Figure 2i–l shows the value of TC computed using different

techniques for different FGT monolayers. It is quite evident from
Fig. 2i–l that TC obtained from GGA is hugely overestimated
compared with GGA+ DMFT. TC obtained using GGA is almost
twice of the GGA+ DMFT value for Fe3GeTe2 and Fe5GeTe2, while
this difference increases in the case of Fe4GeTe2. The M vs. T
behavior for different Fe sublattices present in the FenGeTe2
monolayers are plotted in SI.
Carefully examining Fig. 2a–d and i–l, one can see there is a

direct correlation between the GGA and GGA+ DMFT computed
Jij and TC. For example, in the case of Fe3GeTe2, the value of the
strongest Jij coupling using GGA+ DMFT and GGA are 36.52 meV/
Fe and 65.32 meV/Fe, respectively. Similarly, TC changes from 270
K (GGA+DMFT) to 480 K (GGA). A similar trend is observed
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between the highest Jij and TC for Fe5GeTe2 monolayer in UDU
configuration as well. In the case of Fe4GeTe2, although the
highest Jij(GGA+ U) is almost three times larger than Jij(GGA),
GGA+ U gives significant antiferromagnetic Jij interactions, which
are ~10 times stronger than GGA. The presence of significant
antiferromagnetic components in Jij causes a small reduction in
TC(GGA+ U) compared to TC(GGA). Supplementary Fig. 4 shows
the difference between Jij interactions obtained from GGA and
GGA+U. Using the Jij values calculated from different first-
principles approaches, the following trend is observed for
Fe4GeTe2 monolayer: TC(GGA) > TC(GGA+ U) > TC(GGA+ DMFT).
From this discussion, it is clear that distant neighbor interactions
also play an important role in determining the TC in these 2D
metallic systems especially the antiferromagnetic interactions
(Supplementary Figs. 4 and 8) present for a number of second
nearest neighbors. These results establish the fact that, TC of
FenGeTe2 monolayers are primarily influenced by the overall Jij or
isotropic symmetric exchange interactions present in the system,
i.e., ∑i≠jJij, the first term in Eq. (3).
The TC results reported in Fig. 2 are obtained without

considering site-dependent MAE for different Fe sublattices
present in FenGeTe2 monolayers. To test the validity of this
approximation, we have calculated MAE for different Fe sub-
lattices present in Fe3GeTe2 and Fe4GeTe2 monolayers using
magnetic-force theorem53. We re-calculate TC using site-
dependent MAE values and find that the obtained TC values are
very similar to the previous ones. For example, in the case of
Fe3GeTe2 monolayer, MAE varies by 5% between two types of Fe

sites. Site-dependent and -independent anisotropy energies cause
only ~2% difference in the calculated TC. For Fe4GeTe2 monolayer,
difference in MAE between two Fe sites is 8%, which causes ~1.5%
change in TC.
Moreover, we also observe that the Monte Carlo simulations

performed with and without single-ion anisotropy show a
negligible difference in TC for FenGeTe2 monolayer, see Supple-
mentary Fig. 13 in SI. This can be related to the discussions in a
recent paper54 where it was demonstrated that the short-ranged
isotropic exchange interactions for finite-sized cells used in Monte
Carlo simulations may establish a magnetic order at a finite
temperature without any magnetic anisotropy.
It is important to note that, the value of TC for FenGeTe2

monolayers obtained using GGA+ DMFT fall in the same range as
reported in the experiments on few-layer thick or bulk FGT
systems. Since in the bulk FGT systems, monolayers are stacked
together via weak vdW forces, a single monolayer could be
considered as a reasonable representative of the bulk, though the
interlayer interactions are absent in this case. Therefore, TC(GGA+
DMFT) obtained for monolayers should be compatible with their
bulk counterpart. TC for monolayer (bulk) Fe3GeTe2, Fe4GeTe2 and
Fe5GeTe2 (UDU configuration) systems obtained from GGA+DMFT
(experiments) are the following: 245 K (220 K29,30), 225 K (270 K30)
and 280 K (275–310 K19,20,55), respectively. From these values of TC
we see there is no linear relationship as a function of n for
different FGT monolayers, while the TC values reported in
experiments show the linear trend for bulk FGT systems19. Even
in the case of GGA+DMFT, there is still some overestimation of TC

0

20

40

60

80

J ij (
m

eV
)

0

20

40

60

80

J ij (
m

eV
)

0

20

40

60

80

J ij (
m

eV
)

0

20

40

60

80

J ij (
m

eV
)

200

300

400

500

T
C
 (

K
)

-1,5

-1

-0,5

0

M
A

E
 (

m
eV

/F
e)

200

300

400

500

T
C
 (

K
)

200
250
300
350
400
450

T
C
 (

K
)

200

300

400

500

600

T
C
 (

K
)

0

0,5

1

M
A

E
 (

m
eV

/F
e)

0

0,05

0,1
M

A
E

 (
m

eV
/F

e)

-0,2

-0,1

0

0,1

M
A

E
 (

m
eV

/F
e)

GGA+UTFMD+AGG AGG

TFMD+AGG AGG U+AGG

GGA+UTFMD+AGG AGG

GGA+DMFT GGA GGA+U

AGG U+AGGGGA+DMFT

GGA+UGGAGGA+DMFT

GGA+UTFMD+AGG AGG

GGA+UGGAGGA+DMFT GGA+UGGA

Fe3GeTe2

GGA+DMFT

GGA+UGGAGGA+DMFT

GGA+UGGAGGA+DMFT

GGA+UTFMD+AGG AGG

Fe4GeTe2

(a)

Fe5GeTe2 (UUU)

Fe5GeTe2 (UDU)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 2 Jij interactions, MAE and TC for FenGeTe2 (n = 3, 4, 5) monolayers computed with different methods. a–d Value of the highest Jij
interaction for (a) Fe3GeTe2, Fe4GeTe2 and Fe5GeTe2 (in both UUU and UDU configurations) monolayers obtained using GGA+DMFT, GGA and
GGA+ U. e–h Magnetic anisotropy energy (MAE= E⊥-E∥) Fe3GeTe2, Fe4GeTe2, and Fe5GeTe2 (in both UUU and UDU configurations)
monolayers obtained using different computational techniques. i–l Curie temperature TC for Fe3GeTe2, Fe4GeTe2, and Fe5GeTe2 (in both UUU
and UDU configurations) monolayers.
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obtained for monolayer Fe3GeTe2 compared to the experimental
values (126 K–140 K) reported for this system56,57. Such mismatch
may arise due to the presence of Fe-vacancies or defects in the
real sample, which can alter the exchange interactions and hence
the TC58. For example, studies on bulk Fe3GeTe2 show TC can vary
from 220 K to 160 K depending on the concentration of Fe (as well
as Ge and Te) atoms present in the sample36,59.
Therefore, one may conclude that the standard GGA technique

gives reasonable results for magnetic moment and MAE, but
overestimates the exchange interactions, especially the isotropic
symmetric exchange, hence, leads to high values of the Curie
temperature TC. While the magnetic moments, magnetic aniso-
tropy energy and Curie temperature computed using GGA+
DMFT are in a good agreement with the experimental studies
reported in literature. The outcome from GGA+ U calculations, for
example, the magnetic moment, MAE and TC are not at all
compatible with experimental results. Therefore, the consideration
of static electron correlation (in the limit of U/W≫ 1) can not be a
reasonable choice for the correct description of the electronic and
magnetic properties of FGT systems.
Besides comparing the Curie temperature with experiments, we

evaluate the electronic properties, e.g., density of states, spectral
function, effective mass and Sommerfeld co-efficient to judge the
suitability of different first-principles methods, as discussed in the
“Results and discussion” section.

Interatomic exchange interactions
Based on our results discussed in the “Results and discussion”
section, we find that DMFT produces a reasonable outcome in
terms of the magnetic properties of FGT monolayers. In this
section, we discuss the isotropic symmetric and antisymmetric
exchange interactions computed with the inclusion of dynamical
electronic correlation effects. We focus on the exchange interac-
tions obtained using DMFT, because, as discussed in the “Results
and discussion” section, this technique captures the physical
(electronic and magnetic) properties of FGT systems more
accurately than other methods. It should be noted that we have
followed the standard approach of calculating the parameters of
the spin Hamiltonian for the ground state structure at T= 0 K and
using them in Monte Carlo simulations. It is interesting to note
that some recent experimental studies have reported modifica-
tions in crystal structure as a function of temperature20,59,60 and
this may have an important consequence in magnetic properties.
This topic will be considered in a future study.

Isotropic symmetric exchange parameters
The isotropic symmetric exchange interactions Jij within the GGA
+DMFT framework is given by61:

Jij ¼ T
4

X
n

Tr½ΔiðiωnÞG"
ijðiωnÞΔjðiωnÞG#

jiðiωnÞ�; (4)

where the trace is over the orbital degrees of freedom, T is the
temperature, and ωn is the nth Matsubara frequency, Gij is the
intersite Green’s function between sites i and j. Therefore,
according to Eq. (4), the exchange interactions Jij depend on the
onsite exchange splitting Δi and intersite Green’s function Gij. The
onsite exchange splitting term Δi which includes the self-energy is
given by:

ΔiðiωnÞ ¼ H"
KS þ Σ"i ðiωnÞ � H#

KS � Σ#i ðiωnÞ; (5)

where HKS and Σi are the Kohn-Sham Hamiltonian and site-
dependent self-energy. The self-energy is obtained by solving the
DMFT equations. In DMFT calculations, the self-energy is
frequency-dependent, which is also true for the exchange
splitting. Though the self-energy Σ is a single-site quantity, it
affects the intersite Green’s function according to Eq. (1)61. Jij

parameters for each Fe sublattice in FenGeTe2 (n= 3, 4, 5) systems
obtained using DMFT are plotted in Fig. 3.
Figure 3a, b shows the Jij interactions obtained using when

i= Fe1 and Fe3 for Fe3GeTe2 monolayer as a function of the
nearest neighbor distance Rij (normalized by the lattice parameter
a). The dominating exchange interaction is ferromagnetic (FM)
between different types of Fe species, i.e., when i ≠ j while for i= j,
the first NN interaction is antiferromagnetic (AFM) irrespective of
the type of Fe sublattice. As already mentioned, the first NN
distance between Fe1 and Fe2 is smaller than the first NN Fe1-Fe3
distance, therefore, as expected, the strongest FM Jij interaction
takes place between the first NN Fe1-Fe2 pair, see Fig. 3a, b. From
the orbital decomposition of Jij interactions (see Supplementary
Table 1), we find the dominating contribution to the first nearest
neighbor (NN) J12 interaction comes from the dz2 orbital of the
vertically aligned Fe1 and Fe2 atoms, see Fig. 1a.
The Jij values calculated using standard GGA, GGA+ DMFT and

GGA+ U techniques for Fe3GeTe2 monolayer are plotted in
Supplementary Fig. 3. This comparison clearly shows that, although
the sign of Jij interactions remains unchanged, their magnitude
differs drastically, which in turn modifies the TC. Figure 3a–b shows
the largest isotropic symmetric exchange interaction takes place
between Fe1 and Fe2. Fe-d orbital resolved Jij interactions for
Fe3GeTe2 monolayer reported in Supplementary Table 2 show the
major contribution to J12 comes from Fe-dz2 state. Inclusion of
dynamical electron correlation significantly modifies this particular
interaction. We check the robustness of GGA+DMFT method with
respect to the correlation strength by calculating the Jij interactions
for different Ueff= U− J values using GGA+ DMFT, for example,
U= 5.0 eV and JH= 1.2 eV, Seo et. al. considered these values in
their studies on FenGeTe2 systems30. Our results show the
maximum deviation in the largest Jij value is ~8% between the
site-dependent Ueff values (calculated from cLR method) and
U= 5.0, JH= 1.2 eV, for Fe3GeTe2 monolayer, see Supplementary
Fig. 4.
The Jij interactions obtained using GGA+DMFT for i= Fe1 and Fe2

of Fe4GeTe2 monolayer are plotted in Fig. 3c, d, respectively.
Supplementary Fig. 5 shows the isotropic exchange interactions of
Fe4GeTe2 computed using GGA, GGA+DMFT and GGA+U. Similar
to Fe3GeTe2, in the case of Fe4GeTe2 also, the sign of Jij couplings
remain unchanged irrespective of the type of computational
technique. The Jij interactions are mostly FM in this system and
dominating FM interaction takes place between Fe1-Fe2 and Fe3-Fe4.
The nature of Jij interactions is relatively complicated in the case

of Fe5GeTe2. The dominating exchange interaction between
different Fe sublattices is FM for i= 2, 3, 4 and 5, while a small
AFM coupling exists between the same Fe species, see Fig. 3g–j.
This scenario is quite different for i= 1U and 1D, where significant
AFM interactions are present even for i ≠ j, i.e., between 1U or 1D
and other Fe species, see Fig. 3e, f. The presence of such non-
negligible AFM coupling implies the existence of exchange
frustration in Fe5GeTe2. Supplementary Fig. 6 shows how the
absence and presence of electron correlation affect the Jij
interactions present in Fe5GeTe2 for the UDU configuration. The
Jij interactions computed using GGA and GGA+ U in the UDU
configuration are plotted in Supplementary Fig. 7.
Using the DMFT computed Jij values we calculate exchange

stiffness constant A for the FenGeTe2 monolayers, which is
given by:

A ¼ 1
2V

lim
κ!0

X
i≠j

JijR
2
ije

�κRij (6)

where V is the unit cell volume per magnetic site and κ is the
damping parameter. The term e�κRij is introduced to improve
the convergence of A with the cutoff radii or Rij62. We check the
dependence of A as a function of κ for different Rij varying κ from 0
to 2 and we find for κ ≥ 0.5 different curves coincide. Using those

S. Ghosh et al.

7

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)    86 



results we fit the exponential function f(κ)= ae−bκ+ c and
calculated f(0) at the κ= 0 limit. The stiffness constant A is
estimated this way. Since we are interested in monolayer FGT
systems, Eq. (7) is modified in the following way:

A ¼ 1
2S

lim
κ!0

X
i≠j

JijR
2
ij e

�κRij
(7)

where S is the unit cell area. The exchange stiffness constants A for
FenGeTe2 monolayers calculated using Eq. (7) are given by: 4.63
meV (n= 3), 4.30 meV (n= 4), 3.24 meV (n= 5, UUU) and 13.88
meV (n= 5, UDU).
Next, we study the antisymmetric exchange (Dij) interactions.

The Dij interactions are calculated using the relativistic general-
ization of the Lichtenstein-Katsnelson-Antropov-Gubanov (LKAG)

Fig. 3 Distance dependent isotropic symmetric exchange parameters. Isotropic symmetric exchange parameters Jij as a function of
neighboring distance Rij for a, b Fe3GeTe2, c, d Fe4GeTe2 and e–j Fe5GeTe2 monolayer, obtained using GGA+DMFT. The Jij values reported
here are multiplied by the corresponding coordination numbers.
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formula63. In the fully relativistic limit, the magnetic exchange
parameters are (3 × 3) tensors, with the isotropic exchange terms
Jij as the diagonal components and the antisymmetric DM and the
symmetric anisotropic exchange interactions in the off-diagonal

components. The 3 × 3 tensor with only the antisymmetric terms

is the following:
0 Dz

ij �Dy
ij

�Dz
ij 0 Dx

ij

Dy
ij �Dx

ij 0

0
@

1
A, where, Dz

ij ¼ 1
2 ðJxyij � Jyxij Þ

Figure 4 shows the antisymmetric exchange interactions or

Dzyaloshinkii-Moriya interaction (DMI) Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDx

ijÞ2 þ ðDy
ijÞ2 þ ðDz

ijÞ2
q

between different ith and jth Fe sites present in FenGeTe2
monolayers, computed using GGA+DMFT. The DM interactions
for the two different Fe sublattices (Fe1 and Fe3) of Fe3GeTe2 are
plotted in Fig. 4a, b. The strongest Dij interaction takes place
between Fe1-Fe1, i.e., Fe atoms situated in the same z plane, as
we see in Fig. 4a the first nearest neighbor D11 interaction is ~ 10
meV. Figure 4c shows the side view of the first nearest neighbor
D11 acting between Fe1-Fe1 and the dominating contribution
comes from the Dz component. The next significant DM
interaction takes place between the first nearest neighbors Fe1
and Fe3. The inversion symmetry is broken locally for the bonds
where we find a non-zero DM interaction. As an example, a
significant magnitude of first-nearest neighbor (NN) D11 interac-
tion exists due to the absence of inversion center between Fe1-
Fe1 neighbors. Relative to the center of the Fe-Fe bond, the local
atomic environment is asymmetric due to the presence of Ge and
Te ions below and above the Fe plane, respectively. The first NN
DMI is zero between Fe1 and Fe2, due to the presence of
inversion center between Fe1 and Fe2 bond.
Figure 4d shows the top view of the DM interaction vectors

between Fe1 and Fe3 sites, which have mainly the in-plane
components (Dx and Dy). It is important to note that the Dz

11 as
well as the Dx

13 and Dy
13 vectors present in the unit cell almost

cancel each other due to the structural symmetry of this system.
More interestingly, the first nearest neighbor (NN) D13 interaction
is essentially zero, this happens because the NN Fe1 and Fe2
atoms are inversion symmetric partners with respect to the z axis,
see Fig. 1a. Comparing between the magnitudes of the highest Dij

and Jij values of Fe3GeTe2 monolayer, we see the DM interaction is
~3 times smaller than the isotropic symmetric exchange interac-
tions. Supplementary Fig. 9 shows the DM interactions present in
Fe3GeTe2 obtained using GGA and GGA+ DMFT.
The Dij interactions for different Fe sublattices of Fe4GeTe2 are

plotted in Fig. 4e, f. Similar to Fe3GeTe2, in this case also the first
NN D11 interaction (between Fe1 and Fe1) has the highest
contribution to DMI in Fe4GeTe2 with Dz as the dominating
component, see Fig. 4g. The next dominating DM interaction takes
place between the first NN Fe2-Fe2 pair, and the direction of D22 is
mainly along z. There exists non-zero DMI between Fe1-Fe2 or
Fe3-Fe4 where the in-plane components dominate, see Fig. 4h.
The first nearest neighbor D13 or D24 interaction is zero, while the
long-range D13 (or D24) are non-zero. More interestingly, DM
interactions do not exist between Fe1 and Fe4 (Fe2 and Fe3), due
to the presence of inversion centre along the bonds formed
between Fe1 and Fe4 (Fe2 and Fe3). Hence, these Fe sites are
inversion symmetric partners, see Fig. 1b. The DM interaction
vectors between different Fe-sublattices of Fe4GeTe2 are plotted in
Fig. 4g, h. Supplementary Fig. 10 shows the DM interactions
present in Fe4GeTe2 obtained using GGA and GGA+ DMFT.
Figure 4i–n show the DM interactions for different Fe sublattices

of Fe5GeTe2 in the UDU configuration. The Dij interactions are
quite complex in this case compared to the Fe3GeTe2 and

Fig. 4 Distance dependent anisotropic exchange parameters.

Antisymmetric exchange parameters Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
xij þ D2

yij
þ D2

zij

q
as a

function of neighboring distance Rij for a, b Fe3GeTe2, e, f Fe4GeTe2
and i–n Fe5GeTe2 monolayer, obtained using GGA+DMFT.
c, d, g, h, o, p The first neighbor DM interactions between different
ith and jth pairs. The Dij values are multiplied by the corresponding
coordination numbers.
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Fe4GeTe2 monolayers, because this system is less symmetric than
the first two FGT systems. The inversion centre does not exist
along any of the bonds formed between different Fe atoms.
Figure 4o, p shows the DM vectors between Fe1U-Fe4 and Fe4-
Fe5 pairs in Fe5GeTe2. Supplementary Fig. 11 shows the DM
interactions present in Fe5GeTe2 monolayer in the UUU config-
uration computed using GGA and GGA+ DMFT.
Though the scalar form of Dij interactions plotted in Fig. 4 shows

a non-zero contribution for some of the site neighbors, the net
DMI for all the nearest neighbors of a given site i is quite small due
to the structural symmetries present in the pristine FGT
monolayers. Using the computed D

!
ij values we calculate the

spiralization constant D for the FenGeTe2 monolayers defined as:

D ¼ 1
S
lim
κ!0

X
i≠j

D
!

ij � R
!

ije
�κRij (8)

In this case D is 3 × 3 tensor. Since our system of interest is 2D FGT
systems, we divide Eq. (8) by the unit cell area S (same as Eq. (7)).
The spiralization constants calculated from the DM vectors are

negligible in the case of Fe3GeTe2 and Fe4GeTe2, because the net
DM vector acting between any sites i and j gets significantly
canceled out due to the structural symmetries, as we see in Fig. 4c,
d, g, h. In the case of Fe5GeTe2 in UUU and UDU configurations,
the diagonal terms in Eq. (8) are very small but there are some
non-negligible off-diagonal terms. The highest off-diagonal term
of the spiralization tensor for UUU and UDU configurations are
0.04 and 0.031meV Å−1, respectively. Due to the existence of such
small DM interactions in FenGeTe2 monolayers, there is a
negligible contribution to TC from the antisymmetric exchange
interactions.

Electronic structure
In order to investigate how electron correlation effect modifies
the electronic structure we compare the band structure and

k-resolved spectral density obtained from GGA+ DMFT, along the
high symmetry directions. We also discuss the difference in
density of states for these two cases.
The DMFT expressions for spectral density S(k, ϵ) and density of

states (DOS) D(ϵ) are given by:

Sðk; ϵÞ ¼ � 1
π

X
χ

<k; χjImGðϵþ i0Þjk; χ>; (9)

DðϵÞ ¼ � 1
π
Tr½ImGðϵþ i0Þ�; (10)

Among the three FenGeTe2 systems, n= 3 is the simplest one
and the Jij interactions present in this system are less complicated.
Hence, we focus only on Fe3GeTe2, to see the change in electronic
structure due to dynamical electronic correlations. Here we focus
on Fe1-dz2 state since from the orbital resolved analysis of Jij
interactions we see this particular orbital of Fe1 (and/or Fe2) has
dominating contribution to the isotropic symmetric exchange
interaction J12 (between Fe1 and Fe2), as reported in the “Results
and discussion” section and Supplementary Table 2. Figure 5
shows the comparison of electronic structures of Fe3GeTe2
monolayer obtained without and with dynamical correlations.
The spin-polarized GGA and GGA+ DMFT band structures for

Fe1 (or Fe2) sublattice of Fe3GeTe2 projecting on dz2 orbital are
plotted along the high-symmetry directions in Fig. 5a–b (up spin)
and d–e (down spin), respectively. The GGA band structure
contains sharp energy bands, while the DMFT bands are smeared
out due to the finite quasiparticle lifetime40 induced by a non-zero
imaginary part of the self-energy. Furthermore, the energy levels
are shifted towards the Fermi level, which is attributed to the real
part of the self-energy, and become more flat due to correlations.
Correlations also reduce the bandwidth in the momentum-
resolved spectral function S(k, ϵ). In Fig. 3a we see the first NN
J12, i.e., the isotropic symmetric exchange interaction between Fe1

Fig. 5 Comparison of spectral properties of Fe3GeTe2 monolayer. Band structure projecting on both spin channels of dz2 orbital for Fe1
(Fe2) in Fe3GeTe2 using a, d GGA and b, e GGA+DMFT. c, f show the GGA (black) vs. GGA+DMFT (red) density of states projected on dz2 orbital
of Fe1(Fe2) for both spin channels. Insets in (c) and (f) show the real (red solid) and imaginary (green dashed) parts of the self-energy Σ for
both spin channels.
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and Fe2, is the strongest among all Jij interactions present in this
system. The orbital decomposed results show the first NN Fe1 and
Fe2 atoms interact mainly via their dz2 orbitals. Due to this reason,
here we focus on the dz2 orbital of one of these Fe species, and
compare its electronic nature using GGA and GGA+ DMFT.
Comparing between the GGA and GGA+DMFT band structures
we find the narrowing or shift of bands towards the Fermi energy
is quite significant along Γ− K and Γ−M directions for the spin-up
and down channels, respectively.
The GGA (black) and GGA+DMFT (red) density of states D(ϵ)

projecting on Fe1 (or Fe2) dz2 orbital for both spin channels are
plotted in Fig. 5c, f. It follows from Fig. 5c, f that DMFT causes
noticeable renormalization of Fe1-3dz2 projected density of states
(PDOS). In the case of spin-up channel of the DMFT PDOS (red
curve), the first peak is situated closer to the Fermi energy
compared to the GGA PDOS, see Fig. 5c. Similarly, for the spin-
down channel the electronic states are also shifted toward the
Fermi level for DMFT PDOS, see Fig. 5f.
Even though the integration of spin-polarized DOS up to the

Fermi energy remains almost the same for both DFT and DMFT,
(which causes similar value of magnetic moments for DFT and
DMFT), the electronic spectra gets modified upon the inclusion of
dynamical electronic correlations. These modifications in the
PDOS can be understood by analyzing the real (red solid) and
imaginary (green dashed) parts of the self-energy Σ, displayed as
the insets in Fig. 5c, f, for the up and down spin channels,
respectively. According to Eq. (10) the GGA+DMFT DOS contains
imaginary part of the Green’s function, and the self energy term Σ
is included in the denominator of Green’s function, see Eq. (1). The
quasiparticle energies are renormalized by the real part of the self-
energy which shifts the positions of the peaks in the DMFT
spectrum. The high and positive value of the self-energy for the up
and down spin channels within the energy range between 0 and
−5 eV shifts the spectrum toward the Fermi level. The imaginary
part of the self-energy causes broadening of the peaks present in
PDOS, leading to an effective decrease of their intensities. Note,
the imaginary part of the self energy is ~0 at and close to the
Fermi energy, implying the quasi-particles have longer lifetimes,
according to Fermi liquid theory.
The difference in electronic structure between GGA and

GGA+ DMFT, displayed in Fig. 5, is responsible to modify the
isotropic symmetric exchange interactions present in Fe3GeTe2
monolayer, which in turn changes the Curie temperature. The
band structure plot along high-symmetry directions shows that
the energy levels get more localized in the case of GGA+ DMFT
than GGA, thus the dynamical correlations reduce the electron

hopping amplitude between different sites and consequently the
intersite Green’s-function Gij in Eq. (4). Therefore, the isotropic
symmetric exchange interactions present in FGT systems get
significantly reduced in DMFT leading to smaller values of TC.

Discussion on bulk FGT systems
TC obtained from our Monte Carlo simulations for Fe3GeTe2,
Fe4GeTe2 and Fe5GeTe2 (UDU configuration) monolayers are 275
K, 220 K and 280 K, respectively. From these results one can see
that TC does not increase linearly as a function of n(= 3, 4, and 5),
which is in contrast to previous studies on bulk FenGeTe2
systems19,30. This implies some important features must be
missing in the case of FGT monolayers compared to the bulk
FGT systems. Due to the lack of those features, the expected TC vs.
n relationship is not observed.
To understand the magnetic and electronic properties of bulk

FGT systems we focus on bulk Fe3GeTe2 since this is the simplest
member and experimental results are reported mainly for this
particular system so far. Based on our (DFT and DFT+DMFT)
results we find (as mentioned in the “Results and discussion”
section) that the value of TC primarily depends on Jij. Therefore,
the sign and magnitude of Jij interactions present in bulk Fe3GeTe2
should be the main features to tune the TC from monolayer to
bulk (or vice versa). We calculate the magnetic exchange
interactions and TC for bulk Fe3GeTe2. Our results show both the
strength and magnitude of intralayer Jij interactions remain almost
the same for monolayer and bulk, see Supplementary Fig. 14.
Therefore the intralayer Jij interactions do not play any role in
modifying the TC for this system.
Next, we focus on the interlayer symmetric exchange interac-

tions considering ferromagnetic intra and interlayer spin config-
uration. Our GGA+ DMFT results show that significant
antiferromagnetic (AFM) couplings exist in bulk Fe3GeTe2, as
already discussed in the literature60,64,65. Figure 6a–c shows the
side view of bulk Fe3GeTe2 and the interlayer symmetric exchange
interactions Jij for i= 1 and i= 3, respectively. Bulk Fe3GeTe2 has
the vdW gap of 3.47 Å and the out-of-plane lattice constant is
16.33 Å. Note, the unit cell of bulk Fe4GeTe2 and Fe5GeTe2 contain
three formula units along z direction with thickness 29.08 and
29.20 Å, respectively20,30. Figure 6b, c significant interlayer AFM
interactions are present in bulk Fe3GeTe2. Though these interlayer
Jij interactions are weaker than the intralayer interactions, such
exchange couplings are enough to tune the TC. As a result, the
Curie temperature changes from 260 K (monolayer) to 205 K
(bulk), and this value of TC for the pristine bulk Fe3GeTe2 is in good
agreement with the previously reported experimental

Fig. 6 Crystal structure and Jij interactions of bulk Fe3GeTe2. a Side view of bulk Fe3GeTe2, the sublatiices highlighted in white show the
strongest AFM interaction. Interlayer symmetric exchange couplings Jij as a function of neighboring distance Rij for Fe3GeTe2 bulk for the ith
site as (b) Fe1 and (c) Fe3. These results are obtained using GGA+DMFT. The second nearest neighbor J14 (or J36) interaction shows significant
AFM coupling. The exchange parameters are multiplied by the corresponding coordination numbers. The blue dashed line in (a) between Fe1
and Fe4 shows the Fe sublattices taking part into the highest AFM interaction, highlighted by the blue circle in (b).
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findings30,36,37,48,57,59 and computed values of TC30,66. Note, the
MC simulations are performed solving the spin Hamiltonian
considering intra and interlayer FM spin configurations in bulk
Fe3GeTe2. The value of TC obtained from standard GGA calcula-
tions for bulk Fe3GeTe2 is found to be 410 K, which is hugely
overestimated compared to GGA+ DMFT and also w.r.t. the
experimental transition temperature. Supplementary Fig. 15
shows the comparison in magnetization (M) vs. temperature (T)
behavior for bulk Fe3GeTe2 between GGA and GGA+ DMFT.
Similar to Fe3GeTe2, if we compute TC of bulk Fe4GeTe2 and

Fe5GeTe2 (UDU configuration), then we should in principle obtain
the linear relationship between TC and n (n= 3, 4, 5). Since we
have already discussed in this study that DFT+ DMFT describes
the physical properties of FGT systems more accurately than
standard DFT or DFT+ U, therefore one has to perform DFT+
DMFT calculations for bulk Fe4GeTe2 and Fe5GeTe2 to get
compatible results with experiment. But these DMFT calculations
are computationally expensive due to a large number of atoms.
Therefore, in this study, we have limited ourselves to DFT+ DMFT
calculations only for bulk Fe3GeTe2. Based on our results and
physical interpretation, we expect that the interlayer exchange
interactions present in other bulk FGT systems would modify the
corresponding TC w.r.t. the monolayer and one can probably
expect a linear trend for TC vs. n similar to experiment.
Next, we investigate S(k, ϵ), D(ϵ), effective mass m*/m for Fe-d

states, Sommerfeld co-efficient67 for Fe3GeTe2 bulk using GGA,
GGA+ DMFT and compare them with experimental reports.
Figure 7 shows DOS for Fe3GeTe2 bulk using (a) GGA+ DMFT
and (b) GGA. DOS obtained using GGA+DMFT is in good
agreement with experimental photoemission spectra (PES) as well
as previous DMFT results. A slight discrepancy might occur due to
different solvers used in the calculations29. Using the density of
states at Fermi level, we find Sommerfeld co-efficient γ to be 112
and 61mJ/mol K2 using GGA+ DMFT and GGA, respectively. Note,
the GGA+DMFT computed value of γ agrees well the experi-
mental value reported by previous authors68.
Spectral function S(k, ϵ) for bulk Fe3GeTe2 along K � Γ� K are

reported in Fig 8a–c GGA and (d–f) GGA+ DMFT. These plots are
obtained at different kz values to understand the contributions
coming from different kz planes to the electronic band structure.
Comparing the spectral functions with experimental angle
resolved photoemission spectroscopy (ARPES) data reported in
refs. 69,70, we find that the electronic structure obtained using GGA
+DMFT is in better agreement with experiment. Especially, the
features appearing between 0.2 and 0.7 eV below the Fermi level

are in a qualitative agreement with ARPES and previous DMFT
calculations69,70 whereas the GGA band structure is quite far from
experiment (both qualitatively and quantitatively).
We calculate the effective mass m*/m of different Fe-d states of

bulk Fe3GeTe2 using the following Eq. (11).

ðm�=mÞlσ ¼ 1� δReΣlσðωÞ
δω

����
ω¼0

� �
; (11)

where ReΣ(ω) is real-part of the self-energy with real frequency ω
and σ is the electron spin. The value of m*/m gives a quantitative
measurement of electron correlation. Similar to the magnetic
moment and exchange interactions, a site dependence is also
observed in m*/m, see Table 3. Fe1 (Fe2) sublattice (magnetic
moment= 2.52 μB) has smaller effective mass than Fe3 (magnetic
moment = 1.31 μB), thus implying that the d states of Fe1 are
more correlated than Fe3. The spin-resolved m*/m values
decomposed over Fe-d are reported in Table 3 which are in
agreement with the quasi-particle mass obtained from experi-
mental ARPES data69,70 and previous DMFT computed m*/m for
this system29. m*/m for Fe-d states of FenGeTe2 monolayers are
reported in Supplementary Tables 3–4. Comparing m*/m reported
in Table 3 with Supplementary Table 3, we observe that the quasi-
particle mass remains almost unchanged between bulk and
monolayer. Therefore, the m*/m values obtained for other
FenGeTe2 monolayers can be considered as a good estimation
to determine m*/m of the corresponding bulk systems.
In summary, we have performed a systematic investigation of

the electronic structure and magnetic properties of FenGeTe4
(n= 3, 4, and 5) systems by GGA, LSDA, GGA+ U and GGA+
DMFT methods. By using the computed parameters in the spin
Hamiltonian, the Curie temperature for each FGT monolayer was
determined. We discard LSDA to investigate the magnetic
interactions and electronic properties of FenGeTe2 systems since
LSDA fails to produce correct unit cell parameters. Based on our
results, it is quite evident that, GGA+ U with static electronic
correlations is not applicable for these systems, since it produces
wrong values of lattice parameters, magnetic moments and Curie
temperature compared with experiments. We find that the
magnetic moments obtained using standard GGA are compatible
with the experimental results, but the Curie temperature is
overestimated. Upon the inclusion of dynamical electronic
correlations within the GGA+ DMFT approach, the magnetic
moments remain almost unchanged, while the exchange interac-
tions, especially the isotropic symmetric exchange parameters get
significantly modified to decrease the Curie temperature
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Fig. 7 Density of states D(ϵ) of Fe3GeTe2 bulk. D(ϵ) calculated using (a) GGA+DMFT (with SPTF solver at T= 150 K) and (b) GGA.
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substantially to have a nice agreement with the experimental
results. In addition to the transition temperatures, density of
states, band structure and effective mass calculated with GGA+
DMFT agree well with previous experiments. This implies that

consideration of dynamical correlations is necessary to capture the
correct electronic structure and magnetic behavior of the FGT
systems.

METHODS
Density functional theory (DFT) based calculations are performed
to study the structural, electronic, and magnetic properties of
FenGeTe2 (FGT family) systems. Structural optimizations are
performed using Vienna Ab initio Simulation Package (VASP)71,72,
where the exchange-correlation potential has been treated with
the generalized gradient approximation (GGA), with the Perdew-
Burke-Ernzerhof (PBE) functional73. Calculations within local spin
density approximation (LSDA) are done using Perdew-Zunger
functional74.
We use 18 × 18 × 1 Monkhorst-Pack k-point mesh in our

calculations for Brillouin zone (BZ) integration.75 To model isolated
2D monolayers, the interaction between periodic images of the
supercell along the z-axis is reduced by adding a 20 Å vacuum
region perpendicular to the surface of monolayers. The lattice
constants and atomic coordinates are optimized by minimizing
energy based on the conjugate gradient method with a force

Fig. 8 Spectral function S(k, ϵ) for bulk Fe3GeTe2. S(k, ϵ) plotted using (a) GGA and (b) GGA+DMFT (at T= 150 K).

Table 3. Effective massm*/m for different Fe-d states of Fe3GeTe2 bulk.

Species Orbital m*/m↑ (Calc.) m*/m↓ (Calc.) m*/m (Expt.)

Fe1 dz2 2.00 2.08 1.5488

d2x � y2 1.75 2.11

dyz 1.78 1.95

dxz 1.78 1.95

dxy 1.75 2.11

Fe3 dz2 1.44 1.78 1.669

d2x � y2 1.42 1.62

dyz 1.55 1.66

dxz 1.55 1.66

dxy 1.42 1.62
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component tolerance of 0.01 eV/Å on each atom. The energy
cutoff for the plane-wave basis set iss set to 500 eV.
To have more accurate prediction of localized magnetic

properties, we used the full-potential linear muffin-tin orbital
(FP-LMTO) method, implemented in the RSPt code40,76. The k-
point grids with dimensions 21 × 21 × 1 and 36 × 36 × 1 are
constructed for calculating the magnetic exchange interactions
(Jij) and magnetic anisotropy energy (MAE), respectively. Within
the scope of FP-LMTO, we study the electronic and magnetic
properties of FGT systems using different computational
approaches: DFT, dynamical mean-field theory (DMFT) and DFT
+U.

DMFT methodology
The key concept of DMFT is that the Hubbard model is mapped
locally to an effective Anderson impurity model, where the
problem of an entire lattice is converted into the simple problem
of an atom embedded in an electronic bath. Each lattice-site is
coupled with the bath which represents rest of the crystal and
electron on the single site could be created or annihilated by
coupling with the electronic bath38. The Hamiltonian of the
Anderson impurity model can be written as:

HAIM ¼ Hatom þ
X
ν;σ

ϵνa
y
νσaνσ þ

X
νσ

ðVνc
y
0σaνσ þ h:c:Þ þ Un0"n0#;

(12)

where Hatom includes the single site interactions and ϵν is the
energy associated with the bath electrons. The first two terms can
be considered as the non-interaction energy terms. While the third
term describes the coupling between the bath electrons and the
electron on the single atom site, where Vν is the strength of this
coupling. (cy0;σ; c0;σ) and (ayν;σ; aν;σ) are the degrees of freedom for
the on-site and bath electrons, respectively. The last term
describes the local Coulomb interaction U.
The converged DFT calculations are the starting point to perform

our DMFT calculations as implemented in RSPt40,77. The first step of
the DFT+DMFT or DMFT method is to identify a set of local orbitals,
which are not properly described by the standard DFT technique.
The Hamiltonian written in Eq. (12) can be solved through DMFT,
and convergence should be achieved for both the local self-energy
and the full electron density. To solve the effective impurity problem
arising in the DMFT cycle we use the spin polarized T-matrix
fluctuation-exchange (SPTF) solver40. SPTF solver is chosen for our
calculations due to its efficiency and accuracy for the moderately
correlated systems78,79. The double counting correction HDC is
considered as the orbitally averaged static part of the self-energy,
which is usually done for the SPTF solver78,80. In our calculations we
use full-potential muffin-tin orbitals as implemented in the RSPt
code. The effective Hubbard parameter Ueff used in our calculations
are obtained from the constrained linear response method, as
described in the “Results and discussion” section.

Methodology for Jij calculations
The isotropic symmetric exchange interactions Jij are calculated
within the full-potential linearized muffin-tin orbital (FPLMTO)
basis implemented in the RSPt code. From the LMTO basis, one
can construct the Bloch sums to solve the DFT eigenvalue
problem and subsequently for the one-electron Green’s function.
We have considered Löwdin orthonormalized LMTO basis func-
tions, which are not very localized due to their long decaying tail,
and are more physical for metallic systems like Fe5GeTe2. For a
detailed description of the shape of various local orbitals used in
RSPt, please see ref. 61. The Löwdin orbitals used in our
calculations have been constructed from the original LMTO basis
functions performing a k-point-wise orthonormalization61.

Jij can be extracted from the Green’s function obtained from the
LMTO basis. The generalized expression for the intersite exchange
parameters is given by:

Jij ¼ T
4

X
n

½Δ̂iðiωnÞĜ"
ij Δ̂jðiωnÞĜ#

ji �; (13)

The most important quantities in this expression are the onsite
spin splitting Δi and the spin-dependent intersite Green’s function
Ĝij . The trace in Eq. (13) is taken over the orbital degrees of
freedom. T and ωn= 2πT(2n+ 1) are the temperature and the nth
fermionic Matsubara frequency respectively. Our DMFT simula-
tions are performed at T= 150 K. Ĝ

σ

ij is the intersite Green’s
function between sites i and j and projected over a given spin σ.
The term Δi gives the exchange splitting at site i, obtained using
spin and site-projected Kohn-Sham Hamiltonian. In the presence
of dynamical electronic correlations, Eq. (13) gets modified and in
DMFT the Jij parameters are calculated using Eq. (4) as mentioned
in the “Results and discussion” section.

Methodology for Dij calculations
In order to obtain information on more complex magnetic
interactions, one has to generalize this approach to the relativistic
case, which has been done already within the Korringa-Kohn-
Rostoker (KKR) Green-function method81. The details concerning
the implementation of antisymmetric exchange interactions in
RSPt and the calculation results for different correlated systems
are discussed in refs. 81 and82.

Monte Carlo simulations
To estimate the magnetic ordering temperatures, we perform
classical Monte Carlo (MC) simulations via UppASD code83, where
the calculated magnetic parameters are implemented in the
Hamiltonian introduced in Eq. (3). We assume identical Ki for all Fe
sites by averaging the total MAE/cell by the number of Fe atoms
present in the unit cell. To achieve properly averaged properties,
simulations are performed with varying cell dimensions, imposing
periodic boundary conditions along x and y directions. We have
checked the convergence of TC values for FenGeTe2 monolayer by
increasing the dimension of sample size used in Monte Carlo
simulations up to 800 × 800 Å2, which is comparable to the
system-size used in laboratory experiments, and have found that
the transition temperature remains almost unaltered till the
maximum cell dimension considered. In the Monte Carlo
simulations temperature is varied from 1000 K to 0 K in step of
5 K. For each temperature step 106 Monte Carlo cycles are run. The
transition temperatures are estimated by monitoring the cross
sections of fourth-order cumulants of magnetization.
There are other methods to calculate the transition tempera-

ture, for example, re-normalized spin wave theory based
calculations84.

Constrained linear response method
We compute the Hubbard U parameter by means of constrained-
density-functional calculations. The Hubbard U is computed by
varying the electron occupation of a single site by constructing a
supercell where the periodically repeated sites are perturbed
coherently. In this supercell approach, the occupation of one
representative site in a large cell is changed leaving all other site
occupations unchanged.
The effective interaction parameter U associated to site i in

terms of the response function χ is given by: U ¼ ðχ�1
0 � χ�1Þii

We perform a well converged self-consistent field DFT
calculation for the unperturbed system for all sites in the supercell.
Then starting from its self-consistent potential, small positive and
negative potential shifts are added to each nonequivalent
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“Hubbard” site j and the variation of the occupations for all the i
sites present in the supercell is computed in two steps: (i) re-
adjusting the Kohn-Sham potential of the system self-consistently
to optimally screen the localized perturbation, and (ii) without
allowing this screening. This latter result is nothing but the
variation computed from the first iteration in the self-consistent
cycle leading eventually to the former (screened) results. The site-
occupation derivatives calculated according to (i) and (ii) produce
the matrices χij and χ0ij , respectively. The difference between these
matrices gives the value of the Hubbard parameter U.
This scheme is rotationally invariant, therefore the Hund’s

exchange JH, describing these effects can be considered as zero,
or the effect of JH can be mimicked by redefining the U parameter
as Ueff= U− J, which is known as Dudarev scheme in literature85.
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