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From individual elements to macroscopic materials: in search
of new superconductors via machine learning
Claudio Pereti1, Kevin Bernot2,3, Thierry Guizouarn2, František Laufek4, Anna Vymazalová4, Luca Bindi 5, Roberta Sessoli 6 and
Duccio Fanelli 1✉

An approach to supervised classification and regression of superconductive materials is proposed which builds on the DeepSet
technology. This enables us to provide the chemical constituents of the examined compounds as an input to the algorithm, while
avoiding artefacts that could originate from the chosen ordering in the list. The performance of the method are successfully
challenged for both classification (tag a given material as superconducting) and regression (quantifying the associated critical
temperature). We then searched through the International Mineralogical Association list with the trained neural network. Among
the obtained superconducting candidates, three materials were selected to undergo a thorough experimental characterization.
Superconductivity has been indeed confirmed for the synthetic analogue of michenerite, PdBiTe, and observed for the first time in
monchetundraite, Pd2NiTe2, at critical temperatures in good agreement with the theory predictions. This latter is the first certified
superconducting material to be identified by artificial intelligence methodologies.
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INTRODUCTION
Finding new superconductors represents a complex task, which
heavily relies on individual experience and intuition. Indeed, it was
shown that sampling from a large gallery of candidate materials, only
a limited fraction, accredited in the range of 3%1 of the total, displays
superconducting behavior. This is a rather dissatisfying score which
severely impacts on the reported success rate, when chasing for
novel superconductors via conventional methodologies. It is there-
fore crucial to devise novel strategies for identifying materials which
can putatively display superconducting behaviors beyond state-of-
the-art approaches. At the forefront of current developments,
machine learning (ML) technologies are steadily gaining popularity
as credible tools for complex data-sets handling. As such, they have
been successfully applied to a wide range of problems, transcending
disciplinary boundaries2–8 and with specific reference to those realms
of applications where classification and/or regression are needed.
Multi-layered feedforward neural networks are prototypical architec-
tures extensively used for their inherent versatility. They are
constituted by a collection of adjacent layers made by individual
computing units, the neurons, where information is punctually
processed. More concretely, the information gets manipulated by a
nested sequence of linear (across layers) and non-linear (localized on
the nodes) operations, from the input to the output stack. In essence
ML seeks at solving a global optimization problem by minimizing a
suitably defined loss function, which compares the output produced
at the exit layer to the expected target for a class of exemplary items
supplied as an input during training stages. The ultimate aim is to
self-consistently assign the weights of the links that connect pair of
nodes belonging to contiguous layers, so that the trained network
can cope with the specific task for which it was assembled. At the
same time, the network should perform equally well when
confronted with data non included in the reservoir that defines the
training set, although belonging to the same category of pertinence.

A first attempt to apply ML technology to a large superconducting
database was reported in ref. 9, where variants of random forest
methods10 have been used to predict the critical temperature Tc
(restricted to the range Tc > 10 K). Importantly, several chemical
characteristics—as e.g., atomic mass, band gap, atomic configuration,
melting temperature— are provided in ref. 9 with a discretional
choice that could in principle reverberate in unfortunate bias. To
overcome this limitation, a convolutional neural network was
employed in ref. 11, which enables the operator to bypass the
feature extraction phase, namely the process of a priori selecting a
suitably engineered chart of the relevant chemical information.
Specifically, stoichiometries of the materials under scrutiny are
entered into the two-dimensional periodic table. The latter is then
divided into four sub-tables which bear information on the orbital
characteristics of the valence electrons. Convolutional layers allow
hence to resolve the relative positions of the elements, and the
regression problem is brought back to a standard image processing
task. Also in this case, however, the outcome of the analysis senses
patterns and trends as stemming from the rows and columns of the
periodic table. Although universally shared, this is just one out of
several other viable strategies to display the data in two dimensions.
Starting from these premises, we here propose an approach to
supervised classification and regression of superconductive materials
which builds on the Deep Sets technology12, a family of deep
learning algorithms that is specifically designed to operate on sets
defined by the finite enumeration of distinct members (or elements).
The modeling of sets is a subfield of paramount importance at the
frontier of machine learning research. The computational architecture
of Deep Set can be rationalized from an encoder-decoder
perspective. The encoder embeds datasets into an appropriate
vector space of variable size. Each input element of the set if
transformed by a mapping function that is parameterized by a neural
network. The resulting elements are summed up (pooling operation)
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and the output is in turn transformed by means of a non-linear
filter. The advantages of this procedure are manifolds, when
applied to the problem of classifying superconducting material
and anticipating their associated critical temperature. On the one
side, the examined compound is associated to a set—of variable
dimension—which reflects its chemical composition. In other
words, we are feeding the neural network with the atomistic
description of the material, a foundational approach solidly
grounded on first principles that wipes out the load of
arbitrariness intrinsic to any heuristic recipe. Feature engineering
is carried out self-consistently, from the input set toward the
ensuing aggregated representation, with no a priori imposed
bias. Then, the extracted features are combined linearly at the
pooling stage. This makes it possible to gauge the contribution of
each individual atom to the onset of the superconductive
transition: the whole is here the sum of its parts, a remarkable
outcome of the automated feature selection strategy that is
settled upon training. Interestingly, the encoding space can be
successfully squeezed, even compactified to yield just one scalar
output, so providing a handy and immediate proxy of the
chemical propensity to superconductivity.
The performance of the fully trained Deep Set is challenged

against the so called Hosono dataset1,11: a significant portion of
the materials certified as superconductors are correctly spotted by
the network, and the associated transition temperatures predicted
with a high degree of confidence. Further, given that the study of
the materials formed by Nature, i.e., the minerals, has been always
the basis for the greatest breakthroughs in chemistry and solid
state physics13, we searched within the complete mineralogical
catalogue to look for plausible candidates, as tagged by the
trained classification algorithm. This choice has several advan-
tages. First, it is not biased toward superconductivity properties, as
this is a property seldom investigated or looked for in minerals.
Second, the chemical stability of the material is warranted by the
existence of the mineral, even if the conditions in which the
mineral has formed might be very far from those used in synthesis
protocols. A list of minerals identified as putative superconductors
was extracted by the trained network: 44% of the selected
candidates were already reported to display superconducting
behavior. We then focused our attention on a sublist of three
minerals, extracted from the above pool of candidates, which
were never reported as superconductors in literature or were
poorly described about 60 years ago14. The promising minerals
are: temagamite Pd3HgTe3, michenerite PdBiTe and monchetun-
draite Pd2NiTe2. Next, given the rarity of the selected minerals and
their occurrence only as micron-sized grains, we carried out a
systematic experimental characterisation of the structural and
magnetic properties of their synthetic analogues. Remarkably
enough, the synthetic equivalent of michenerite and monchetun-
draite were found to exhibit superconducting transitions with
critical temperatures in good agreement with those predicted by
the Deep Set algorithm.

RESULTS
Training and application of the machine learning technology
In the following, we will begin by illustrating the results of the
analysis for what concerns regression and classification. The specific
aspects that pertain the implementation of the Deep Set algorithm
are discussed in the Method section. In Fig. 1, we report the
predicted Tc against the corresponding values, as measured in direct
experiments. Blue circles refer to materials of the SuperCon dataset11

that were not presented to the Deep Set during training stages. The
error bar is computed by gathering data from 50 independent
realisations of the trained device. Hence, for any given material, the
number of averaged entries is at most 50 (if the material has never
been selected for a training session). Only materials that have been

selected at least 10 times are considered. Data align along the
bisectrix of the quadrant (depicted with a dashed line), an
observation that points to the predictive adequacy of the procedure
implemented. To cast this finding on quantitative grounds we
computed root mean squared error that is equal to 9.5 K, while
r2= 0.92. It should be remarked that the r2 value, typically employed
for assessing the goodness of a regression task, proves often
inadequate, as it may convey a biased, thus distorted, meaning. As a
matter of fact, r2 values can be directly confronted only when
referring to an identical test set. To elaborate further on the limited
interest of the r2 metric focus on the work by Li et al.15, which is
pertinent to the class of problems here inspected. In ref. 15, the
authors report a r2 equal to 0.9 for a regression task aimed at
assessing the temperature of superconducting materials. However,
the associated root mean square error is relatively large, quantified in
about 80 K in ref. 15 (an for a subset of materials smaller than the one
here considered). In our analysis, the root mean square error drops
significantly to reach 9.5 K, while the r2 stays comparable to that
claimed in ref. 15. The proposed scheme can be further improved by
employing ensemble techniques that enable us to reduce the root
mean square error to 9 K, with r2= 0.93 (see SI). To the best of our
knowledge, the root mean square error reported in our paper is
indeed the smallest claimed in the literature with a correct handling
of the (large) analyzed dataset (i.e., by removing duplicate samples).
The diamonds depicted in orange in Fig. 1 stand for the entries

of the Hosono database1,11. By visual inspection, one can
immediately appreciate the correspondence between the pre-
dicted and measured Tc. In this case, the root mean squared error
is found to be 7 K (r2= 0.84). Summing up, the results displayed in
Fig. 1 testify on the inherent ability of the Deep Set network to
satisfactorily reproduce the critical temperature of a super-
conducting material, starting from its description in terms of
constitutive elements. The results here presented refer to a latent
space of dimension (size of the vector where information are
stored) d= 300. In the annexed Supplementary Information (SI),
we show that the recorded predictions are remarkably accurate
also when the dimension of the latent space gets dramatically
reduced. Assuming d= 1, which amounts to impose a scalar

Fig. 1 On the predicted critical temperature. Predicted vs.
measured critical temperature, Tc (K). The blue circles refer to
materials from the SuperCon database. A fraction of 20% of the total
is randomly selected as part of the testset, while the remaining 80%
is used for training. The operation is repeated 50 times and the
collected temperatures from each independent run stored for
further processing. The displayed data refer to the 328 materials
selected to be part of the testset at least 10 times, out of 50 trials.
The orange diamonds refer to the 39 superconducting materials (all
tested 50 times by independent DeepSet realizations) that are
present in the Hosono database. This latter contains a total of 207
(superconducting and non-superconducting) compounds. Symbols
stand for the average temperature, while the error bars are the
computed standard deviation.
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embedding in the latent space, yields a modest drop in the
regression performance as quantified by the associated root mean
squared error. By operating in this setting, it paves the way for a
straightforward interpretation of the obtained results (see
"Discussion").
As concerns the classification task, the aim is to identify putative

superconductors materials. To this end we train the Deep Set on a
sub-portion of the SuperCon database, potentiated with addi-
tional data from the Crystallography Open Database (COD), as
convened by the garbage in procedure discussed in the “Methods”
section. The trained Deep Set is then used against the test-sets of
interest—the remaining data within the SuperCon augmented
with COD and the Hosono database. At the end of the assessment
of each individual item, the Deep Set returns a scalar quantity ~ρ,
ranging from zero (the material is deemed non superconducting)
to unit (it is classified as superconductor). The scalar quantity can
be interpreted as an effective measure of the level of confidence
in the achieved prediction. The material is then classified as
superconducting if ~ρ> ϵth, for an apt threshold ϵth (see Methods).
The analysis is repeated over 60 independent realizations and the
results of each run stored for further analysis.
In particular, to test the performance of the method, we refer to

two complementary measures. These are the precision (p), namely
the fraction of relevant (i.e., correctly classified) items among the
retrieved instances, and the recall (r) computed as the fraction of
relevant instances that were effectively retrieved. The precision-
recall curve is routinely employed as a measure of the success in
carrying out the prediction, when the examined classes are
imbalanced (i.e., when the number of representative elements per
class is not homogeneous). In Fig. 2a the precision is plotted
(green symbols) versus the recall for the SuperCon database (with
the inclusion of the COD data). Different points stand for different
thresholds ϵth (by increasing ϵth the precision increases smoothly
and the curve is traveled from right to left). More specifically, at
the exit node and for any supplied entry item, the DeeptSet
returns a scalar quantity (termed ρ). If ρ > ϵth, the material is
deemed superconductor, viceversa otherwise. Symbols refer to
the average precision/recall over the performed, statistically
independent, runs. The computed standard deviation is smaller
than the size of the employed symbols. The classifier threshold ϵth
can be chosen so as to return accurate results (high precision),
with a rather modest quota of false negative (high recall). The
results for the Hosono database, as depicted with blue symbols in
Fig. 2a, are instead less captivating. To improve on this, we
propose a more stringent approach to the classification which
consists in designation of the material as superconductor only if
this is a shared conclusion by the majority of the performed
independent runs, for a given choice of the threshold. Different
points (as displayed in Fig. 2b) refer to distinct choices of the
threshold amount ϵth which is now operated on an ensemble
made of independently trained DeepSet models.
By applying this strategy to the analysis of the Hosono dataset

yields a much more satisfactory scenario as outlined in Fig. 2b. By
assuming in particular ϵth= 0.85, we identified 29 out of 39
superconductors of the Hosono database, with 19 false positive.
This is a particularly satisfactory outcome given the fact that the
Hosono database contains samples that are pre-filtered by experts
in the field. Hence all materials are in principle reasonably good
superconducting candidates.
The performance of the method, as quantified above, are

superior to those displayed by other competing approaches and
so far reported in the literature9,11, as we shall elaborate in the
following. The algorithms developed in ref. 9 seek to separate
materials (all superconducting a priori) into two distinct groups
depending on whether Tc is above or below a given threshold.
Modulating the imposed threshold makes it in principle possible
to implement a pipeline that integrates classification and
regression, and so eventually decide on the nature of the

examined material. It should be stressed however that only
superconducting materials are used in the training of the
algorithm discussed in ref. 9. The trained network has never been
taught to handle non superconducting materials. Consequently,
the response obtained when presenting as an input a non-
superconducting material (as one should do for classification
purposes) cannot be deemed a priori meaningful. In our study, the
network is instead directly trained to distinguish between
superconducting and non-superconducting materials, by lever-
aging on the garbage in idea introduced in refs. 12.
In Figure 2 of ref. 9, the precision and recall are quantified and

fall consistently below 90%, in classifier modality (to be
questioned for the reasons illustrated above). As a benchmark
reference, one can consider the above Fig. 2 where the curve
recall versus precision is plotted for same dataset (SuperCon,
green symbols) as employed in ref. 9: by properly tuning the
threshold ϵth, we can push both the precision and the recall well
beyond 90%, for the considered classification. Again, and thanks
to the garbage in procedure, in our case we deal with a genuine
classification task between superconducting and non-
superconducting materials (non-superconducting materials are
in fact definitely seen by the DeepSet during training stages).
Notice also that the scores obtained in ref. 9 for the limited subset
of materials contained in both SuperCon and the Inorganic Crystal

Fig. 2 Precision and recall. a The performance of the classifier are
challenged in the plane precision vs. recall. Green symbols refer to
the SuperCon database, potentiated with data from COD. Blue
symbols refer to the Hosono database. Each symbol is computed as
the average over 60 independent realizations and the shadowed
region reflects the associated standard deviation. b the precision vs.
recall curve is plotted for the Hosono database by using the majority
rule, as described in the main text: a material is classified
superconducting if the majority of runs (over 60 realizations), each
associated to ϵth= 0.85, leads to this conclusion. The horizontal
dashed line is a benchmark reference computed by assuming
random guessing for the Hosono dataset.
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Structure Dataset (ICSD)—just 1500 compounds—are significantly
smaller (0.74 and 0.66 are reported to be found for, respectively,
precision and recall) than the homologous quantities here
obtained for the closest benchmark possible, the SuperCon
dataset complemented with COD (Fig. 2). Remarkably the score
reported in ref. 9 for the intersection between SuperCon and ICSD
is worse than that obtained by applying the DeepSet method to
the Hosono database. As recalled above, this is a particularly
challenging testbed as it contains pre-filtered samples and thus
materials are in principle reasonably good superconducting
candidates. By setting the recall in between 0.6 and 0.7 for the
Hosono database, we can in fact still have precisions above 0.8.
More straightforward is the comparison with the work by Konno

et al.11, where deep learning tools are operated to achieve a
classification of the supplied materials. When it comes to
classification, the scores for both precision and recall as displayed
by our method are superior to those reported in ref. 11. This can be
appreciated by inspection of Table 1 in ref. 11 for the case of the
aforementioned Hosono database, as well as by looking at the
results reported in Section XIV C in the supplementary material of
ref. 11 (the top score precision 0.52 reported in ref. 11 to be
compared with 1, as obtained with our method, for suitable
choices of the recall, against the same dataset). Also the F1 metric
(the harmonic mean of precision and recall) for the same dataset
(characterized by a baseline precision of 20%) is found to be 0.71
to be compared with the 0.63 reported in ref. 11.
Following the above validation, we applied the trained Deep

Set, in this latter version that implements the majority rule, to the
analysis of the updated list (September 2021) of minerals accepted
by the International Mineralogical Association. As for the above
setting, we assumed ϵth= 0.85 and averaged out 60 independent
runs. In the SI we report the list of minerals classified as
superconductors, when setting ϵth= 0.85. Interestingly enough,
about 44% of the minerals selected by the trained network were
indeed already verified to be superconductors (this information is
displayed in the the annexed SI, together with the indication of
corresponding study). Notice that none of the samples contained
in the mineral catalogue was supplied during training. In the
current version of the implementation we do not keep track of
additional annotations as, e.g., high pressure or thin layers. This is
a worthwhile direction of further investigation which however
necessitates investing on the quality of the existing database. For
the sake of completeness, we can recalculate the percentage of
success of the DeepSet prediction by excluding from the pool
superconducting materials at high pressure and thin films. The
computed percentage is in this case 29%, still quite remarkable.

Magnetic characterization of the selected materials
Motivated by this success, we decided to focus on a subset of
candidate materials, that have not yet been characterized—or
poorly characterized14—in the literature, with reference to their
potential superconducting behavior. In particular, we focus on the
synthetic analogues of a sublist of minerals (see also Methods and

Table 1) that were tagged at superconducting by the DeepSet
technology. These are Pd3HgTe3 (the analogue of the mineral
temagamite), PdBiTe (the analogue of the mineral michenerite),
and Pd2NiTe2 (the analogue of the mineral monchetundraite). As
concerns the critical temperatures, we predicted Tc of 1.8(1.8) K,
1.6(0.8) K and 1.18(0.7) K, respectively.
We employed magnetic ac susceptometry to investigate the

synthesized analogues of the three minerals expected to exhibit
superconductivity. Ac susceptibility χ0ac, measured in zero static
magnetic field is a simple and sensitive technique to evidence the
presence of superconducting phases through the detection of a
diamagnetic signal that is proportional to the volume fraction
exhibiting flux line expulsion16–18. The onset of the diamagnetic
signal is to be considered the intrinsic Tc of the superconductors,
while at lower temperatures the coupling between SC grains can
result in a further increase of the diamagnetic signal.
Figure 3 collects the temperature dependence of the real part of

the ac susceptibility, χac, of the four investigated samples. Given
the limited availability of the 3He set-up only the Zero Field Cooled
(ZFC) magnetic susceptibility was measured. The two samples of
temagamite (blue and magenta) do not reveal any sizeable
diamagnetic susceptibility, while the clear onset of diamagnetic
shielding is visible at T= 2.10 K for PdBiTe (michenerite, red) and,
even more pronounced, at T= 1.06 K for Pd2NiTe2 (monchetun-
draite, black).
Given the more pronounced SC behavior of Pd2NiTe2, we

extended the investigation. First, we checked that the employed
oscillating magnetic field, Hac, is not too large to significantly
affect the transition. Supplementary Fig. 14 in SI shows the

Table 1. Details pertaining the experimental samples studied.

Sample Space group Tc (K) predicted Tc (K) measured impurities (% and space group)

Temagamite, Pd3HgTe3 (# 1) P3m1 1.8 (±1.8) – Pd4HgTe3 (4.8%; Pnma) + PdTe (1.8%; P63/mmc)

Temagamite, Pd3HgTe3 (# 2) P3m1 1.8 (±1.8) – Pd4HgTe3 (9.7%; Pnma) + PdTe (0.8%; P63/mmc)

Michenerite, PdBiTe P213 1.6 (±0.8) 2.10 (±0.05) PdBi2 (0.9%; C2/m)

Monchetundraite, Pd2NiTe2 Ibam 1.18 (±0.7) 1.06 (±0.05) PdTe (4.5%; P63/mmc)

Potarite, PdHg P4/mmm – – –

Paolovite, Pd2Sn Pnma – – Pd3Sn2 (9%; P63/mmc)

Telluropalladinite, Pd9Te4 P21/c – – –

Fig. 3 Susceptibility against temperature. Temperature depen-
dence of the real part of the susceptibility (χ0ac) measured in zero
static field for the four investigated samples: Pd3HgTe3 (blue and
magenta for sample prepared at 350 and 500 ∘C, respectively),
PdBiTe (red), and Pd2NiTe2 (black). A zoom around the transition of
Pd2NiTe2 is provided in the inset with χ0ac as squares and χ00ac as
triangles.
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susceptibility data taken at Hac= 1 and 3 Oe. The susceptibility
curves are superimposable, confirming that the width of the
transition is intrinsic.
To get an insight into the critical field of this superconducting

phase, we also measured both ac susceptibility and dc magnetiza-
tion under the effect of a variable dc magnetic field at T= 0.50
(±0.02) K. Figure 4 reveals that at this temperature a first critical
field is observed at ~20 Oe, as evidenced by the minimum in M vs.
H plot and the drop in χ0 vs. H plot, as well as by the onset of
irreversibility in χ″ curves. Such a behavior can be either ascribed
to the onset of an intermediate state in type I superconductors or
to the 1st critical field in type II superconductors. The irreversibility
in the χ0 vs. H curves is almost negligible and significantly weaker
than in the M vs. H curves, in agreement with the fact that only
minor hysteresis loops are detected. Importantly, diamagnetism is
fully suppressed in a field of around 160 Oe, from ac measure-
ments, and only at around 70 Oe from dc measurements. This
behavior is indicative of a complex dynamics and points to a type
II superconductor.
It is interesting to correlate our experimental findings to the

predicted critical temperatures. A very good agreement is
observed for PdBiTe and Pd2NiTe2, for which a relatively small
standard deviation was computed, while Pd3HgTe3 does not show
any superconductivity down to 0.45 K, despite being predicted
with the highest Tc.
We must however keep in mind that some contaminants

present in the synthesized materials (Table 1, see Methods) also
exhibit SC properties. Unfortunately, quantification of the SC
phases remains an issue in the absence of additional investiga-
tions. First of all, the diamagnetic susceptibility depends on the
shape of the sample due to the demagnetization factor. When
loose crystalline powders are employed, as in our case, the signal
can be considered as the sum of the individual grains, and the
demagnetization factor is assumed to be that of the sphere
N= 4π/3 in cgs units.
The largest measured diamagnetic signal corresponds to ca 2%

and 5% of volume fraction for PdBiTe and Pd2NiTe2, respectively,
though it is evident that complete diamagnetic shielding is not
achieved even at the lowest temperature, as the diamagnetic
susceptibility is still increasing. Last but not least, many materials,
including some elemental metal and type II superconductors, do
not exhibit a complete Meissner effect even in low magnetic
fields16. Values as small as 2% of diamagnetic shield were
observed for loose small grains of high Tc SC and attributed to

the field penetration depth being comparable to the grain size19.
Interestingly, the diamagnetic signal of the high Tc SC gradually
increases on lowering the temperature, as observed in our case.
In the case of PdBiTe, the only detectable impurity is αPdBi2,

whose Tc= 1.7 K20 is however significantly lower than the
observed one. In addition the measured diamagnetism exceeds
that expected considering that only the impurity is a super-
conductor with complete Meissner shielding. These findings
suggest that the observed susceptibility is intrinsic of michenerite.
Unfortunately, we cannot compare our results with those of the
previous study14, as the authors just listed PdBiTe as super-
conductor without reporting any experimental data.
In the case of Pd2NiTe2, the detected impurity has the PdTe

structure but no anomaly is observed at the expected Tc of 4.5 K21.
Interestingly this is also true for the two samples of Pd3HgTe3,
which also contain this impurity (see Supplementary Fig. 15).
However, a recent study has shown that the replacement of Pd
with Ni in PdTe induces a significant lowering of Tc. Even if we
cannot exclude the presence of a superconductivity impurity with
complex composition, this latter is unlikely to be the cause of the
peak in the imaginary component of the susceptibility (see inset of
Fig. 3) because: (i) for the experimental composition of the
impurity (Pd0.7Ni0.3Te), Goyal et al. did not detect any SC transition
above 2 K22; (ii) for lower Ni content the transition becomes very
broad22 while it is rather abrupt in our sample of Pd2NiTe2. We can
thus reasonably conclude that also for this sample the results
suggest an intrinsic superconductivity, as predicted by our ML
approach. Optimized synthetic processes calibrated so as to
significantly reduce the presence of impurities could yield
improved samples for further investigations.
To improve on the quality of the existing database it is crucial to

keep track of materials which have been shown not to display a
superconducting phase. To contribute along this line, while at the
same time testing the predictions of the proposed method from a
different perspective, we have also measured the ac susceptibility
of three compounds tagged as non-superconducting by DeepSet.
These are the synthetic analogues of polarite (PdHg), tell-
uropalladinite (Pd9Te4), and paolovite (Pd2Sn). The experiments
show that none of them present superconducting features down
to 0.5 K in agreement with what anticipated by DeepSet (see SI).

DISCUSSION
In this study we have proposed and thoroughly tested a machine
learning scheme that could contribute with a decisive boost in the
search for novel superconducting materials. The peculiar archi-
tecture of the neural network employed enables us to deal with
sets, rather than individual entries. This proves fundamental in
correctly handling the supplied input, the actual chemical
composition of the examined crystal, without bias that could in
principle originate from the chosen ordering in the designated list.
Moreover, the final output follows a pooling operation that
enables one to trace back the impact of each element in the
chemical formula. This proves particularly intriguing when the
latent space is compactified in a manifold of reduced dimension-
ality, a choice that allows to markedly enhance the interpretability
of the result at a modest detriment of the recorded performance.
Particularly illuminating is the limiting setting when d= 1. Each
element of the periodic table is connected to a characteristic
scalar attribute, termed x1 (see SI). To illustrate the main idea,
focus on the regression task (determining the associated critical
temperature). The parameter x1 can be hence interpreted as the
individual endowment of every single atom to the estimated
critical temperature, by recalling that distinct contributions are
combined linearly in the latent space as in the spirit of the Deep
Set technology. The larger x1, the more significant the shift to the
ensuing critical temperature as stemming from the considered
element. The predicted value of x1 can be used to re-plot the

Fig. 4 Field dependence of the susceptibility. Field dependence of
the ac susceptibility measured for Pd2NiTe2 with χ0ac as squares and
χ00ac as triangles at T= 0.50 K. In the inset the dc magnetization
measured at the same temperature. Red and black symbols refer to
the direction of the scanning field as indicated by the arrows.
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periodic table with an apt color code as shown in Fig. 5. Working
in this limiting setting, the obtained predictions are indeed less
accurate ad compared to the reference choice d= 300, though
still remarkable. Indeed, one can associate to each chemical
composition a reference value that is computed as the sum of the
estimated x1, each referred to the atoms that compose the
examined compound. This information can be used—for example
—to discriminate superconducting materials that display a critical
temperature below/above 10 K, as in the spirit of the analysis
carried out in ref. 9. Proceeding along these lines, we eventually
obtain an accuracy of 84% (that corresponds to say that more than
4/5 of the analyzed materials are correctly assigned to their
reference group), for a threshold in x1 set to −2.5.
Direct inspection of Fig. 5 suggests that Ca is identified by the

trained neural network (in its minimal implementation) as one of
the key elements for high Tc superconductors. This conclusion
should be handled with care, as it could—to some extent—reflect
the choice of operating with the smallest possible latent space. On
the other hand, it should be also remarked that the super-
conductor with the highest transition temperature at ambient
pressure is the cuprate of mercury, barium, and calcium, in line
with the model prediction. More into depth, the median of the
critical temperature of superconducting material containing Ca is
73 K, to be compared with that associated to materials containing
Cu (58.8 K) and Fe (20.88 K). In general, 50% of the super-
conductors containing Ca displays a critical temperature in the
range 41–88 K.
Additional information are provided in the SI where the

problem of classification (deciding whether a material is indeed
superconducting) for the case d= 1 is also discussed.
The Deep Set algorithm set to operate with d= 300 is

challenged with reference to both classification and regression.
Particularly relevant results are obtained when challenging the
trained network against the database of Hosono and collabora-
tors1: in this case the list of materials is in fact pre-filtered by
experts in the field to yield a selection of candidates that are

worth of investigation as potential superconducting candidates,
for their structural characteristics. The Deep Set trained on a set of
independent data, not including the entries of the Hosono
database, is capable of identifying a large fraction of the materials
certified as superconductors in refs. 1,11, following dedicated
experiments. Furthermore, the critical temperature of the super-
conductors is nicely predicted. Motivated by this finding we
applied the Deep Set methodology to the list of minerals provided
by the International Mineralogical Association and obtained a
sublist of materials that, according to our analysis, are plausible
superconducting candidates. Among these, we selected three
different materials and carried out direct experiments to test the
adequacy of our predictions. Superconductivity has been
observed for two of the investigated mineral analogues of
michenerite and monchetundraite at critical temperatures in very
good agreement with the predictions. Though these results need
to be confirmed by more detailed investigations on samples of
improved purity, they should be regarded as an additional proof
of the success of the proposed method. Monchetundraite is in
particular the first certified superconducting material to be
identified by articial intelligence methodologies.
To take one step in the direction of improving the quality of the

current database, we also report on the results of experiments
carried out on three compounds—the synthetic analogues of
polarite (PdHg), telluropalladinite (Pd9Te4), and paolovite (Pd2Sn)
—tagged as non-superconducting by DeepSet. The experiments
bring evidence that the examined materials are indeed non-
superconducting, a finding that confirms in turn the validity of the
analysis from a different, though less stringent, standpoint.

METHODS
Deep Set architecture
Deep Set enables us to extend the input space of machine
learning algorithms, to generic sets, rather than vectors, as

Fig. 5 On the contribution of individual atoms. The periodic table is plotted by associating to each case its corresponding x1 entry (the
latent space has d= 1), displayed with an appropriate color code. Atoms that contribute to increasing the critical temperature are those
characterised by larger (positive) x1 amount (see SI for further details).
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customarily done. By set one signifies an unordered collection of
objects. A valid function defined on a set should be invariant
under permutations of the elements belonging to the very same
set, supplied as an input. Assume a set to be made by an
unordered collection of elements. Then, each permutation that
promotes an internal reshuffling of a pre-existing order, should
yield the same functional output. Stated differently, the produced
output should be insensitive to the imposed permutation, a
requirement that translates into an invariant constraint. It can be
shown that any function f : 2H ! R, with jHj<@0 (the
cardinality of the countably infinite), acting on a set X is a valid
function, i.e., invariant under permutation of the instances of X, if
and only if it can be cast in the form ρ(∑x∈Xϕ(x)), for two
appropriate transformations ρ and ϕ. The problem of obtaining a
valid function f, defined on sets, is therefore equivalent to identify
a suitable function ρ, which takes instances from the set, as an
input, upon filtering by ϕ. Standard neural networks can be
employed to approximate the aforementioned functions ϕ and ρ,
at desired precision level. Deep Set architectures can be applied to
either classification or regression problems, as other neural
networks of standard conception. For the specific case at hand,
the elemental composition of the examined crystal is supplied as
an input and define the set of interest. More specifically, and as
outlined below, each element is characterised by a list of 22
instances, stored in a vector. The stoichiometric integer of the
selected atom is also provided, as an additional entry of the vector.
In Fig. 6 a schematic outline of the applied Deep Set architecture is
provided.

From the set of elements that compose the material to the
input set
The Deep Set receives as an input the set of elements that compose
the examined material. Each element is associated to a vector of 22
instances drawn from the Mendeleev software23. This is a freely
available Application Programming Interface (API), written in Python,
for accessing various properties of elements from the periodic table.
The 22 instances considered are respectively the atomic number, the

atomic volume, the block in periodic table, the density at 295 K, the
dipole polarizability, the electron affinity, the evaporation heat, the
fusion heat, the group in periodic table, the lattice constant, the
lattice structure symbol, the melting temperature, the period in the
periodic table, the specific heat at 293.15 K (20 oC), the thermal
conductivity at 293.15 K (20 oC), the Van der Waals radius, the
covalent radius, the Pauling’s scale of electronegativity, the atomic
weight, the atomic radius, the ionization energies (in eV), the valence.
Missing data were recovered from atom datasets made available on
Mathematica, and specifically those referred to density, electron
affinity, fusion heat, lattice constant, specific heat and thermal
conductivity. In the analysis we focused on atoms with atomic
number smaller than 96. By gathering information from different
datasets we could reduce the amount of missing data to about 4% of
the total. The stoichiometric integer, i.e., the number of times the
selected atoms appears in the chemical formula, is also supplied as
one additional entry of the input vector. The non linear function ϕ
maps every input vector into a latent space, as evident in the scheme
depicted in Fig. 6. The dimensionality (d) of the target latent space
(the space where the processed information is embedded by the
trained network) can be tuned at will. The embedding of the input is
self-consistently driven by data, thus allowing to overcome intrinsic
bias that might arise when shaping the latent space with direct
human intervention. Results reported in this study refer to two
different settings. On the one side we shall assume a sufficiently large
value for d to provide the Deep Set with a wide range of
computational degrees of freedom. Then, in the SI, we report the
conclusions for the setting d= 1 (see also Fig. 5 in the “Discussion”
section): with this choice, one achieve a noticeable gain in terms of
interpretability of the associated latent space, at the price of a
modest drop in the overall performance of the method. In the SI, we
also quantify the recorded performance as a function of the imposed
latent space dimension, d (Supplementary Fig. 1). Upon application
of ϕ, one hence obtains an output vector in d-dimensions. Vectors
associated to different elements are summed together, before being
further elaborated via a subsequent non linear transformation,
denoted with ρ. The representation in the latent space can be also
engineered to be linear, with respect to the stoichiometric index. Any
compound is hence portrayed as a point in d-dimension: its location
follows the linear superposition of distinct contributions, each
coming from every single constitutive element, weighed with its
stoichiometric coefficient.

Datasets employed for learning and testing
Data are extracted from the SuperCon database, which consists
into two separate subsets: Oxide and Metallic compounds
(inorganic materials containing metals, alloys, cuprate high-
temperature superconductors, etc.) and Organic compounds
(organic superconductors). Removing compounds with incomple-
tely specified chemical compositions and accounting for multiple
records yields a final collection of 16395 independent entries.
Roughly 5700 compounds are cuprates and 1500 are iron-based

materials. The remaining set includes conventional phonon-driven
superconductors, known unconventional superconductors like the
layered nitrides and heavy fermions, and many materials for which
the mechanism of superconductivity is still to be elucidated (such
as bismuthates and borocarbides).
For the regression problem (i.e., determining the critical tempera-

ture Tc), we split the SuperCon database into training (80% of the
total) and test (the residual 20%) sets. This partition follows a random
implementation, thus leaving a mark of inherent stochasticity the
reflects back in the obtained predictions. The analysis is repeated by
50 times, each realization being refereed to independent sampling of
the available datasets into training and test sets.
For classification purposes (i.e., determining if a given,

supposedly unknown compound is superconducting or not) and
to access a larger set of materials that are presumably non

Fig. 6 The Deep Set architecture. A schematic layout of the Deep
Set architecture here employed. The input of the Deep Set is the set
of elements that compose the analyzed compound. Each element is
associated to 22 chemical/physical instances as described in the
main body of the paper. The stoichiometric contribution of a given
element defines an additional entry of the supplied vector. The
input is processed by the non linear function ϕ, represented as a
feed forward neural network. The result of the processing are
gathered together and further transformed by the application of a
non linear filter ρ. This is also defined in terms of a neural network.
The produced output is confronted to the expected target, during
training stages, and the parameters of the networks ϕ, ρ tuned so as
to minimise the assigned loss function.
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superconductors, we adopted a technique pioneered in ref. 11 and
termed garbage in. This latter is here applied to the Crystal-
lography Open Database (COD). Since superconductors are just a
few percent of the total, we label all materials belonging to COD
as non superconductors. Then, the full database was randomly
sampled to extract a collection of entries, that we used to thicken
the population of superconductors. Since superconductors are
rare, the errors (the inclusion of superconductors in the reservoir
of non superconducting materials) are, in all probability, small: the
benefits of enlarging the examined pool of materials, overcome
the disadvantages, which stem from having contaminated the
dataset with a few erroneous entries (garbage that is put in). The
performance of the classification are shown to steadily increase as
a function of the amount of material, selected from the COD as
putative non superconductors, up to about 50,000 (see SI). This is
the setting that we have assumed in the course of the analysis
reported in this study.
Another employed database is that produced by Hosono et al.1.

This latter paper examined a relatively short list of pre-selected
materials, each of which chosen by experts with a background in
solid state chemistry. Several superconductors were identified (3%
of the total, as anticipated above) and thoroughly characterised.
Importantly, the list of unsuccessful materials tested for super-
conductivity was also provided. In this study, we make use of a
distilled version of the original database. This is discussed in ref. 11,
and it will hereafter referred to as Hosono database. It contains 207
materials, 39 superconductors and 168 non superconductors. The
Hosono database allows for an independent and more stringent
test (since materials were pre-selected as possible superconduc-
tors) of the performance of Deep Set classificator.
Finally, we used the trained Deep Set against the updated list

(September 2021) of minerals accepted by the International
Mineralogical Association (https://www.ima-mineralogy.org/
minlist.htm).

Training the Deep Set
To build and train the Deep Set model we used TensorFlow and
leveraged on automatic build-in optimisers. For the regression
problem, the non linear function ϕ is implemented as a neural
network made of 7 layers, with a variable number of nodes,
ranging from 96 to 992. The activation function chosen is the
ReLu8 for all the layers except for the final layer (the one that
populates the latent space), where it is set to be linear. The non
linear function ρ is implemented with a neural network made of
13 layers, including the output one. The number of nodes range
from 128 to 960. The ReLu activation function is used to filter the
signal on the nodes, across different layers. The loss function
employed for training the model is the mean square error. The
produced (ρðPx2XϕðxÞÞ ! ~ρ) output is the predicted
temperature.
For classification purposes, the non linear function ϕ is set to be

a neural network made of 4 layers and 300 nodes per layer. The
activation functions are chosen as for the regression problem. The
non linear function ρ is a neural network made of 3 layers (in
addition to the output layer) with number of nodes respectively
fixed to 300, 300, and 100. A ReLu activation function is used in all
layers, except for the last one where we chose a sigmoidal
function. The loss function is the binary crossentropy. The
produced output ρðPx2XϕðxÞÞ ! ~ρ) is a real number, ranging in
the interval [0, 1]. Values close to zero imply that the inspected
material is non superconducting. Conversely, the material is
classified as superconducting, when ~ρ approaches one. To obtain
a binary output, we introduce a threshold ϵth∈ [0, 1] with the
conditon that the material is indeed superconducting if ~ρ> ϵth.
The larger the value of ϵth the more certain the Deep Set ought to
be before classifying the material as superconducting.

For training the Deep Set network, we made use of Adam
optimiser8, by setting a learning rate of 0.001. The training
proceeded for a maximum number of epochs equal to 400. We
adopted an early stopping regularisation with patience settled to
40. During successive epochs the network was fed with batches of
size 64. These hyperparameters follow the Hyperband algorithm,
and are set so as to improve the performance of the model. The
code employed, as well as a notebook to reproduce our results,
can be found in the public repository of this project.

Synthesis and characterization of mineral analogues
The synthetic analogues of a few selected minerals from the list
(i.e., Pd3HgTe3—an analogue of temagamite, PdBiTe—an analo-
gue of michenerite, Pd2NiTe2—an analogue of monchetundraite,
PdHg—an analogue of potarite; Pd2Sn - an analogue of paolovite;
Pd9Te4—an analogue of telluropalladinite) were synthesized by
using silica-glass tube methods as described in refs. 24,25.
Temperature conditions and more details are given in SI.
Chemical analyses were performed with a CAMECA SX-100

EPMA in wavelength dispersive mode using an electron beam
focused to 1–2 μm and an accelerating voltage of 15 keV, and a
beam current of 10 nA on the Faraday cup. Pure elements were
used as calibrants.
The powder X-ray diffraction data of the experimental products

were collected on a Bruker D8 Advance diffractometer in Bragg-
Brentano geometry using LynxEye XE detector and CuKα radiation.
The initial phase identification was carried out by HighScore
program26. Subsequent quantitative phase analysis was per-
formed by Rietveld method using Topas 5 program27. The crystal
structure models were taken from the Inorganic Crystal Structure
Database 202128. The fundamental parameter approach for the
peak shape description for all phases present in the samples was
used. Only scale factors, unit-cell parameters and parameters
describing profile (CrySize L and Strain G) were refined. No atomic
coordinates were refined. Correction for preferred orientation
(March-Dollase) of Pd3HgTe3 along [001] was applied. The X-ray
powder patterns with the assigned phases of the studied samples
are given in the SI, as Supplementary Figs. 6, 7, 8, 9, 10, 11 and 12.
The two synthesized Pd3HgTe3 samples resulted to be mainly

constituted by the P3m1 phase (temagamite). Impurity of PdTe
(P63/mmc, kotulskite) known to be a superconductor below 4.5 K21,
was quantified to be 1.8% and 0.8% in weight for the sample
prepared at 500 ∘C and 350 ∘C, respectively. PdBiTe sample was
almost totally constituted by the P213 phase (michenerite) with
0.9% impurity of αPdBi2 (C2/m), which is a superconductor with
Tc= 1.7 K20. Pd2NiTe2 sample comprises mainly the Ibam phase
(monchetundraite) with 4.5% impurity of PdTe (P63/mmc, kotuls-
kite). A more detailed analysis of the X-ray data combined with
electron microprobe analysis indicated that the impurity has
average composition Pd0.7Ni0.3Te.
PdHg and Pd9Te4 samples resulted to be mainly constituted by

the P4/mmm and P21/c phases, which correspond to potarite and
telluropalladinite, respectively. Pd2Sn sample comprises mainly
the Pnma phase (paolovite) with 9% impurity of Pd3Sn2 (P63/mmc,
stannopalladinite). In Table 1 the percentages of the various
phases (main and impurities) are provided, together with the
associated space group, for the examined samples.

Magnetic characterization
Static (dc) and dynamic (ac) magnetic measurements were
performed on a Quantum Design MPMS magnetometer by using
ball-shaped samples of loose microcrystalline powders wrapped in
PTFE. Measurements were corrected for diamagnetic contributions
of both PTFE (blank measurement) and compound (calculated
with Pascal constants). Low temperature measurements (≤1.6 K)
were performed using a Quantum Design 3He insert (iHelium3)
adapted to the MPMS magnetometer. For both configurations,
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careful degaussing of the magnet was performed and the small
remaining field (2 Oe) was compensated to ensure a measurement
in zero-field conditions (Hdc= 0 Oe). Optimal data for dynamic
magnetic measurements were obtained for Hac= 3 Oe and
oscillating field frequency equal to 10 Hz.

DATA AVAILABILITY
SuperCon dataset is available at the following link: https://mdr.nims.go.jp/collections/
5712mb227. The so called Hosono database is made available here: https://
github.com/tomo835g/Deep-Learning-to-find-Superconductors.

CODE AVAILABILITY
Employed codes are made available at the following link: https://github.com/
ClaudioPereti/From_individual_elements_to_macroscopic_materials.
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