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Fast and accurate machine learning prediction of phonon
scattering rates and lattice thermal conductivity
Ziqi Guo 1,2, Prabudhya Roy Chowdhury 1,2, Zherui Han 1,2, Yixuan Sun 1, Dudong Feng1,2, Guang Lin 1,3✉ and
Xiulin Ruan 1,2✉

Lattice thermal conductivity is important for many applications, but experimental measurements or first principles calculations
including three-phonon and four-phonon scattering are expensive or even unaffordable. Machine learning approaches that can
achieve similar accuracy have been a long-standing open question. Despite recent progress, machine learning models using
structural information as descriptors fall short of experimental or first principles accuracy. This study presents a machine learning
approach that predicts phonon scattering rates and thermal conductivity with experimental and first principles accuracy. The
success of our approach is enabled by mitigating computational challenges associated with the high skewness of phonon
scattering rates and their complex contributions to the total thermal resistance. Transfer learning between different orders of
phonon scattering can further improve the model performance. Our surrogates offer up to two orders of magnitude acceleration
compared to first principles calculations and would enable large-scale thermal transport informatics.
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INTRODUCTION
Lattice thermal conductivity (κl) is essential for a wide range of
applications of high scientific and societal impact, including
thermal insulation for energy savings1, thermal management of
semiconductor devices2, thermoelectrics3, and thermal barrier
coatings4. κl can be measured with experiments or predicted
accurately with first principles calculations of phonon scattering
rates coupled with the Boltzmann transport equation (BTE). On the
computational side, Peierls et al. formulated the phonon BTE
approach5 and Maradudin et al. developed the three-phonon
(3ph) scattering theory6. Broido et al. combined them with ab
initio force constants to enable the first principles prediction of κl7.
More recently, Feng et al. formulated a general theory of four-
phonon (4ph) scattering and predicted its importance8,9, which
was subsequently confirmed by independent experiments10–12. It
is generally considered now that both three-phonon and four-
phonon (3ph+4ph) scattering should be considered for accurate
prediction of κl that can be compared to experimental data.
Meanwhile, a number of packages have been released for first
principles prediction of κl, including ShengBTE13, AlmaBTE14,
Phono3py15, FourPhonon16, etc.
However, both experimental measurements and first principles

calculations of κl are generally expensive or even unaffordable,
especially for 4ph scattering. As a result, κl is only measured or
accurately predicted on a small fraction of all materials. Take
silicon as an example. Using 16 × 16 × 16 q-point mesh and unity
broadening factor, it takes about 7000 CPU hours to calculate κl
with 3ph+4ph scattering under the relaxation time approximation
(RTA)16. For many other technologically important materials
including perovskites for solar cell17–19, tetrahedrites for thermo-
electric device20 and lithium intercalation materials for Li-ion
battery21,22, the large number of phonon branches due to
complex crystal structures makes 4ph or even 3ph scattering
calculations unaffordable.

In light of this, machine learning (ML) approaches that can
achieve similar accuracy with first principles or experiments have
long been desired but remained an open question. Recent
progress has been made in developing end-to-end surrogate
models to predict κl23–25, by taking the structural information of
material as the descriptors without involving phonon scattering.
However, the accuracy falls far short of that of experiments or first
principles and can only be used for rough estimations.
In this work, we provide a machine learning approach that can

predict phonon scattering rates and thermal conductivity at the
experimental and first principles accuracy level, for a wide range
of materials represented by Si, MgO, and LiCoO2. The success of
our approach is enabled by mitigating computational challenges
associated with the high skewness of phonon scattering rates and
their complex contributions to the total thermal resistance.
Furthermore, transfer learning between different orders of
phonon scattering is used to improve the model performance.
Compared to first principles calculations, our surrogates achieve
up to two orders of magnitude acceleration, which would enable
large-scale thermal transport informatics.

RESULTS
BTE workflow and computational cost analysis
We begin with a computational time analysis of the phonon BTE
workflow. Figure 1 illustrates the complete workflow for predicting
κ3phþ4ph
l . The phonon phase space is first calculated based on
phonon dispersions, from which the 3ph and 4ph scattering
processes that satisfy the energy and momentum conservation
are identified. Combining with third- and fourth-order interatomic
force constants determined by the material structure, 3ph
scattering rate (Γ3ph

λλ0λ00 ) and 4ph scattering rate (Γ4ph
λλ0λ00λ000 ) of all the

allowed scattering processes within the phonon phase space are
calculated, where λ; λ0; λ00 and λ; λ0; λ00; λ000 represents phonon
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modes that are involved in the corresponding scattering
processes. Subsequently, the relaxation time of the phonon mode
λ for 3ph and 4ph scattering (τ3phλ and τ4phλ ) are derived by
considering all corresponding scattering processes in the mode λ.
The total phonon relaxation time for the mode λ (τλ) is then
derived based on the spectral Matthiessen’s rule26:

τ�1
λ ¼ ðτ3phλ Þ�1 þ ðτ4phλ Þ�1

. Finally, κ3phþ4ph
l is calculated consider-

ing the spectral contribution from every phonon mode. When
calculating κ3phl , only 3ph scattering is considered and τλ only
contains τ3phλ . A detailed explanation of the phonon BTE could be
found in Supplementary Section 1.
In this workflow, the most time-consuming step is calculating

Γ3ph
λλ0λ00 and Γ4ph

λλ0λ00λ000 . Take silicon as an example, the calculation of

Γ3ph
λλ0λ00 and Γ4ph

λλ0λ00λ000 accounts for more than 75% of the total

computational cost for predicting κ3phl and κ3phþ4ph
l , respectively

(see Supplementary Section 2). Considering the large number of
scattering processes (106 for 3ph and 1011 for 4ph), we can expect

significant time savings if the prediction of the scattering rate of
each individual process can be accelerated. This leads us to the
idea of attempting deep neural networks (DNNs) as surrogate
models to calculate Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 . We randomly choose a

relatively small portion of scattering processes from the phonon
phase space and calculate their scattering rates. Then we use
them as the training set for our surrogate model. After training,
the large number of remaining scattering processes in the phonon
phase space are evaluated with the trained model. Due to the fast
forward pass of the DNN, the average time of predicting a single
scattering rate is anticipated to be greatly reduced, which will lead
to a huge acceleration of κl prediction.

Phonon scattering surrogate models setup
In this work, we study Si, MgO and LiCoO2, three representative
thermal conductors with various κl values. These three materials are
well studied, with predicted values consistent with the experimental
values8,22,27. Also, LiCoO2 serves as an example of complex materials,

Fig. 1 Workflow of predicting κl by analytically solving BTE versus using the surrogate model. Due to the large number of scattering
processes, analytically calculating every Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 (gray box) is very time-consuming. We train surrogate models with a small portion of

phonon scattering processes from the phonon phase space, then use them to generate the rest of Γ3ph
λλ0λ00 and Γ4ph

λλ0λ00λ000 with a much faster speed
(red box). As a result, the process of predicting κl is greatly accelerated.
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where there are four atoms in its primitive cell compared with two
for Si and MgO. For each material, we train two individual DNN
models for Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 , respectively. The models are used to

replace the analytical calculation of Γ3ph
λλ0λ00 and Γ4ph

λλ0λ00λ000 .
As the input features for an ML model, the set of descriptive

qualities (termed descriptors) should have a good correlation with
the target property28,29. ML models for phonon scattering have
not been attempted before and would need some careful
consideration. When calculating phonon scattering rates for a
particular material, each phonon scattering process is sufficiently
determined by the relevant phonons involved in that process. So
the descriptors for a specific 3ph or 4ph scattering process are the
information of the three or four participating phonons. To
describe one phonon, we choose its frequency ω, wave vector
k, eigenvector e and group velocity v as the descriptors. The ω
and k are used to determine a phonon based on the dispersion
relation. The e is to describe the vibrational amplitude and v is to
describe the propagation of the corresponding phonon mode. All
of them can be obtained by solving the dynamical matrix in the
lattice dynamics.
With the suitable descriptors, there were still many barriers to

overcome. Figure 2a, b shows the distribution of Γ3ph
λλ0λ00 and Γ4ph

λλ0λ00λ000

and Fig. 2c shows the process of addressing challenges we met.
Both Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 range tens of orders of magnitude, which

are highly imbalanced and can lead to great bias for the DNN
models trained to the raw target values. The derived τλ in the
low-frequency range deviate from the analytical results and
cannot follow the physical scaling law lim

ω!0
τ�1
λ ¼ 0, which leads

to a large underprediction of κl (see Supplementary Fig. 3a, b).
To reduce the skewness, we performed a negative logarithm
transform on our target label and train the surrogate model on
the transformed dataset. The predicted τλ can now follow the
physical scaling law. However, for every phonon mode, τλ tends

to be overpredicted, which leads to an overprediction of κl (see
Supplementary Fig. 3c, d). After careful analysis, we found higher
negative error for scattering processes with large scattering
rates. Although high scattering rate processes only account for a
small portion of the whole phonon phase space for both 3ph
and 4ph scattering, they are the major contributors to the total
τλ and thus have a greater impact on thermal transport than
other processes. Moreover, since the error on the logarithm
scale means orders of magnitude of error in the linear scale,
scattering processes with larger scattering rates will be affected
more than others. Proper weights need to be assigned to high
scattering rate processes when training the surrogate models,
and the weights should be able to generalize to different
materials and scattering types. After attempting a variety of
forms of weights, we develop appropriate target-value-based
loss function weights, which are suitable for both 3ph and 4ph
scattering for all the materials we tested. This allows the
surrogate model to reduce the error of prediction on the
important high scattering rate data points during training, which
leads to an accurate prediction of κl. More statistical information
of the phonon scattering is shown in Supplementary Table 3.
The details of assigning the target-value-based weights can be
found in the “Methods” section and Supplementary Section 5.

Model performance for three-phonon scattering

We start from predicting Γ3ph
λλ0λ00 and κ3phl , which only include 3ph

scattering. Figure 3a shows a comparison of Γ3ph
λλ0λ00 estimated by our

surrogate models against the analytical values. The coefficient of
determination (R2) is 0.922 and 0.891 for Si and MgO, respectively,
which demonstrates the high accuracy of our surrogate models.
For LiCoO2, the R2 is 0.477, which is lower than the previous two
cases. This is expected considering the complexity of its phonon
scattering due to the fact that LiCoO2 has more atoms in the
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Fig. 2 Challenges of developing surrogate models for phonon scattering and how we mitigate them. a Histogram of Γ3ph
λλ0λ00 for Si, MgO and

LiCoO2 on a logarithm scale. b Histogram of Γ4ph
λλ0λ00λ000 for Si, MgO and LiCoO2 on a logarithm scale. The distribution of Γ4ph

λλ0λ00λ000 is estimated by

sampling 1,000,000 processes from the phonon phase space. There is a long tail as Γ3ph
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λλ0λ00λ000 approaching zero, which shows that the
dataset is highly imbalanced. c The process of designing suitable DNN models.
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primitive cell than Si and MgO. Figure 3b shows the comparison of
τ3phλ between the surrogate models and the analytical models. The

R2 value of τ3phλ are 0.968, 0.957 and 0.945 for Si, MgO and LiCoO2,
respectively, which are always higher than the corresponding R2

values for Γ3ph
λλ0λ00 . This implies the existence of error canceling effect

during the summation of all scattering processes. Furthermore,
the ML predicted τ3phλ at low frequency satisfies the physical
scaling law lim

ω!0
τ�1
λ ¼ 0 (see Supplementary Fig. 4), suggesting

that our surrogate models can capture the inherent physical
correlations between the phonon frequency and the scattering
rates. With τλ, we then calculate the spectral contribution of each

phonon mode to κ3phl and sum them up to get the final κ3phl .

Figure 3c shows the cumulative κ3phl with respect to the phonon
frequency, i.e., the value of κl when only phonons with the
frequency below a certain threshold are taken into account. The
mean free path accumulated κ3phl is shown in Supplementary Fig.
15. The excellent agreement between our results and the
analytical results shows the capability of our model to predict

κ3phl in every frequency range. We repeat the calculation six times
with different random dataset splits and report errors based on
one standard deviation. The prediction of bulk κ3phl are 137.9 ± 3.6,
46.79 ± 0.30 and 16.82 ± 0.42 W/(m ⋅ K) for Si, MgO and LiCoO2,
respectively. Compared with the analytical result (139.7, 47.4 and
17.01 W/(m ⋅ K) for Si, MgO and LiCoO2), the mean absolute
percentage errors (MAPEs) of three materials are 2.43%, 1.39% and
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Fig. 3 The performance of 3ph scattering surrogate models for Si, MgO and LiCoO2. a Scatter plot of estimated Γ3ph
λλ0λ00 with respect to

analytical Γ3ph
λλ0λ00 . b Scatter plot of estimated τ3phλ with respect to analytical τ3phλ . c Cumulative κ3phl with respect to the phonon frequency.

d Comparison of the total computational cost of predicting κ3phl between analytical and surrogate models. The surrogate models are up to
four times faster than the analytical models. e Computational cost of each step in the prediction of κ3phl with surrogate models. f Average
computational cost for calculating a single Γ3ph

λλ0λ00 . The surrogate models are two orders of magnitude faster compared with the analytical
models.
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2.03%, all less than 3%. Considering that the experimental
uncertainty for measuring thermal conductivity can typically be
10%, the accuracy of our models is exceptional. We also consider
the anisotropy property of LiCoO2 and calculate the in-plane
lattice thermal conductivity (κ3phl;k ) and cross-plane lattice thermal

conductivity (κ3phl;? ), which are shown in Supplementary Table 6
together with all the results for each run. Moreover, our model can
also perform well at the high temperature, which is demonstrated
in Supplementary Section 11.
To demonstrate the significant reduction in computational time

brought by our surrogate model, Fig. 3d shows the comparison of
the computational cost between the analytical models and the
surrogate models. The reported time is CPU time, i.e., the
cumulative time of all CPU cores working on the job. Our
surrogate models achieve a speedup of 2.85×, 2.5×, and 3.57× for
Si, MgO and LiCoO2, respectively. We then analyze the computa-
tional cost of every procedure in the surrogate models, which is
shown in Fig. 3e. For the prediction of κ3phl , most of the time is
used to generate datasets and train DNNs. Although our surrogate
models have two orders of magnitude acceleration on average for
a scattering process (Fig. 3f), this huge acceleration is partly
masked by these overheads. In comparison, 4ph scattering has a
much larger phonon phase space than 3ph scattering, i.e., more
allowed scattering processes (1011 versus 106), and more time
saving is expected for predicting κ3phþ4ph

l .

Model performance for four-phonon scattering
Four-phonon scattering represents the frontier of the first
principles prediction of thermal conductivity, but it is forbiddingly
expensive and complex. Encouraged by the 3ph result, we
proceed to train surrogate models for 4ph scattering following a
similar procedure. The DNN structures are set to be the same as
3ph models except that the information of one more phonon is
added in the descriptors. Due to the huge number of scattering
processes, we cannot save Γ4ph

λλ0λ00λ000 of all possible processes
because it would exceed the maximum memory of computers.
To deal with this problem, we conduct the prediction of Γ4ph

λλ0λ00λ000

mode by mode. After calculating τ4phλ , the memory is freed for the

next phonon mode (see Methods for detail). As Γ4ph
λλ0λ00λ000 is not

saved, we only present the performance on τ4phλ and κ3phþ4ph
l . The

pair plots between the predicted and analytically calculated τ4phλ

are shown in Fig. 4a, with R2 values of 0.994, 0.995 and 0.979 for Si,
MgO and LiCoO2, respectively. These results demonstrate the
success of our DNN surrogate model in predicting τ4phλ with very

high accuracy. The cumulative κ3phþ4ph
l (Fig. 4b) further proves the

accuracy of predicting τ4phλ and spectral κ3phþ4ph
l . Note that for

κ3phþ4ph
l , we use τ4phλ from surrogate models and τ3phλ from
analytical models to calculate τλ. This is to show the error solely
brought by 4ph surrogate models. Based on the average of six
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Fig. 4 The performance of 4ph scattering surrogate models for Si, MgO and LiCoO2. a Scatter plot of estimated τ4phλ with respect to
analytical τ4phλ . b Cumulative κ3phþ4ph

l with respect to the phonon frequency. c Comparison of the total computational cost of predicting
κ3phþ4ph
l between the analytical and surrogate models. The surrogate models are up to seventy times faster than the analytical models.
d Computational cost of each step in the prediction of κ3phþ4ph

l with surrogate models. e Average computational cost of calculating a single
Γ4ph
λλ0λ00λ000 . The surrogate models are two orders of magnitude faster compared with the analytical models.
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different random dataset splits, the total κ3phþ4ph
l for Si, MgO and

LiCoO2 are 120.5 ± 0.2, 42.32 ± 0.10 and 6.812 ± 0.288 W/(m ⋅ K),
respectively. Compared with the analytical result (120.6, 42.2 and
6.619 W/(m ⋅ K) for Si, MgO and LiCoO2), the MAPEs are 0.09%,
0.36%, 4.46%, respectively, all less than 5%. The predicted κ3phþ4ph

l
has high accuracy and also reflects a clear 4ph effect, as the 4ph
scattering is expected to decrease κ3phþ4ph

l . The τ4phλ - w relation
are shown in Supplementary Fig. 5. The anisotropic κ3phþ4ph

l for
LiCoO2 together with the results of each run for all three materials
are shown in Supplementary Table 7. The mean free path
accumulated κ3phþ4ph

l is shown in Supplementary Fig. 15. The
performance of 4ph surrogate model at the high temperature is
shown in Supplementary Section 11. Figure 4c shows that the
surrogate models achieve 64.3 × , 69.9 × and 17.1 × speed up for
predicting κ3phþ4ph

l of Si, MgO and LiCoO2, respectively. Due to a
larger phonon phase space, the evaluation of Γ4ph

λλ0λ00λ000 takes a larger
portion of the total time compared with 3ph scattering (Fig. 4d),
which leads to more acceleration for the prediction of κ3phþ4ph

l . It
is to be noted that we have less time saving on LiCoO2 compared
with Si and MgO, because we use a smaller q-mesh and
broadening factor for generating training data (see Methods for
detail), which leads to fewer phonon modes and smaller phonon
phase space compared with other two materials. Figure 4e shows
that the surrogate models are on average two orders of
magnitude faster than the analytical models for the prediction
of a single Γ4ph

λλ0λ00λ000 , which is the same as what we found for 3ph
scattering.

Transfer learning from 3ph scattering to 4ph scattering
Transfer learning is a technique that can gain model improvement
using knowledge learned in another different but relevant task.
For example, it can leverage knowledge gained from learning a
proxy property to improve the prediction of a target property. In

thermal science, some works have been done on utilizing transfer
learning to improve the model performance30–32. Considering the
similarity of 3ph and 4ph scattering formalism, we take Γ3ph

λλ0λ00 as the
proxy property and employ transfer learning from 3ph models to
4ph models to improve the prediction of Γ4ph

λλ0λ00λ000 . Generally, to
perform transfer learning, two different models should share the
same architecture. This is not true in our case because 4ph
scattering involves one more phonon, which leads to a
discrepancy in the dimension of descriptors.
To overcome this problem, we add a “virtual phonon” into the

3ph surrogate model so that the dimensions of descriptors of the
modified 3ph model and the 4ph surrogate model become the
same. The “virtual phonon” are dummy inputs with zero values
and same dimensions as the descriptor for a phonon. Figure 5a
shows the workflow of transfer learning from the 3ph model to
the 4ph model. The performances of modified 3ph models are
comparable with the previous 3ph surrogate models (see
Supplementary Section 8), which demonstrates that the “virtual
phonon” does not degrade the learning ability of models and the
modified 3ph models can still capture the mechanism of phonon
scatterings.
Using the ‘warm start’ strategy, i.e., keeping the weights and

biases of 3ph models as the initialization and training the models
on 4ph data, the knowledge of 3ph scattering is then transferred
to 4ph models. We first train the transferred models with the same
datasets as the previous 4ph surrogate models. Figure 5b shows
the MAPE of κ3phþ4ph

l compared with the previous 4ph surrogate
models. The transferred models reduce error by 66.7%, 75.0% and
55.8% for Si, MgO, and LiCoO2, respectively. The better
performances of the transferred models suggest that our
surrogate model can capture the mechanism of phonon scatter-
ing. Information embedded in the 3ph surrogate can be used to
improve the performance of 4ph surrogate. More details of the
performance of 4ph surrogate models are shown in Supplemen-
tary Section 8.

Fig. 5 Transfer learning from 3ph to 4ph surrogate models. a The workflow of transfer learning. A modified 3ph model with dummy inputs
for `virtual phonon' is first trained and used as a `warm start' for the 4ph model. b The MAPE of κ3phþ4ph

l on a logarithm scale comparing the
4ph surrogate models and the 4ph transfer learning models. The predictions with the transfer learning models are more accurate. c The MAPE
of κ3phþ4ph

l comparing the 4ph surrogate models trained on 3% and 0.3% of the 4ph phase space and the transfer learning model trained on
0.3% of the 4ph phase space. After transfer learning, the error of the model trained on a small training set is reduced.
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Finding that transfer learning can improve the model perfor-
mance, we then utilize transfer learning to further accelerate the
prediction of κ3phþ4ph

l . We take LiCoO2 as an example because it
takes a larger portion of time to generate its training set compared
with the other two materials. In the previous 4ph surrogate
models, our sampling technique utilizes 3% of the phonon phase
space as the training set. Now we take fewer data from each
phonon mode and the new training set is only 0.3% of the
phonon phase space. Figure 5c shows the MAPE of κ3phþ4ph

l on a
logarithm scale. Compared with the previous result, the prediction
error doubles when using the small training set. However, with
transfer learning incorporated, the error of prediction is reduced
and goes back to a similar level of the result using a larger training
set. On the other hand, the total computational time of predicting
κ3phþ4ph
l with transfer learning decreased by around 75%, which
comes from around 90% of time reduction of generating dataset
and training the surrogate model (see Supplementary Fig. 8).
Overall, by taking advantage of the similarity between 3ph and
4ph scattering processes, our transfer learning model reaches
better performance.

DISCUSSION
Our ML model is targeted at the phonon scattering level by
predicting Γ3ph

λλ0λ00 or Γ
4ph
λλ0λ00λ000 , which are subsequently used to derive

τλ and κl. Compared with other end-to-end ML models, i.e.,
predicting κl based on material structural information, our model
is distinctly different and brings several advantages. First, instead
of acting as a black box, our workflow entails all the phonon
scattering physics and insights, which serve a foundational role in
understanding thermal transport. Our approach allows us to
obtain essential quantities like τλ which are highly important to
various topics including optical linewidth33–35, thermal barrier
coating4,36, radiative cooling37, etc. This preservation of true
physics brings the second advantage. While other end-to-end
models can only predict the κl in the right orders of magnitude,
which are only useful for very rough estimation, our models give
less than 5% error and can be used for quantitative materials
design with high confidence. A comparison is shown in Fig. 6,
where the relative errors of end-to-end models are around ± 30%
and can be over ± 100% and our surrogate models achieve over
6 × improvement in the accuracy of predicting κl.

The acceleration of our surrogate models originates from the
fast forward pass of DNNs. Compared with ShengBTE, which
evaluates scattering processes sequentially in each thread, our
models evaluate multiple scattering processes together in
batches, which can take advantage of fast matrix operations.
Compared with other works which accelerate the prediction of
phonon scattering by utilizing GPU parallel computing ability38,39,
the acceleration of our surrogate models does not rely on GPU. To
demonstrate this, we run our surrogate model on one CPU core,
and we find that the computational time only increases a little
compared with running our model on GPU, which originates from
a longer training time (see Supplementary Fig. 9). We still have a
huge acceleration for the prediction of κ3phþ4ph

l .
Our surrogate models provide an ML framework for the

prediction of phonon scattering, which could also be used for other
purposes. For example, Supplementary Section 10 shows a
classification model based on 3ph DNN architecture that can
identify the 3ph scattering processes that are less important to τ3phλ
and κ3phl . Eliminating them prior to the calculation of Γ3ph

λλ0λ00 can also
lead to significant acceleration. This suggests a broad application of
our approach in phonon scattering research. Also, for transfer
learning, we take advantage of the similarity between the 3ph and
4ph processes. It is possible to do transfer learning between
materials with similar structures to achieve better performance.
Our surrogate model is based on RTA, which is valid for

materials where Umklapp scattering dominates. It is worth noting
that our 3ph+4ph result for Si is slightly underpredicted
compared to the experimental value, consistent with previous
works8,9,16 and due to the neglect of phonon renormalization at
finite temperature. Literature has shown that adding phonon
renormalization can make the prediction in agreement with
experimental results for Si40. Future work could be done on using
machine learning to predict scattering rates with phonon
renormalization.
There is still room for us to further accelerate our models. In the

4ph surrogate models, we evaluate Γ4ph
λλ0λ00λ000 mode by mode and do

file I/O to avoid exceeding the memory limit, which decreases the
speed of calculating scattering processes. More acceleration could
be obtained if we can evaluate more scattering processes at once.
Furthermore, our surrogate models are built with Python, which is
an interpretive programming language with less efficiency
compared with Fortran (the programming language for
ShengBTE). There could be more time saving if we can turn the
code into a more efficient language like C or Fortran. Another
potential limitation of our work is the mismatch of descriptors
between materials with different structures. For materials with
different numbers of atoms in one primitive cell, the dimensions
of their eigenvectors are different (see “Methods” for detail). This
may hamper the idea of using transfer learning between materials
with different structures. To deal with this problem, more work
could be done on finding a better way to describe phonon
eigenvector terms to keep the same dimension for every material.
In summary, we develop machine learning models at the

phonon scattering level, which has not been achieved so far. The
predicted phonon scattering rates and relaxation times agree well
with the analytical result. Lattice thermal conductivities are then
derived with relative error less than 3% for κ3phl and 5% for
κ3phþ4ph
l . Our models achieve a speedup of up to four times for
3ph and up to seventy times for 3ph+4ph BTE workflow
compared with ShengBTE. Transfer learning from 3ph to 4ph
scattering models can further improve the model performance.
The proposed surrogate models are able to capture the
mechanism of phonon scattering and would assist the discovery
of desired κl materials. The work can potentially remove the
paramount computational cost barrier of high-order phonon
scattering and enable large-scale thermal transport informatics.

-100%
-200%

200%
100%

Zhang et al,
2018

Chen et al,
2019

Ju et al,
2021

Ours

50%

-50%

Fig. 6 The relative error of predicting κl comparing end-to-end
ML models and our 3ph+4ph surrogate models. Results of end-to-
end models are from refs. 23,31,42. The line and dot inside each box
represent the median and the mean of the data, respectively. The
box represents the interquartile range from the 25th to the 75th
percentile. The upper and lower limits of whiskers are the minimum
and maximum value in the dataset. Compared with other end-to-
end machine learning models where the relative error can be over
100%, the relative error of our surrogate model is always within 5%,
which shows much higher accuracy.
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METHODS
Dataset
Our datasets contain the information of phonon pairs in the
phonon phase space as input and the corresponding Γ3ph

λλ0λ00 or

Γ4ph
λλ0λ00λ000 as output. The datasets on Si, MgO and LiCoO2 are
generated by a custom ShengBTE package with the FourPhonon
module. The temperature is set to be 300 K. The first Brillouin zone
is discretized into N × N × N q-mesh. After careful convergence
tests, N is set to be 28, 20 and 10 when calculating 3ph scattering
for Si, MgO and LiCoO2, respectively. A broadening factor of unity
is used for all three materials in the 3ph scattering. For the
calculation of 3ph+4ph scattering, N is set to be 16, 15 and 10 for
Si, MgO and LiCoO2, respectively. Considering the memory and
computational cost, we set the broadening factor to be 0.1 for Si
and MgO and 0.01 for LiCoO2, which is enough for reaching
convergence. Isotopic scattering is included in both 3ph and 4ph
scattering for all three materials. For data cleaning, we remove
negative Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 from the generated dataset because

they are unphysical. Target value is then transformed by −log10(Γ),
where Γ stands for Γ3ph

λλ0λ00 or Γ
4ph
λλ0λ00λ000 in the corresponding model.

For each scattering process, we use the information of the three
or four participating phonons as descriptors. A phonon is
described as λ(ω, k, e, v), where the matrix properties are flattened
into 1D vectors. Note that for materials like Si and MgO, with 2
atoms per primitive cell, the dimension of v is 12; while for
materials like LiCoO2 with 4 atoms per primitive cell, the
dimension of v is 24. In total, the dimension of descriptors for
3ph scattering is 57 (Si and MgO) or 93 (LiCoO2); while the
dimension of descriptors is 76 (Si and MgO) or 124 (LiCoO2) for
4ph scattering. The dimensions of each physical term in
descriptors are shown in Supplementary Section 3.
To generate the training set, we perform sampling over the

phonon phase space. Considering that the numbers of allowed
scattering processes are quite different for different modes (see
Supplementary Fig. 2), some phonon modes would contribute
more data than others and more weights would be given to these
modes if we randomly select a certain percentage of scattering
processes from the phonon phase space. To treat all the phonon
modes more equally, we sample a certain number of scattering
processes from each mode. The number of samples is set to be
2,000 for 3ph surrogate models and 20,000 for 4ph surrogate
models. The generated training set is only a small fraction of the
phonon phase space, as exhibited in Supplementary Table 4.

DNN structure
DNN models are built with Tensorflow41, which consists of 4
hidden layers with 1000, 1000, 1000 and 10 neurons. Rectified
Linear Unit (ReLU) activation functions are used in the hidden
layers. The output layer has one neuron with the linear activation
function. The loss function is chosen to be the Mean Square Error
(MSE), which is given by:

MSE ¼ 1
N

XN

i¼1

ðyi � ŷiÞ2 , (1)

where yi is the true value and ŷi is the predicted value. The
structure of DNN is determined by hyperparameter tuning.
Recognizing that high Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 processes are more

important, we develop target value-based loss function weights w.
Multiplying w to the loss function of the DNN model makes it
focus more on high Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 processes. After careful

searching, the form of weight we use is:

w ¼ Γ0:4 . (2)

The parameter 0.4 in w is determined by hyperparameter tuning
on the Si 3ph dataset and is able to generalize to both other

materials and other scattering types. Some other forms of weight
were attempted but they are not consistently suitable for either
different materials or different orders of phonon scattering. More
details of weight selection are shown in Supplementary Section 5.
To minimize the loss, we perform error back-propagation to

renew model weights and biases, which is performed using the
Adam optimizer. The mini-batch size, which is the number of
samples per gradient update, is set to 2048. The early stopping
technique is employed to mitigate overfitting and save the
optimal model state during training. The predicted result is
evaluated by the coefficient of determination (R2), which is
defined as:

R2 ¼ 1�
PN

i¼1
ðyi � ŷiÞ2

PN

i¼1
ðyi � yiÞ2

(3)

where N is the size of the dataset and yi is the mean of the true
value. It ranges between 0 and 1 where a higher value means
better fitting performance.
When predicting scattering rates for the remaining scattering

processes in phonon phase space using surrogate models, we set
the maximum size of the mini-batch to be 220 considering the
memory limit. For 4ph models, the total descriptors and scattering
rates of all processes would largely exceed the maximum memory
of computers due to the huge number of scattering processes. To
deal with this problem, we generate the descriptors from file
mode by mode and only evaluate Γ4ph

λλ0λ00λ000 within this mode at one
time. After calculating τ4phλ , the memory is freed for the next
phonon mode.

The prediction of relaxation time and lattice thermal
conductivity
After getting Γ3ph

λλ0λ00 and Γ4ph
λλ0λ00λ000 based on RTA, we calculate τ3phλ and

τ4phλ by considering all corresponding processes in the mode λ. We
then send them back to ShengBTE to complete the calculation of
κl with the same setting (q-mesh, broadening factor, etc.) as we
generate the dataset. A detailed description of computing τλ and
κl is described in Supplementary Section 1. The reported κl is
based on the average results of six surrogates trained by different
random splits of the training set. We calculated the MAPE to
evaluate the prediction accuracy, which is given by:

MAPE ¼ 1
N

XN

i¼1

yi � ŷi
yi

����

���� (4)

Transfer learning
We perform the transfer learning from 3ph to 4ph DNN models. To
keep the same dimensions of input, some dummy inputs (called
‘virtual phonon’) are added to the descriptors of 3ph surrogate
models and their corresponding value is set to be zero. When
training the 4ph models, we employ the ‘warm start’ strategy by
using the weights and biases of the modified 3ph models as the
initialization to train the 4ph models. The prediction of Γ4ph

λλ0λ00λ000 , τ
4ph
λ

and κ3phþ4ph
l is the same with the previous workflow. We keep

using MAPE as the metric to compare the performance of transfer
learning models with the surrogate models.
For LiCoO2, we use transfer learning to further accelerate the

prediction of κ3phþ4ph
l . The number of data sampled from different

phonon modes is set to be 2000. Compared with the previous
sampling number in 4ph surrogate models (20,000 from each
mode), we achieve roughly 90% of time reduction for generating
training set and training DNN.
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Computational cost
Our analytical BTE calculations are done using the ShengBTE package
integrated with the FourPhonon module, on Purdue University Rosen
Center for Advanced Computing (RCAC) bell cluster, which provides
AMD EPYC 7502 32-Core Processor. The reported time is CPU time,
which is the cumulative time of all CPU cores working on the job. For
3ph analytical results, we perform serial computing using 1 CPU core.
For 4ph analytical results, the wall time for serial computing is
unaffordable, so we do parallel computing using 128 CPU cores,
which may slightly increase the total CPU time compared with serial
computing. The prediction with the surrogate model is performed on
the RCAC Gilbreth cluster, which provides Nvidia A30 GPU and
Intel(R) Xeon(R) Silver 4114 CPU. We perform serial computing using
1 CPU core and 1 GPU. The reported time is CPU time plus GPU time.
We also report the computational cost of running the surrogate
model on the CPU core (Supplementary Section 9), which is
performed on the RCAC bell cluster with 1 CPU core.
As for the computational cost of every procedure, we divide the

process of predicting κl into generating data, training the model,
calculating scattering rates and others. Others include reading
datasets, preparing training data, calculating τλ, calculating κl, etc.
For the 3ph+4ph BTE workflow, the computational cost for
analytically calculating τ3phλ is also included. We multiply the total
CPU time of the analytical calculation with the proportion of training
set in the phonon phase space to get the time of data generation.

DATA AVAILABILITY
The datasets for the study are available from the corresponding authors upon
reasonable request.

CODE AVAILABILITY
The ShengBTE package integrated with the FourPhonon module is available at
https://github.com/FourPhonon/FourPhonon. The custom codes used to generate
the dataset and the code for surrogate models are available from the corresponding
authors upon reasonable request.

Received: 19 January 2023; Accepted: 29 March 2023;

REFERENCES
1. Lindsay, L., Hua, C., Ruan, X. & Lee, S. Survey of ab initio phonon thermal trans-

port. Mater. Today Phys. 7, 106–120 (2018).
2. Moore, A. L. & Shi, L. Emerging challenges and materials for thermal management

of electronics. Mater. Today 17, 163–174 (2014).
3. Zebarjadi, M., Esfarjani, K., Dresselhaus, M., Ren, Z. & Chen, G. Perspectives on

thermoelectrics: from fundamentals to device applications. Energy Environ. Sci. 5,
5147–5162 (2012).

4. Flamant, Q. & Clarke, D. R. Opportunities for minimizing radiative heat transfer in
future thermal and environmental barrier coatings. Scr. Mater. 173, 26–31 (2019).

5. Peierls, R. Zur kinetischen theorie der wärmeleitung in kristallen. Ann. Phys. 395,
1055–1101 (1929).

6. Maradudin, A. & Fein, A. Scattering of neutrons by an anharmonic crystal. Phys.
Rev. 128, 2589 (1962).

7. Broido, D. A., Malorny, M., Birner, G., Mingo, N. & Stewart, D. Intrinsic lattice
thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91,
231922 (2007).

8. Feng, T. & Ruan, X. Quantum mechanical prediction of four-phonon scattering
rates and reduced thermal conductivity of solids. Phys. Rev. B 93, 045202 (2016).

9. Feng, T., Lindsay, L. & Ruan, X. Four-phonon scattering significantly reduces
intrinsic thermal conductivity of solids. Phys. Rev. B 96, 161201 (2017).

10. Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high
thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

11. Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals.
Science 361, 582–585 (2018).

12. Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science
361, 579–581 (2018).

13. Li, W., Carrete, J., Katcho, N. A. & Mingo, N. Shengbte: a solver of the boltzmann
transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

14. Carrete, J. et al. almabte: A solver of the space–time dependent boltzmann
transport equation for phonons in structured materials. Comput. Phys. Commun.
220, 351–362 (2017).

15. Togo, A., Chaput, L. & Tanaka, I. Distributions of phonon lifetimes in brillouin
zones. Phys. Rev. B 91, 094306 (2015).

16. Han, Z., Yang, X., Li, W., Feng, T. & Ruan, X. Fourphonon: an extension module to
shengbte for computing four-phonon scattering rates and thermal conductivity.
Comput. Phys. Commun. 270, 108179 (2022).

17. Comin, R. et al. Lattice dynamics and the nature of structural transitions in
organolead halide perovskites. Phys. Rev. B 94, 094301 (2016).

18. Osei-Agyemang, E., Adu, C. E. & Balasubramanian, G. Ultralow lattice thermal
conductivity of chalcogenide perovskite cazrse3 contributes to high thermo-
electric figure of merit. npj Comput. Mater. 5, 1–7 (2019).

19. Zheng, J. et al. Anharmonicity-induced phonon hardening and phonon transport
enhancement in crystalline perovskite bazro 3. Phys. Rev. B 105, 224303 (2022).

20. Xia, Y., Ozoliņš, V. & Wolverton, C. Microscopic mechanisms of glasslike lattice
thermal transport in cubic cu12sb4s13 tetrahedrites. Phys. Rev. Lett. 125, 085901
(2020).

21. Wu, L., Lee, W. H. & Zhang, J. First principles study on the electrochemical,
thermal and mechanical properties of licoo2 for thin film rechargeable battery.
Mater. Today Proc. 1, 82–93 (2014).

22. Feng, T., O’hara, A. & Pantelides, S. T. Quantum prediction of ultra-low thermal
conductivity in lithium intercalation materials. Nano Energy 75, 104916 (2020).

23. Zhang, Y. & Ling, C. A strategy to apply machine learning to small datasets in
materials science. npj Comput. Mater. 4, 1–8 (2018).

24. Wu, S. et al. Machine-learning-assisted discovery of polymers with high thermal
conductivity using a molecular design algorithm. npj Comput. Mater. 5, 1–11
(2019).

25. Wang, X., Zeng, S., Wang, Z. & Ni, J. Identification of crystalline materials with
ultra-low thermal conductivity based on machine learning study. J. Phys. Chem. C
124, 8488–8495 (2020).

26. Ziman, J. Electrons and Phonons: The Theory of Transport Phenomena in Solids
(Oxford University Press, 2001).

27. Kwon, C., Xia, Y., Zhou, F. & Han, B. Dominant effect of anharmonicity on the
equation of state and thermal conductivity of mgo under extreme conditions.
Phys. Rev. B 102, 184309 (2020).

28. Ghiringhelli, L. M., Vybiral, J., Levchenko, S. V., Draxl, C. & Scheffler, M. Big data of
materials science: critical role of the descriptor. Phys. Rev. Lett. 114, 105503
(2015).

29. Sutton, C. et al. Crowd-sourcing materials-science challenges with the nomad
2018 kaggle competition. npj Comput. Mater. 5, 1–11 (2019).

30. Liu, Z., Jiang, M. & Luo, T. Leverage electron properties to predict phonon
properties via transfer learning for semiconductors. Sci. Adv. 6, eabd1356 (2020).

31. Ju, S. et al. Exploring diamondlike lattice thermal conductivity crystals via feature-
based transfer learning. Phys. Rev. Mater. 5, 053801 (2021).

32. Liu, Z., Jiang, M. & Luo, T. Leveraging low-fidelity data to improve machine
learning of sparse high-fidelity thermal conductivity data via transfer learning.
Mater. Today Phys. 28, 100868 (2022).

33. Balkanski, M., Wallis, R. & Haro, E. Anharmonic effects in light scattering due to
optical phonons in silicon. Phys. Rev. B 28, 1928 (1983).

34. Yang, X. et al. Observation of strong higher-order lattice anharmonicity in Raman
and infrared spectra. Phys. Rev. B 101, 161202 (2020).

35. Han, Z. et al. Raman linewidth contributions from four-phonon and electron-
phonon interactions in graphene. Phys. Rev. Lett. 128, 045901 (2022).

36. Padture, N. P., Gell, M. & Jordan, E. H. Thermal barrier coatings for gas-turbine
engine applications. Science 296, 280–284 (2002).

37. Tong, Z. et al. Electronic and phononic origins of baso4 as an ultra-efficient
radiative cooling paint pigment. Mater. Today Phys. 24, 100658 (2022).

38. Wei, Y., You, X., Yang, H., Luan, Z. & Qian, D. Towards GPU acceleration of phonon
computation with Shengbte. In: HPCAsia2020 32–42 (Association for Computing
Machinery, 2020).

39. Zhang, B., Fan, Z., Zhao, C. & Gu, X. Gpu_pbte: an efficient solver for three and
four phonon scattering rates on graphics processing units. J. Phys. Condens.
Matter 33, 495901 (2021).

40. Gu, X., Li, S. & Bao, H. Thermal conductivity of silicon at elevated temperature: role
of four-phonon scattering and electronic heat conduction. Int. J. Heat Mass Transf.
160, 120165 (2020).

41. Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous
systems. https://www.tensorflow.org/ (2015).

42. Chen, L., Tran, H., Batra, R., Kim, C. & Ramprasad, R. Machine learning models for
the lattice thermal conductivity prediction of inorganic materials. Comput. Mater.
Sci. 170, 109155 (2019).

Z. Guo et al.

9

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)    95 

https://github.com/FourPhonon/FourPhonon
https://www.tensorflow.org/


ACKNOWLEDGEMENTS
Z.G., D.F., and X.R. acknowledge partial support from the US National Science
Foundation through award 2102645. Z.H. and X.R. acknowledge partial support from
the US National Science Foundation through award 2015946. Z.G. acknowledges the
Ross Fellowship from Purdue University. L.G. acknowledges the support from the
National Science Foundation (DMS-1555072, DMS-2053746, and DMS-2134209) and
U.S. Department of Energy (DOE) Office of Science Advanced Scientific Computing
Research program DE-SC0021142 and DE-SC0023161.

AUTHOR CONTRIBUTIONS
X.R. and G.L. conceived the study. Z.G. generated the datasets, implemented the
models, analyzed the results, and wrote the manuscript. Z.H., P.R.C., and D.F. helped
with the data collection and analysis. Y.S. helped with the implementation of ML
models. X.R. and G.L. supervised the project. All authors contributed to discussions
and revisions of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41524-023-01020-9.

Correspondence and requests for materials should be addressed to Guang Lin or
Xiulin Ruan.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Z. Guo et al.

10

npj Computational Materials (2023)    95 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

https://doi.org/10.1038/s41524-023-01020-9
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Fast and accurate machine learning prediction of phonon scattering rates and lattice thermal conductivity
	Introduction
	Results
	BTE workflow and computational cost analysis
	Phonon scattering surrogate models setup
	Model performance for three-phonon scattering
	Model performance for four-phonon scattering
	Transfer learning from 3ph scattering to 4ph scattering

	Discussion
	Methods
	Dataset
	DNN structure
	The prediction of relaxation time and lattice thermal conductivity
	Transfer learning
	Computational cost

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




