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A critical examination of robustness and generalizability of
machine learning prediction of materials properties
Kangming Li 1✉, Brian DeCost 2, Kamal Choudhary 2,3, Michael Greenwood4 and Jason Hattrick-Simpers 1

Recent advances in machine learning (ML) have led to substantial performance improvement in material database benchmarks, but
an excellent benchmark score may not imply good generalization performance. Here we show that ML models trained on Materials
Project 2018 can have severely degraded performance on new compounds in Materials Project 2021 due to the distribution shift.
We discuss how to foresee the issue with a few simple tools. Firstly, the uniform manifold approximation and projection (UMAP) can
be used to investigate the relation between the training and test data within the feature space. Secondly, the disagreement
between multiple ML models on the test data can illuminate out-of-distribution samples. We demonstrate that the UMAP-guided
and query by committee acquisition strategies can greatly improve prediction accuracy by adding only 1% of the test data. We
believe this work provides valuable insights for building databases and models that enable better robustness and generalizability.

npj Computational Materials            (2023) 9:55 ; https://doi.org/10.1038/s41524-023-01012-9

INTRODUCTION
The use of machine learning (ML) has been increasingly popular in
the materials science community1–11. Central to the training of
machine learning models is the need for findable, accessible,
interoperable, and reusable (F.A.I.R.)12 materials science datasets.
High-throughput density functional theory (DFT) calculations have
proven to be an efficient and reliable way to generate materials
property data, screen the target materials space and accelerate
materials discovery13–17. Concentrated community efforts have led
to the curation of large DFT databases for various materials
properties, e.g., Materials Project18, Automatic FLOW for Materials
Discovery19, Open Quantum Materials Database14, and JARVIS-
DFT20. The availability of large materials databases has fueled the
development and application of machine learning methods based
on a chemical formula or atomic structures, including traditional
ML models with preselected feature sets21–29 and neural networks
with automatic feature extraction30–41.
The continuously improved performance of ML models in the

DFT database benchmarks shows the great potential of using
these models as the surrogate of computationally expensive DFT
calculations to explore unknown materials37. However, there are
reasons to remain cautious, particularly for the generalization
performance of the trained ML models42. First, the current DFT
databases still cover only a very limited region of the potential
materials space43,44. Some databases may be the results of
mission-driven calculations and therefore be more focused on
certain types of materials or structural archetypes, leading to
biased distributions45–48. In addition, data distributions may shift
even between different versions of an actively expanding
database, due to a change in their focus with time. While the
common practice is to train and validate ML models on the latest
databases, we are unaware of any systematic study examining
whether these models can predict reasonably (or at least
qualitatively) well the properties of new materials added in the
future database versions. Such an examination is critical for
assessing the maturity of a database (namely, whether it is

sufficiently representative of the materials space) and the
robustness of the resulting ML prediction, both of which are
essential for building trust in the use of these ML models.
Since the current databases may not yet offer an unbiased and

sufficiently rich representation of the potential materials space,
the performance scores of an ML model evaluated from a random
train-validation-test split may be an optimistic estimate of the true
generalization performance49–51. While the latter may be esti-
mated more properly from grouped cross-validations (CV)52–54,
finding a well-defined method for grouping data is not always
trivial and depends on the preselected input features, which may
not be the optimal way to find the most physically relevant
grouping37. On the other hand, one may consider it safer to limit
the use of an ML model to its applicability domain, or the
interpolation region48. However, in high-dimensional composi-
tional-structural feature space, as is encountered in materials
science, it is challenging to properly define an interpolation region
and to determine when the model is extrapolating.
In this work, we highlight the limitations of the current ML

methods in materials science for predicting out-of-distribution
samples, by showing that ML models pretrained on the Materials
Project18 2018 database have unexpectedly acute performance
degradation on the latest database. Such performance degrada-
tion can occur in the deployment stage of any ML model and
degrades community trust in their validity. Therefore, we also
provide solutions for diagnosing, foreseeing, and addressing the
issue, and discuss ways to improve prediction robustness and
generalizability.
The paper is organized as follows. First, we examine the

performance of a state-of-the-art neural network, with a compar-
ison to traditional ML models. Next, we analyze the observed
performance degradation in terms of the dataset’s feature space.
We then discuss different methods based on the dataset’s
representation and model predictions to foresee the general-
ization issue. Finally, we propose ways to improve prediction
robustness for materials exploration.
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RESULTS
Failure to generalize in new regions of materials space
Formation energy (Ef) is a fundamental property that dictates the
phase stability of a material. Formation energy prediction is a basic
task for ML models used in materials science, including traditional
descriptor-based models26–28,55 and neural networks31–34,36.
Among them, graph neural network (GNN) models with atomistic
structures as inputs are currently considered to have state-of-the-
art performance7. Here we consider the Atomistic LIne Graph
Neural Network (ALIGNN), an architecture that performs message
passing on both the interatomic bond graph and its line graph
corresponding to bond angles34. The ALIGNN model shows the
best performance in predicting the Materials Project18 formation
energy according to the Matbench37 leader-board; we, therefore,
choose it as the representative GNN model for the subsequent
performance evaluation.
We use the ALIGNN model pretrained on the Materials Project

2018.06.01 version (denoted as MP18), which contains 69239
materials and has been used for benchmarking GNN models in the
recent papers32–34. In the original ALIGNN paper, a 60000-5000-
4239 train-validation-test split of the MP18 dataset was used,
achieving a mean absolute error (MAE) of 0.022 eV/atom for the
test set34.
We use the MP18-pretrained ALIGNN model (ALIGNN-MP18) to

predict the formation energies of the new structures in the latest
(2021.11.10 version) Materials Project database (denoted as
MP21). Instead of testing on the whole MP21 dataset, we consider
the scenario where we want to apply ML models to explore a
particular material subspace of interest. In this work, we define the
alloys of interest (AoI) as the space formed by the first 34 metallic
elements (from Li to Ba) and the alloys formed exclusively by
these elements. This AoI materials space is defined to include the
most common components for high-entropy alloys, a class of
alloys that has recently drawn much attention thanks to its
superior performance compared to traditional alloys56. In the
MP21 dataset, there are 7800 AoI, 2261 (or 29%) of which already
appear in the MP18 dataset, while the rest are not contained
within MP18. Therefore, we consider those 2261 alloys as the AoI
in the training set, and the rest that appear only in the MP21 as
the AoI in the test set.
A list of important acronyms used in this work is given in Table 1.

A description of the MP18 dataset, and the AoI data is given in
Table 2. We note that the mean absolute deviation (MAD) and the
standard deviation (STD) of the data correspond to the mean
absolute error (MAE) and the root mean square error (RMSE) of a
baseline model whose prediction for every structure is equal to the
mean of the training data.
Figure 1 shows the ALIGNN-MP18 performance on the

formation energy predictions of the AoI. For the AoI in the
training set, the ALIGNN-MP18 predictions agree well with the DFT
values, with an MAE of 0.013 eV/atom. For the AoI test data, while

there is still a reasonable agreement for the structures with EDFTf
below 0.5 eV/atom, the ALIGNN-MP18 model strongly under-
estimates the formation energies for a significant portion of the

structures whose EDFTf are above 0.5 eV/atom. In the latter case,
the prediction errors range from 0.5 eV/atom to up to 3.5 eV/atom,
which is 23 to 160 times larger than the MP18 test MAE of
0.022 eV/atom. Indeed, the prediction errors are nearly as large as

EDFTf for those alloys, indicating that the ALIGNN-MP18 predic-
tions fail to even qualitatively match the DFT formation energies.
For reference, the MAE and the coefficient of determination (R2

score) for the AoI test set are 0.297 eV/atom and 0.194,
respectively (Table 3).
It can be seen from Fig. 1 that the ALIGNN-MP18 predictions are

largely restricted to the value range below 1 eV/atom. Indeed,
despite a large formation energy range (from –4.3 to 4.4 eV/atom)

Table 1. List of important acronyms used in this work.

Acronyms Description

AoI Alloys of interest are formed by one or more of the
first 34 metallic elements.

MP18 (MP21) AoI AoI in Materials Project 2018 (2021) database.

AoI in train set AoI in MP18.

AoI in test set AoI in MP21 but not in MP18.

XGB, RF, LF XGBoost, random forest, linear-forest.

SG-X Space group X, e.g., SG-71 for space group 71.

UMAP Uniform Manifold Approximation and Projection.

QBC Query by committee.

Table 2. Description of the MP18 data and the AoI data in the MP18
and MP21 datasets.

Entries Min Max MAD STD

MP18 69239 −4.522 4.389 0.926 1.072

MP18 AoI 2261 −1.090 1.575 0.230 0.313

MP21 AoI 7800 −1.090 4.416 0.440 0.751

The number of entries, the minimum, maximum, mean absolute deviation
and standard deviation of formation energies (in eV/atom) are given.

Fig. 1 Performance of the ALIGNN-MP18 model. a Parity plot and
b prediction errors of the ALIGNN-MP18 model.
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of the whole MP18 dataset, most of the formation energies of the
AoI in the MP18 lie between −1 to 1 eV/atom. Therefore, it is not
surprising that the ALIGNN-MP18 predictions are limited by the
range of the formation energies of the AoI training set. However, it
is unexpected to observe that the strong underestimation by the
ALIGNN-MP18 model already occurs in the formation energy
range of 0.5 to 1 eV/atom. For alloys with formation energies
above 1 eV/atom, the ALIGNN-MP18 model predicts values that
are well below the upper bound of formation energies in the
training set, some of which are even negative. Consequently, the
test set performance issue of the ALIGNN-MP18 model cannot be
explained by the bounded energy range of the AoI in the training
set. The origin of the issue will be discussed in the next section.
To verify whether the performance issue is common to other

ML models, we perform the same training and test procedures
with traditional descriptor-based ML models. To do so, we first use
Matminer26–28 to extract 273 features based on compositions and
structures for the whole MP18 dataset and the alloys in MP21.
Then, we down select features by sequentially dropping highly
correlated features using a Pearson’s R of 0.7 as the threshold,
reducing the final number of features to 90. These 90 features are
used for subsequent traditional ML model training and other
analysis throughout this work.
Here we consider three traditional regression models: the

gradient-boosted trees as implemented in XGBoost (XGB)57,
random forests (RF) as implemented in scikit-learn58, and
linear forests (LF) as implemented in linear-forest
(https://github.com/cerlymarco/linear-tree)59.

XGB builds sequentially a number of decision trees in a way such
that each subsequent tree tries to reduce the residuals of the
previous one. RF is an ensemble learning technique that combines
multiple independently built decision trees to improve accuracy
and minimize variance. LF combines the strengths of the linear
and RF models, by first fitting a linear model (in this work, a Ridge
model) and then building an RF on the residuals of the
linear model.
The motivation for using the traditional models for under-

standing the ALIGNN-MP18 performance issue is three-fold. First,
do traditional ML models fail to generalize as well, or is this failure
unique to neural networks? Second, traditional models can
provide more interpretability than neural networks and can be
used as surrogate models of the ALIGNN in the subsequent
analysis. Finally, traditional models are computationally much
easier to train than large neural networks, allowing us to perform
more detailed statistical examinations. In fact, the reference
implementation of ALIGNN-MP1834 required a total compute cost
of 28 GPU hours plus 224 CPU hours for training on the MP18
dataset. For comparison, the same training with traditional ML
models takes 0.02 CPU hours (four orders of magnitude less
compute than the ALIGNN). First, the XGB, RF, and LF models are
hypertuned, trained, and tested with the same train-validation-test
split of the MP18 as for the ALIGNN model. Then, the models are
trained on the MP18 and tested on the new AoI in the MP21.
Comparisons of their performance metrics and predictions are
shown in Table 3 and Fig. 2, respectively.
Table 3 shows that the MP18 test set MAE of the traditional

models are three to five times larger than that of the ALIGNN-
MP18. This is consistent with literature findings that neural
networks usually outperform traditional models in various bench-
marks of large materials databases7,37. However, evaluating model
performance from the random train-validation-test split is based
on the assumption that data distributions are identical for the
training and test sets, which may not hold when exploring new
materials. Therefore, such performance scores are not good
estimates of the model’s true generalizability37,53. Indeed, when
the models are applied to the new AoI in MP21, the large
performance difference between traditional and ALIGNN models
disappears. More strikingly, XGB outperforms ALIGNN in terms of
the MAE, RMSE, and R2 scores, whereas LF outperforms ALIGNN in
terms of the RMSE and R2 scores. An equal footing comparison of
the extrapolation performance should also take into account the
complexity and capacity of the models. A more consistent
comparison may be to compute the ratio of the performance
metrics obtained with the training set and the test set, which are
shown as the last two columns in Table 3. The performance
degradation of the traditional models is less severe than that of
the ALIGNN model.

Table 3. Comparison of MAE (in eV/atom), RMSE (in eV/atom), and
coefficient of determination (R2) between different ML models.

MP18 New AoI in MP21 Ratio of
metrics

MAE RMSE R2 MAE RMSE R2 MAE RMSE

ALIGNN-
MP18

0.022 0.052 0.999 0.297 0.747 0.194 13.5 14.4

XGB 0.075 0.137 0.984 0.239 0.537 0.582 3.2 3.9

RF 0.088 0.165 0.977 0.382 0.879 −0.119 4.3 5.3

LF 0.108 0.179 0.972 0.327 0.606 0.469 3.0 3.4

The metrics for the MP18 dataset are obtained for the test set following the
same 60000-5000-4239 train-validation-test split as in the ALIGNN-MP18
paper34. The metrics for the new alloys in the MP21 are obtained with the
predictions of the MP18-pretrained models. The last two columns show the
ratio of the prediction error of the new MP21 alloys compared to that of
the MP18.

Fig. 2 Comparison of MP18-pretrained model performance on the AoI test set. The ALIGNN model performance is compared to that of the
(a) XGB, b RF, and c LF models.
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Figure 2 gives a more detailed comparison of the prediction
performance of the MP21 new alloys. Compared to the ALIGNN

model, the XGB model leads to larger errors in the EDFTf range
below 0.5 eV/atom, but performs considerably better for predict-
ing high-energy alloys, of which there are fewer structures that are
misclassified as having negative formation energies. On the other
hand, the RF model performs similarly to the ALIGNN model in the

EDFTf range below 0.5 eV/atom but worse than the latter for high-
energy structures. Interestingly, the LF model, in which the linear
model is first fitted before training the RF model, improves the
predictions for high-energy structures to an extent similar to the
XGB model. The better RMSE scores for the XGB and LF models are
attributed to the less degraded predictions for those high-energy
structures.
The above discussion of Table 3 and Fig. 2 shows that the

performance degradation issue observed in the ALIGNN model
also occurs in other traditional descriptor-based models, but the
performance degradation can be quite different, with the XGB and
LF models demonstrating less performance degradation. In the
following sections, we will reveal the origin of the performance
degradation and the reasons behind the better generalizability of
the XGB and LF models.

Diagnosing generalization performance degradation
In the previous section, we have shown that the performance
issue on the AoI test set is common to different ML models,
indicating that it is likely related to the distribution shift between
the training and the test sets. For instance, the test set may cover
compositions or structures that lie far away from the training set.
Here we show how to diagnose this issue in a holistic and detailed
manner, and discuss some important insights resulting from this
analysis.
We start by comparing the distributions of some basic

compositional and structural features between the MP18 and
MP21 datasets. In Fig. 3, we count for each element X of 34
metallic elements the number of X-containing AoI in the training
and the test set (see Supplementary Fig. 1 for the distribution of all
materials). We also plot the MAE of ALIGNN-MP18 for the
corresponding X-containing AoI in the test set to investigate
potential correlations between large MAE and elements that are
underrepresented in the AoI training set. We find that although
there are few AoI that contain elements such as K, Rb, and Cs in
the training set, the corresponding test MAE are actually rather
small. Indeed, we find a Spearman’s rank correlation coefficient (rS)
of 0.06, i.e., negligible correlation, between the test MAE of X-
containing AoI and the number of X-containing AoI in the training
set. Meanwhile, we find a weak anti-correlation (rS equal to −0.42)
between the test MAE of X-containing AoI and the number of allX-
containing structures (i.e., AoI and Non-AoI) in the training set,
although such a correlation vanishes above a threshold of 1000 X-
containing structures (Supplementary Fig. 2). This suggests that

chemically less relevant data can still inform ML models and may
reduce generalization errors in a target subspace, though to a
limited extent.
Another basic composition-related feature is the number of

elements contained in a structure. We find that the majority of the
AoI in the training and the test sets are binary and ternary
systems. The poorly predicted structures are the ternary alloys and

some binary ones that have a EDFTf larger than 0.5 eV/atom
(Supplementary Fig. 2).
To study the data distribution in the structural space, we

consider the crystallographic space group (SG), which describes
the symmetry of a crystal. There are, in total, 230 SG for three-
dimensional crystals, and the numbers of AoI belonging to these
SG are shown in Fig. 4 (see also Supplementary Fig. 3 for the error
distribution). It can be seen that there are few training data but
much more test data for the SG-38, SG-71, and SG-187 structures.
The parity plots for these structures are shown in Fig. 5. The
formation energies for the 538 SG-187 structures in the test set are
well predicted, although there are only 15 training AoI with this
SG. For the SG-38 AoI, the 1045 test samples that lie well beyond
the small formation energy range of the 4 training data are also
reasonably well predicted. By contrast, while the formation

energies of the test SG-71 AoI in the EDFTf range covered by

the training data are well predicted, those with EDFTf higher than
0.5 eV/atom are considerably underestimated by the ALIGNN-
MP18 model. The different generalization behavior among these
three SG suggests that failure to generalize is not strictly explained
by the underrepresentation of a given SG in the training data, nor
by the range of target values.
While it is found that the poorly predicted data are primarily

associated with ternary SG-71 structures, it is unclear why it is

Fig. 3 Number of AoI containing a given element. The line plot (with respect to the right Y axis) indicates the MAE by the ALIGNN-MP18 on
the AoI test set.

Fig. 4 Number of structures as a function of space group number.
For reference, the lattice type for a given interval of SG numbers is as
follows: [1,2] triclinic, [3,15] monoclinic, [16,74] orthorhombic,
[75,142] tetragonal, [143,167] trigonal, [168,194] hexagonal, and
[195,230] cubic.
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these structures that are particularly hard to predict for the
ALIGNN model. It would be difficult to interrogate the ALIGNN
model for a physical understanding of the problem. On the other
hand, we find that there is a relatively strong correlation in the test
set predictions between the ALIGNN and traditional ML models
(Pearson’s r for ALIGNN versus RF: 0.83, ALIGNN versus XGB: 0.77,
ALIGNN versus LF: 0.68) and we can therefore use these models as
surrogates for the ALIGNN to study the feature space in place of
the neural network’s representation.
As mentioned in the previous section, there are 90 features after

dropping the highly correlated ones from the initial set of 273
Matminer-extracted features. A typical way to understand high-
dimensional data is to project them on a two-dimensional plane
by applying dimension reduction. Here we use Uniform Manifold
Approximation and Projection (UMAP), a stochastic and non-linear
dimensionality reduction algorithm that preserves the data’s local
and global structure60. One of the key hyperparameters in UMAP
is n_neighbor which constrains the size of the local neighbor-
hood for learning the data’s manifold structure. Lower values of
n_neighbor force UMAP to concentrate on the local structure of
the data, whereas higher values push UMAP to provide a broader
picture by neglecting finer details60. By varying this hyperpara-
meter, one can therefore obtain an idea of the data’s structure at
different scales. In Fig. 6, we show a UMAP visualization of the

feature space of the AoI training and test data. The test samples
with low prediction errors are those clusters covered by the
training data, whereas the majority of the poorly predicted alloys
(which are largely SG-71 structures) form an isolated cluster away
from the rest of the data. Supplementary Figure 4 provides
additional UMAP visualizations with smaller n_neighbor, where
there are smaller and more dispersed clusters.
It is worth noting that we have also attempted the commonly

used principal component analysis (PCA) but found no clear
clustering trend (Supplementary Fig. 5). This can be related to the
fact that PCA is a linear algorithm and is not good at decoding the
potentially non-linear relationships between features. Another
reason may be that PCA looks for new dimensions that maximize
the data’s variance but does not preserve the local topology of the
data as UMAP does in Fig. 6.
Figure 6 is a clear demonstration in the feature space that the

poorly predicted test samples lie in an area well beyond that of
the training AoI data. A complementary and more detailed
understanding can be obtained by comparing the feature value
ranges between the AoI training and test data. Figure 7 shows the
features whose ranges in all AoI data are larger by more than 5%
than the ranges in training AoI data. Substantial changes in the
value ranges can be noted for some features. In particular, only
the lower 1/3 portion of mean neighbor distance varia-
tion and the higher 4/5 of mean CN_VoronoiNN feature values
are covered in the AoI training data. The feature mean
CN_VoronoiNN corresponds to the average number of nearest
neighbors, while the feature mean neighbor distance
variation is the mean of the nearest neighbor distance
variation, which measures the extent of atom displacement from
high-symmetry sites and the extent of the lattice distortion
against high-symmetry structures27,61. The right panel in Fig. 7
clearly reveals that the test data with large prediction errors have
high mean neighbor distance variation and low mean
CN_VoronoiNN values, namely the poorly predicted structures
are the ones with strong lattice distortion and a small number of
nearest neighbors.
It should be noted that the generalization performance

degradation discussed in this work is likely to be a widespread
issue across materials datasets. Indeed, human bias is known to
present in materials data and have adverse effects on ML
performance45. Its presence has recently been documented for
other computational databases such as OQMD and JARVIS-DFT62.
This could be related to the fact that these databases are the
results of mission-driven calculations which are focused on
specific materials domains and applications instead of a general,
diversified, and unbiased representation of materials. Therefore, as

Fig. 5 Parity plot for the AoI data in different space groups (SG). a SG-187, b SG-38, c SG-71.

Fig. 6 UMAP projection of the 90-dimensional feature space for
the AoI training and test. The X and Y axis are not shown because
the two dimensions in UMAP have no particular meanings. For the
UMAP projection with only the test data, the reader is referred to
Supplementary Fig. 4.

K. Li et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2023)    55 



the funding and mission of the database builders change with
time, so do the materials representation and the distribution bias
in the datasets, leading to the degraded performance on out-of-
distribution data.

Foreseeing performance issue
Our analysis in the previous section shows that ML models fail to
generalize for compounds with large DFT formation energies
relative to the range of formation energies in the training data.
However, in a materials discovery setting, we must foresee this
generalization risk without prior knowledge. In other words, it is
important to identify the applicability domain and know whether
ML models may be extrapolating and unreliable when used to
explore unknown materials.
The natural idea is to define an applicability domain based on

the training data density and coverage in the feature space, or
equivalently estimate the similarity and distance between the
training and test sets. However, this is not trivial in practice. While
estimating data density based on basic compositional and
structural features, as shown in Figs. 3, 4 could provide some
indications of a potential distribution shift; our discussion, such as
the one for Fig. 5, also shows that fewer data for some SGs do not
necessarily lead to poor predictions. Perhaps a more robust and
comprehensive picture of the data can be obtained by extracting
meaningful and predictive features and visualizing them with the
aid of dimension-reduction techniques such as UMAP. The
distribution and clustering of the training and test data, as shown
in Fig. 6, can clearly help identify the test samples for which the
ML predictions would be problematic. In addition, comparing the
range of feature values in the training and test data (Fig. 7) is a
simple yet effective way to find out whether ML models are
extrapolating when used to explore new regions of materials
space. Various techniques, including the above-mentioned ones,
should be used to inspect the training and the target space during
the deployment of ML models, in order to reduce the risk of
extrapolation in materials exploration.
Apart from carefully examining the feature space of datasets,

one can also train multiple ML models and be more skeptical of
the predictions of the test data with significant disagreement. For
instance, our results in Fig. 2 show that different ML models show
considerable disagreement for those out-of-distribution samples.
Therefore, the degree of disagreement between the ML models
can also be used to identify out-of-distribution samples. To better

illustrate this point, we compute the prediction difference

between the ALIGNN and other models, namely jEALIGNNf -

EXGBf j, jEALIGNNf -ERFf j, and jEALIGNNf -E LFf j for each of the test
data. We then use UMAP to project the test data represented by
the model disagreement in Fig. 8, where the data are separated
into two clusters. The cluster located on the left is associated with
test data having, on average, a much larger disagreement
compared to the cluster on the right. Specifically, the mean value

of jEALIGNNf -EXGBf j is 0.69 eV/atom (0.07 eV/atom) for the cluster
located on the left (right).
Another commonly employed method to identify out-of-

distribution test samples is to use of uncertainty quantification.
However, quantifying the uncertainty associated with the neural
network predictions is challenging7,63 and is beyond the scope of
this work. Instead, we consider the uncertainty associated with the
RF model, based on the quantile regression forests64. The
prediction uncertainty of the RF model is computed as the width
of the 95 % confidence interval, namely the difference between
the 2.5 and 97.5 percentiles of the trees’ predictions. As shown in
Fig. 9, the RF uncertainty is only moderately correlated with the
true prediction error for the test data. Based on the uncertainty
distribution of the AoI in the training set, one may consider an
uncertainty threshold between 1.5 and 2.0 eV/atom for identifying

Fig. 7 Distribution of the AoI training and test data. a Feature value range of the training AoI rescaled with respect to that of all the AoI
data. b Scatter plot of the AoI training and test data.

Fig. 8 UMAP projection of the AoI test data represented by the
ML model disagreement. The disagreements between the ALIGNN
and other models are used to represent the data points.
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samples that cannot be reliably predicted. However, using these
thresholds not only includes many structures that actually have
low prediction errors, but also excludes the poorly predicted
structures whose prediction uncertainties are between 1.0 to
1.5 eV/atom. Therefore, the RF uncertainty quantification does not
allow for effectively discerning the out-of-distribution from the in-
distribution samples.

Improving prediction robustness for materials exploration
Once we spot the gap between the training and test data, the
next step is to improve prediction robustness by acquiring new
data, ideally with a minimum additional cost. In the following
discussion of different acquisition policies, we consider the RF
model as a proxy for the ALIGNN model, because it is much faster
to update than the ALIGNN model, and its predictions have the
best correlation with the ALIGNN predictions compared to the LF
and XGB models. Active learning with the ALIGNN model is
beyond the scope of this work.
Our discussion in the previous sections can provide insights for

establishing the acquisition policy. For instance, one can prioritize
the UMAP space poorly covered by the training data. In Fig. 10, we
demonstrate the effectiveness of this simple idea. We add a given
number of samples randomly taken from the isolated cluster in
the UMAP plot (Fig. 6) to the original MP18 training set to train the
RF model. We find a significant decrease in the test MAE,
compared with the baseline acquisition policy of randomly taking
data from the whole test set. With only 50 data (out of 5539 test
data) added, the UMAP-guided random sampling leads to a test
MAE of 0.13 eV/atom, which is only half of the test MAE of 0.27 eV/
atom resulting from the baseline policy (random sampling) with
the same number of added samples. The latter needs five times
the number of samples to arrive at the same MAE.
As discussed in Fig. 8, the level of disagreement between the

ML models is also useful in finding the poorly predicted samples.
We, therefore, consider the query by committee (QBC) acquisition,
where we select the test data that have the strongest disagree-
ment among the three committee members (RF, LF, and XGB). As
shown in Fig. 10, the QBC strategy shows a slightly better
performance than the UMAP-guided random sampling. Hoping to
find an even better performance in the early acquisition stage, we
further consider combining the QBC with the UMAP-guided
sampling, but find the resulting performance is similar to using
only the QBC strategy. To estimate whether this is because we are
reaching the optimal strategy, we compute another acquisition

curve, where we select samples that have the largest RF-DFT
disagreement. As the DFT labels are assumed known, this curve is
not regarded as a true active learning acquisition, but is only used
to estimate the optimal performance that active learning can
reach. It is clear from Fig. 10 that the QBC curve is quite close to
the estimated optimal curve, so it is not surprising that combining
it with UMAP does not bring further improvement.
It is worth noting that with the UMAP-guided sampling or the

QBC policy, adding only 1% of the data already results in a
reasonable test MAE. Therefore, these two strategies are very
effective in identifying the most diversified and informative
samples. Though Fig. 10 shows that adding even more samples
can further improve the model performance in the AoI subspace,
such an improvement is rather incremental. The compute should
be saved to explore the regions of materials space that could bring
potentially drastic gain in the prediction robustness and accuracy.
We note that the active learning strategies proposed here focus

on finding out-of-distribution data points rather than eliminating
dataset bias, which is a plausible source of the observed general-
ization performance degradation. Indeed, human bias in datasets is
known to have negative impacts on ML models. While simple
random sampling might mitigate these impacts and result in better
models than human selection when building a database from
scratch45, it is not necessarily the optimal strategy for expanding the
existing database (see Fig. 10). In practice, mission-driven databases
may already have biases and continue to expand with biases into
the new material space defined by new funding projects. Therefore,
focused on the scenario where an existing database and a pool of
candidate materials to explore are proposed, our active learning
strategies enable the identification of the gap between the existing
and proposed datasets and the acquisition of only the data points
that can best improve the model performance.
In case acquiring new data is not possible, prediction robustness

for those out-of-distribution samples can still be improved by using
more extrapolative models. For instance, tree-based models are
usually considered to be interpolative, as is also found here for the
RF model (Fig. 2). By simply adding a linear component to the RF
model; however, our LF model gives a more robust estimation of
the stability for those out-of-distribution samples. The better
extrapolation performance is enabled by the features whose ranges
in the test set far exceed those in the training set, as removing these

Fig. 9 Prediction uncertainty versus prediction error on the
training and test AoI data for the MP18-pretrained RF model. The
Pearson (rp), Spearman (rs), and Kendall (rk) correlation coefficients
for the prediction uncertainties and errors of the test AoI data are
shown for reference.

Fig. 10 Test MAE as a function of a number of selected test data
added to the training set. The inset shows the enlarged region at
the early stage of the active learning process. All the results are
reported for the RF model. The random sampling and the UMAP-
plus-random results are the averages of 10 runs with different
random seeds, with the error bars indicating the standard deviation.
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features from the LF model reduces the extrapolation performance
to the same level as the RF model. On the other hand, the better
extrapolation performance of the XGB and LF models also comes
from the training data outside the space of interest (namely non-
AoI), since training only on the MP18 AoI data leads to performance
similar to that of the RF model. This indicates that ML models can
learn from less relevant data outsides the target space for better
generalization performance.

DISCUSSION
This work is focused on the prediction robustness of ML models, by
examining the formation energy predictions of the MP18-pretrained
models for the new alloys in the latest MP21 dataset. We considered
the ALIGNN model, a graph neural network with state-of-the-art
performance in the Matbench formation energy prediction task, as
well as three traditional descriptor-based ML models (XGB, RF, and
LF). Despite the excellent test performance in the MP18, the MP18-
pretrained ALIGNN model strongly underestimated the DFT forma-
tion energies of some test data in the MP21. While this performance
issue was also found in the traditional ML models, the XGB and LF
models provided more robust phase stability estimation for the test
data. We analyzed and discussed the origins of performance
degradation from multiple perspectives. In particular, we used UMAP
to perform dimension reduction on the high-dimensional Matminer-
extracted features, revealing that the poorly predicted data lie far
beyond the feature space occupied by the training set. With these
insights, we then discussed possible methods, including the UMAP-
aided clustering and the query of multiple ML models, to identify
out-of-distribution data and foresee performance degradation.
Finally, we provided suggestions to improve prediction robustness
for materials exploration. We showed that the accuracy can be
greatly improved by just adding a very small amount of new data as
identified by UMAP clustering and querying different ML models. We
believe that UMAP-guided active learning shows promising potential
for future dataset expansion. In cases where data acquisition is not
possible, we also propose to include extrapolative components such
as linear models for a more robust prediction for out-of-distribution
samples. We hope this work can raise awareness of the limitations of
the current ML approaches in the materials science community and
provide insights for building databases and ML models with better
prediction robustness and generalizability. As a perspective, a similar
but more extended and systematic analysis of ML generalization
performance on other materials properties, including spectral ones
such as density of states, and across multiple databases, will be an
interesting and important future work.

METHODS
The 2018.06.01 snapshot of Materials Project is retrieved by using
JARVIS-tools20, while the latest 2021.11.10 version is retrieved by
using the Materials Project API18. For each material, Materials
Project uses the material_id field as its identifier and the
task_ids field to store its past and current identifiers. The
structures in the MP21 task_id field contains an MP18 identifier
and are considered as the materials existing in the MP18, whereas
the rest in the MP21 are considered to be the new materials
unseen in the MP18.
We use the ALIGNN-MP18 model that was published with the

original paper34. We use Matminer28 to extract 273 compositional
and structural features27, and obtain 90 features after sequentially
dropping highly correlated features (with a Pearson’s r of 0.7 as
the threshold). We use three traditional ML models: the gradient-
boosted trees as implemented in XGBoost (XGB)57, random
forests (RF) as implemented in scikit-learn58, and linear
forests (LF) as implemented in linear-forest (https://
github.com/cerlymarco/linear-tree)59. For the XGB
model, we use 2000 estimators, a learning rate of 0.1, an L1 (L2)

regularization strength of 0.1 (0.0), and the histogram tree grow
method. For the RF model, we use 100 estimators, 30% of the
features for the best splitting. We combine the same RF model
with a Ridge model with a regularization strength of 1 for the LF
model. We use the packages’ default settings for other
hyperparameters not mentioned here.

DATA AVAILABILITY
The data required and generated by our code can be downloaded from https://
zenodo.org/record/7659267#.ZBi1-9I8rm6.

CODE AVAILABILITY
The code for ML training, analysis, and figure generation in this work can be found at
https://github.com/mathsphy/paper-ml-robustness-material-property.
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