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Atomistic learning in the electronically grand-canonical
ensemble
Xi Chen1, Muammar El Khatib 1, Per Lindgren1, Adam Willard2, Andrew J. Medford 3 and Andrew A. Peterson1✉

A strategy is presented for the machine-learning emulation of electronic structure calculations carried out in the electronically
grand-canonical ensemble. The approach relies upon a dual-learning scheme, where both the system charge and the system
energy are predicted for each image. The scheme is shown to be capable of emulating basic electrochemical reactions at a range of
potentials, and coupling it with a bootstrap-ensemble approach gives reasonable estimates of the prediction uncertainty. The
method is also demonstrated to accelerate saddle-point searches, and to extrapolate to systems with one to five water layers. We
anticipate that this method will allow for larger length- and time-scale simulations necessary for electrochemical simulations.
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INTRODUCTION
In recent years, two new techniques have emerged that have
changed the way that atomistic simulations at electrochemical
interfaces are approached. First, atomistic machine-learning
methods have been developed1–6 that use machine-learning
surrogate models to quickly emulate and predict the results of
expensive electronic structure calculations. These methods offer
numerous advantages, including fast evaluation times and linear
scaling with system size, at least when the number of atomic
elements does not change. This approach can allow systematic
exploration at much larger length- and time-scales, while
maintaining accuracies similar to those of electronic structure
calculations. Crucial to their successful use is the intelligent choice
of training data and the ability to estimate the uncertainty
associated with each predicted quantity.
Second, grand-canonical electronic structure methodologies

have been developed that allow electrochemical simulations to be
run at constant simulated voltage7–11. This is accomplished by
adding or removing fractions of an electron to the simulation,
while achieving charge neutrality by various approaches which
typically involve a screened countercharge. For example, in the
solvated jellium method (SJM)7, the countercharge is placed in a
jellium slab above both the slab and explicit solvent, an implicit
solvent is used to screen the otherwise large field, and a dipole
correction ensures the excess charge localizes on the correct side
of the slab, as shown schematically in Fig. 1. Over the course of an
elementary reaction, the number of electrons in a simulation
changes in order to hold the work function of the simulated
electrode constant. Thus, these calculations are electronically
grand-canonical—they control the potential by allowing the
number of electrons to be a free variable. These simulation
approaches have allowed, for example, the calculation of reaction
barriers at a systematic series of electrode potentials, leading to an
understanding of the potential dependence of reaction barriers
and free energy diagrams.
The system sizes that are studied with electrochemical

simulations are typically too small to fully capture the role of
the environment in a particular reaction. Solvent molecules and

ions at the interface and within the double-layer region can make
significant contributions to the rates and mechanisms of
electrochemical processes. In order to properly identify and
characterize these contributions, the simulated system size must
exceed the correlation length and time scales that emerge at the
interface. These scales are vastly larger for solution-phase
reactions than they are in the gas phase, often spanning
nanometer length scales and nanosecond time scales12. Electronic
structure-based simulations, which are well-suited for addressing
gas-phase systems, thus tend to fall short in describing reactions
at solid-liquid interfaces.
While atomistic machine-learning approaches can accelerate

traditional, canonical electronic structure calculations, they do not
natively operate in the electronically grand-canonical ensemble.
That is, in typical atomistic learning approaches, the energy is
considered to be a unique function of the nuclear positions. In the
electronically grand-canonical ensemble, the energy is a function
of both the atomic positions and the electrode potential. It is the
purpose of this work to develop a practical approach to atomistic
learning in the electronically grand-canonical ensemble.

ALGORITHM
Background
In 2007, Behler and Parrinello1 proposed a machine-learning
scheme to model the potential energy surface of atomistic
simulations, in an ansatz where the total system energy can be
decomposed into per-atom terms. In this scheme, the atomic
coordinates are first transformed into feature vectors, known as
atomic fingerprints or symmetry functions. The symmetry func-
tions distinguish the local environment around a central atom due
to its neighboring atoms. A neural network exists for each atom
type, which takes the descriptor as the input and gives the
corresponding atomic energy as the output. The total energy is
calculated as the sum of all atomic energies. The neural network
for each atomic element is identical, and the parameters of each
are tuned simultaneously by minimizing the difference between
the predicted and true energies of a training set of images. Once

1School of Engineering, Brown University, Providence, RI 02912, USA. 2Department of Chemistry, Massachussetts Institute of Technology, Cambridge, MA, USA. 3School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA. ✉email: andrew_peterson@brown.edu

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01007-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01007-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01007-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41524-023-01007-6&domain=pdf
http://orcid.org/0000-0002-0977-8439
http://orcid.org/0000-0002-0977-8439
http://orcid.org/0000-0002-0977-8439
http://orcid.org/0000-0002-0977-8439
http://orcid.org/0000-0002-0977-8439
http://orcid.org/0000-0001-8311-9581
http://orcid.org/0000-0001-8311-9581
http://orcid.org/0000-0001-8311-9581
http://orcid.org/0000-0001-8311-9581
http://orcid.org/0000-0001-8311-9581
https://doi.org/10.1038/s41524-023-01007-6
mailto:andrew_peterson@brown.edu
www.nature.com/npjcompumats


trained to appropriate data, the machine-learning method can
decrease the computational resources by orders of magnitude,
and scales linearly with the number of atoms being modeled
(whereas density functional theory, DFT, typically scales cubically
with the number of atoms, although efforts are underway to
reduce this13). Recent work has shown that atomic energies
localized by the Behler–Parrinello scheme are in good agreement
with those decomposed from DFT, where the energy density is
first decomposed into the kinetic contribution, the classic
Coulomb energy, the exchange-correlation interactions, and the
nonlocal pseudopotential contribution and then integrated over
the whole space to satisfy the DFT total energy14,15. In the
Behler–Parrinello scheme and similar methods inspired from it, the
energy is a unique function of atomic positions. Therefore, these
schemes intrinsically cannot work for electronically grand-
canonical calculations, where the energy is also a function of
the electric potential of the system.
Goedecker and colleagues introduced a machine-learning

scheme to allow long-range charge transfer, in which a neural-
network model predicts the per-atom electronegativity, rather
than the per-atom energy3. In their scheme, the total charge of the
system is constrained through a Lagrange factor and the charge
distribution (comprised of per-atom charges) is found by solving a
linear system to minimize the system energy, which is found
through a charge–electronegativity expansion. This system energy
is used as a training target to adjust the neural-network
parameters that predict atomic electronegativities.
Inspired by these previous works, we introduce the following

dual-learning scheme in the electronically grand canonical
ensemble.

Dual-learning scheme
We consider an image—that is, a single configuration of atoms at
a specified potential—with N atoms, which is calculated in the
electronically grand-canonical ensemble. Its potential is set to a
value ϕ by varying the net number of electrons in the simulation
to Ne, which we define as the number of electrons relative to a
neutral system. The net system charge is then Q=− Ne. Since Q is
an observable of an electronic structure calculation, it is a
quantity that can be learned as a function of the atomic positions
f R!ig and the potential ϕ. 1 Analogous to the Behler–Parrinello
approach—in which the system energy is learned by decompos-
ing it into per-atom energies, each of which is predicted by a
regression model—we decompose the predicted system charge

into per-atom charges,

Q̂ ¼
XN
i

q̂i f R!ig;ϕ
� �

(1)

where the per-atom charges q̂i are predicted based upon the local
atomic environment and the target potential. (Throughout this
work, we will use a hat, ^, to denote a predicted quantity.) We
note that per-atom charges (qi) are not a direct output of an
electronic structure calculation, so in our scheme training takes
place by minimizing the difference between Q̂ and Q for each
image of the training set in a combined loss function, which we
describe later. Doing this requires a different feature vector to be
developed that incorporates the potential, which we describe in
the next section.
Now that we have a framework to predict the per-atom charges,

q̂i , we set out to predict the image’s grand-canonical energy,
Ω≡ E− Ne μe, where E is the canonical energy, Ne is the net
number of electrons (relative to a neutral system) and μe is the
electron chemical potential, which is typically taken to be
equivalent to the work function in grand-canonical electronic
structure treatments16. We also take this convention here. Ω is the
energy returned by many grand-canonical calculators, such as the
Solvated Jellium7 method implemented in GPAW17,18. In the
grand-canonical ensemble, the forces are conservative with Ω, not
E16. We use an ansatz that Ê can be predicted from a summation
of atomic terms Êi , each of which can be predicted from a
truncated charge expansion, similar to the expression from Rappe
and Goddard19. Upon converting to Ω̂ we have

Ω̂ ¼ PN
i¼1

Êi

� �
� Neμe ¼

PN
i¼1

ðE0;ZðiÞ þ χ̂ i q̂i þ 1
2 J

ZðiÞq̂2i þ � � � Þ þPN
i¼1

q̂iμe

¼PN
i¼1

ðE0;ZðiÞ þ ðχ̂ i þ μeÞq̂i þ 1
2 J

ZðiÞq̂2i þ � � � Þ

(2)

where Z(i) is the element type of atom i, E0,Z(i) is a reference energy
of element Z(i), and χ̂ i and JZ(i) are referred to as the
electronegativity and hardness of element Z(i) respectively. A full
derivation of Eq. (2) is contained in Supplementary Note 1.1.1.
In our implementation, we take both E0,Z(i)and JZ(i) to be

element-specific trainable parameters, while χ̂ i is an environment-
dependent per-atom electronegativity predicted from a machine-
learning model, as proposed by Goedecker and colleagues3; that
is,

χ̂ i ¼ χ̂ i f R!ig
� �

(3)

The specific structure of the χ̂ i machine-learning model is
described in the section “Implementation”. The per-atom charges
q̂i in Eq. (2) are those predicted from the charge-learning scheme
of Eq. (1). In this way, both per-atom charges and per-atom

−δe

−δe −δe

−δe−δe

−δeδe

δe

δe

δe

δe

δe

Fig. 1 Schematic of the Solvated Jellium Method. The unit cell is charge-neutral with excess charge localizing on the metal surface, balanced
by charge of opposite sign in the jellium. The total number of electrons is adjusted until the work function meets the target value.

1We are using f R!ig as a shorthand for the set of atomic positions of
an image; that is, f R!i ji 2 Z; 1 � i � Natomsg.
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electronegativities are deduced in a dual-learning scheme, leading
to predictions of the per-image charge and the per-image energy.
One notable limitation of this scheme is the neglect of explicit

inter-atomic Coulombic interactions in the formulation of the
learned per-image energy. As such, any contribution of these
interactions to the system energy will be accounted for implicitly
within the learned electronegativities, χ̂ i . Since χ̂ i only sees atoms
within a specified cutoff radius (typically 5–8 Å), this can account
for only short-range charge-interaction effects. Hence, this scheme
may be best suited for application to systems with minimal
longer-range charge interaction effects, such as homogeneous
systems comprised of neutral and non-polar constituents. For all
of the test systems included in this work, we found excellent
emulation using only the charge–electronegativity formalism, and
thus did not develop this aspect. If necessary, our scheme can be
extended to include inter-atomic Coulombic interactions. For finite
systems, Ω̂ can be formulated to include the Coulomb energy,
∑i<jqiqj/rij, such as described in the literature3,20–23. For periodically
replicated systems, the Coulomb interactions could be formulated
in terms of an Ewald summation24. However, care would need to
be taken to account for the net charge in each unit cell, which if
implemented naïvely would lead to infinite energies. Such an
approach, while less practical, would ensure that learned
energetics are physically interpretable.

Charge-predicting fingerprints
As described in Eq. (1), per-atom charges are predicted as a
function of positions f R!ig and potential ϕ. Thus, any feature
vector that enters a regression model (e.g., a neural network) must
contain these two quantities. Standard feature vectors, such as the
symmetry functions of Behler1, depend only on f R!ig. There are
many conceivable ways to add potential-dependence to such
vectors. Here, we simply extend a standard feature vector, {Gk} as

fGcharge
k g ¼ fGkg∪ fGϕ

k g (4)

where we give each of the fingerprints in fGϕ
k g an exponential

form:

Gϕ
i;k ¼

0; if riz � rz;surface
ϕ e�ηk �ðzi�zsurfaceÞ; if riz>rz;surface

�
(5)

where ϕ is the electric potential; in practice, we use the work
function of the simulation. zi is the vertical position of the atom i
being fingerprinted; this is aligned with the direction of the

electrostatic field. zsurface in this implementation indicates where
the electrode–electrolyte interface is. In the current implementa-
tion, the surface is defined as the z coordinate of the top-most
metal atom plus the van der Waals radius, with a custom-defined
correction.
ηk is a hyper-parameter specific to the fingerprint element; in

this work, we use a set of values of ηk of {2, 1, 0.5, 0.1}.
In the electrochemical simulations we emulate, the periodic

boundary conditions along x- and y-directions model the infinite
slab and solvents. The electrode is modeled as a finite-depth slab,
as shown in Fig. 1 for a three-layer thick slab; however, this is a
practical representation of a semi-infinite system. That is, the back
side of this slab represents bulk-like atoms, and excess charge
cannot be allowed to localize at this surface in properly
constructed electrostatic simulations such as the SJ method7.
Our charge fingerprints in this implementation set the electro-
static terms of the non-surface metal atoms to be zeros indicating
the backside of the electrode cannot be affected by the external
electrostatic field, while the charge fingerprints follow the
exponential decay mimicking the strength of the electric field as
the Gouy–Chapman model describes. In other words, the effect
from the electric field on the atoms above the metal surface
decays exponentially with the distance zi− zsurface to the surface,
while the metal atoms below the surface representing the
backside of electrode have a zero contribution from the
electrostatic interactions with the field. This is also the case in
reality where the back side of electrode is field-free7. These charge
fingerprints could measure the interactions not only between
atoms but also with the electric field. As such, we anticipate that
this approach can be applied to any surface which can be
approximated with a plane, including stepped surfaces; we show
data on a stepped 211 surface in the Supplementary Figures. Of
course, this may have to be re-developed for more elaborate
surface geometries in future implementations.
The first part of the charge-predicting fingerprint (that is, fGkgi

in Eq. (4)) can be any fingerprint that describes chemical
environments. In this paper, we used Gaussian symmetry
functions, including GII and GV types as suggested in ref. 2.
Specific values of the fingerprint hyperparameters are contained
in the section “Implementation”.
These charge-predicting fingerprints bypass the problem that

the number of electrons in a simulation is unknown a priori, but
rather is determined over the course of an electronic structure
calculation from the atomic positions and the work function.

Fig. 2 Scheme for grand-canonical machine learning. Atoms with the same element type share the same neural-network structures and
parameters. Two sub-neural networks---one predicts atomic charges from the geometry and electrode potential, the other predicts atomic
electronegativities from solely geometry information—calculate the total energies and total charges at a fixed electrode potential.
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Loss functions and forces
Thus, the scheme is split into two sub-regression models, as
shown in Fig. 2, to predict the charge Q̂ and energy Ω̂ of each
image. The first regression model takes the atomic positions, {Ri},
and the electrode potential, ϕ, as inputs and predicts per-atom
charges fq̂ig, using an ML regression model. The sum of these
charges, Q̂ ¼Pi q̂i , is compared to the total charge Q of the
parent calculation. The second regression model takes as input
the atomic positions f R!ig and predicts per-atom, environment-
dependent electronegativities, fχ̂ ig. The electronegativities are
used along with the set of charges predicted by the other model,
fq̂ig to predict the system energy Ω̂ by Eq. (2). Ω̂ is then compared
to the actual Ω calculated by the parent calculator for each image.
A combined loss function is assembled that simultaneously can
optimize the parameters of the two ML models (along with the
parameters E0i and Ji):

L ¼ 1
2

XM
j¼1

Ωj

Nj
� Ω̂j

Nj

 !2

þ αcharge � Qj

Nj
� Q̂j

Nj

 !2" #
(6)

where the summations are over the M images in the training set.
αcharge is a hyper-parameter that lets us tune the relative
importance of predicting charges versus energies. We also note
that an alternate strategy is to first train the charge-predicting
model, and then use the resulting per-atom charges to train the
energy-predicting model. In practice, we found both strategies to
work fine, but we implemented the combined loss function such
that training could be accomplished in a single step.
The loss function above trains against the calculated charge and

energy of each image. However, we can also fit to the atomic
forces of a simulation, since atomic forces provide much more
information than energy or charge alone. The force on each atom j
can be calculated by a chain-rule derivation, since forces are
equivalent to the negative gradient of Ω in the grand-canonical
formalism16:

F̂j ¼ �
XN
i

q̂i
∂χ̂ i

∂GiðfRgÞ �
∂GiðfRgÞ

∂Rj
þ ðχ̂ i þ Ji q̂i þ μeÞ

∂q̂i
∂GiðfRgÞ �

∂GiðfRgÞ
∂Rj

� �

(7)

This can be added to our loss function, so in the case of force
training it becomes:

L ¼ 1
2

XM
j¼1

Ωj

Nj
� Ω̂j

Nj

 !2

þ αcharge � Qj

Nj
� Q̂j

Nj

 !2

þ αforce
3Nj

X3
k¼1

XNi

i¼1

ðFijk � F̂ijkÞ2
" #

(8)

where here Fijk indicates the kth Cartesian component of the force
on atom i of image j.

Implementation
We implemented this scheme in our open-source machine-
learning software AMP, the Atomistic Machine-Learning Pack-
age25,26. An example script of the use of the method is contained
in the Supporting information.
The machine-learning models of Eqs. (1) and (3) can, in

principle, be any regression model; for generality and convenience
we implemented them both as basic neural networks in the
current work. All the neural networks were trained with the same
structure and hyper-parameter settings. The machine learning
descriptors were constructed following Behler and colleagues’
suggestion1,2. The cutoff radius was 6.5 Å. 36 symmetry functions
were used in the descriptor. η’s were set to be {0.005, 4, 20, 80} in
GII-type symmetry functions and η= 0.005, ζ = {1, 4}, γ = {+1, −1}
were chosen in GV-type symmetry functions. The set of {ηk} used in
the charge-predicting fingerprints was {0.1, 0.2, 0.5, 2}. The neural-
networks’ hidden-layer structures were (20, 10) and (5, 5) for the
charge and electronegativity networks, respectively. The conver-
gence criterion was set to be 0.00005 (electrons) charge root-
mean square error (RMSE) per atom and 0.0002 eV energy RMSE
per atom.

Training and testing data
The bulk of the testing data reported in this work used a 2 × 3 × 3
gold slab electrode which is periodic in the lateral (x, y) directions,
whereas the z direction is normal to the electrode surface. The
bottom layer is fixed during structure optimizations. Explicit water
molecules were present near the surface (with implicit water
above these), and extra protons/molecules were present in some
simulations as described in the results. The bottom layer of the Au
slab was fixed to represent the bulk of the electrode. All the
grand-canonical DFT calculations were conducted in the solvated
jellium method (SJM)7 in GPAW17,18. A Monkhorst–Pack k-point
grid of 4 × 6 × 1 was employed and PBE27 was used as the
exchange–correlation functional. When structural optimization
was employed, local optimization to below 0.03 eV Å−1 and
nudged elastic band (NEB)28,29 optimization to below 0.05 eV Å−1

were used as targets.
The model was fit with a combination of images from both

Volmer and Heyrovsky reactions. The convergence criterion for all
systems in energy training was 0.2 meV RMSE per atom. All images
in the training and testing sets were chosen randomly.

RESULTS
Here, we demonstrate the application of the grand-canonical
machine-learning scheme to both replicate and predict the results
of DFT calculations of electrified surfaces. We first report the ability

Fig. 3 Reaction geometries. Atomistic figure corresponding to Volmer (right) and Heyrovsky (left) reactions, respectively.
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of the model on both training and testing data, and combine it
with a bootstrap ensemble method4 to assess the usefulness of
uncertainty predictions. We assess the model’s ability to replicate
both the energy and the charge of these simulations, using the
energy/charge-predicting version of the model; that is, we did not
train to forces in the first test.
Afterward, we test the scheme in a real-world application:

namely the acceleration of nudged elastic band (NEB) calculations
for saddle-point searching30 in the electrochemical reactions at
fixed electrode potentials. In this application, we employed the
model with force training.
Finally, we test the ability of the method to extrapolate to

larger-sized systems: specifically, we look at the ability of the
model trained on fewer layers of water to predict energies and
charges for more layers of water.

Accuracy of predictions, and uncertainty bounds
We tested two systems for both the accuracy of the prediction, as
well as the reliability of the uncertainty bounds produced by a
bootstrapping technique. The training and testing images were
randomly chosen from DFT-calculated NEB iterations of the
Volmer and Heyrovsky steps shown in Fig. 3 of the hydrogen
evolution reaction, respectively:

Hþ þ e� þ � ! H� (9)

Hþ þ e� þ H� ! H2 þ � (10)

Note that we chose the Heyrovsky as the second reaction
instead of the Tafel reaction (2 H → H2 + 2*), as it poses a greater
test of constant-potential machine-learning methods due to the
electron transfer. Particularly in the Heyrovsky step, the electron
transfers rapidly when close to the saddle point—even though the

geometry only changes slightly; the steep barrier also leads to a
large difference in potential energies at small geometric changes.
The mixture of Volmer and Heyrovsky processes makes the
training images more diverse.
The DFT reference data were calculated in the solvated jellium

method7 as described earlier. The calculations were run on a Au
fcc(111) surface at absolute electrode potentials ranging from 3.8
V to 4.6 V (about –0.6 V to 0.2 V on a standard hydrogen electrode
(SHE) scale31) in 0.2 V increments. Sixty percent of the images
were chosen randomly for training, with the rest reserved for
testing.
Figure 4 compares the learned predictions to the electronic

structure calculations; the top–left plot shows an excellent fit for
the energies (Ω≡ E− Neϕ) for both the training and testing
images. The root-mean-square error (RMSE) is on the order of 0.1
meV/atom, which for a 50-atom system means the model is
replicating and predicting the GC-DFT results to about 0.005 eV.
For these systems, the precision of the learning representation
(~10−3 eV) is safely within the accuracy range of typical DFT
calculations (~10−1 eV)32. Charges (that is, the number of excess
electrons) were replicated to an RMSE of 5 × 10−5 per atom, as
shown in the bottom–left plot. The charge RMSEs for testing sets
were in the range of 5 × 10−5 to 7 × 10−5 electrons.
The convergence criterion for all systems in energy training was

0.2 meV RMSE per atom, resulting in RMSEs for the testing set in
the range of 0.25 to 0.50 meV atom−1. All images in the training
and testing sets were chosen randomly, and the number of
images in the training sets was around 1500. We emphasize that
the training and testing sets were randomly chosen from saddle-
point searches for both the Volmer and Heyrovsky reactions with a
wide range of work functions: 3.8, 4.0, 4.2, 4.4, and 4.6 eV (roughly
spanning −0.6 to 0.2 VSHE). It is notable that a single model could

Fig. 4 Parity and uncertainty plots. The left panels describe the training and testing RMSE of the grand-canonical energy per atom (top) and
the number of excess surface electrons (bottom) per atom in HER reactions. The energy parity plot is referenced to the minimum of energy
per atom for plotting purpose. The right panels plot the ensemble half-spread (a predictor of uncertainty) versus the median error of the
predictions from the bootstrap ensembles for HER reactions for the grand-canonical energy per atom (top) and the number of electrons per
atom (bottom).
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be trained to fit all these potentials, and predictions could be
made to any potential.
To assess the generality of the method across metal surfaces,

we also tested on Pt, Cu, and Ag slabs; the results are similar and
reported in the supporting materials.
In previous works with (canonical) atomistic learning4,33, a

bootstrap ensemble was shown to give a good estimate of the
uncertainty inherent in predictions. Here, we test if this bootstrap-
ensemble approach also can bracket the prediction uncertainty in
the electronically grand-canonical ensemble. The right column of
Fig. 4 shows runeplots for the halfspread (one-half the spread
between the 5th and 95th percentile values of the model
predictions) for these two systems; we expect the majority of
points to lie below the parity line. We see just this for both the
training and the test data, for both predictions of charge and
energy. Thus, it appears that the bootstrap approach continues to
work well in the grand-canonical framework.
For these systems, the ML training was about 100 and 800 times

faster than the time of the parent DFT calculations (in CPU time)
with and without force training, respectively. The resources
required to call a trained model for calculation were negligible.
Like most atomistic machine-learning approaches, the simulation
time increases approximately linearly as the size of the system
increases, in contrast to DFT which scales approximately cubically.

Saddle-point searches
The search for reaction barriers—first-order saddle points on the
potential energy surface—is one of the most computationally
demanding tasks in routine catalysis studies, and the ability to do
so at a constant potential is one of the key advantages of
electronically grand-canonical codes34,35. We therefore expect one
of the most common and demanding uses of a grand-canonical
learning approach will be in saddle-point searches.
We first describe our best practices—without machine learning

—in searching for electrochemical reaction barriers in an efficient
manner, such that we can fairly assess the ability of machine
learning to further speed up such calculations. Our goal is to find
the reaction barrier (that is, the peak of the minimum-energy
pathway, MEP) for a single reaction over a range of potentials, for
example the proton-deposition (or Volmer) reaction on gold. We
first start with a single potential; in this example we start at a work
function of 4.4 eV (~0 VSHE). Our initial guess of the minimum
energy path is comprised of a linear interpolation of all atomic
positions between the initial and final states. We run the
simulation with the DyNEB36 approach, which is particularly
efficient for serial NEB calculations. Once this converges, we use
the resulting MEP as the initial guess for DyNEB runs at the

neighboring potentials, of 4.2 and 4.6 eV; the good initial guess
drastically reduces the number of NEB iterations required. We then
use the 4.2 and 4.6 eV MEPs as initial guesses for the 4.0 and 4.8 eV
runs, respectively. The number of band force calls in this approach
is shown in Fig. 6; while the first potential takes 141 iterations, the
subsequent potentials each take only 5–9 iterations.
To test the ability of atomistic learning to accelerate these

grand-canonical barrier searches, we employ a simple method we
published30 for the acceleration of saddle-point searches in
canonical calculations. We briefly describe the scheme; full details
are in the reference. We start with an initial guess of the MEP,
generated in an identical fashion to our conventional approach
(either a linear interpolation or from a converged NEB at a nearby
potential). We calculate each of these images in SJM-DFT, these ~7
images create a minimal training set on which we train a GC-ML
calculator. We then use the trained ML as a surrogate calculator to
run a NEB calculation to convergence, and we validate the
predicted MEP by running each image in SJM-DFT. If the SJM-
calculated forces indicate the NEB is converged, the algorithm is
terminated. If not, we add these new images to our training set,
re-train the calculator, and repeat until convergence.
To fairly assess the impact of machine learning, we adopt a

similar strategy in the machine-learning scheme. We first converge
the simulation at a work function of 4.4 eV, and use this converged
MEP as the initial guess for the neighboring potentials, and so on.
We further use the previous SJM-DFT images (for example, from
4.4 eV) as additional training data for the subsequent potentials;
this is possible as our GC-ML approach is valid across differing
potentials.

Fig. 5 Barrier-search acceleration. Comparison of reaction pathway (left) and charge transfer (right) along the band between pure DFT
calculations and ML-assisted NEB for potentials (work functions) from 4.0 V to 4.8 V (from bottom to top).

Fig. 6 Barrier-search acceleration. Comparison of number of DFT
force calls of NEB band between DFT and ML-assisted DFT
simulations.
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Figure 5 compares the output of the ML-assisted scheme with
the DFT-only scheme, in both energy and charge coordinates. We
see that the ML-assisted scheme provides an excellent prediction
of the MEPs on both metrics. We note that a slight deviation can
be seen between the ML and pure-DFT approaches at some
potentials. Within the tolerance of DFT-calculated NEBs (0.05 eV/
Å), both are converged, so the difference is purely within the
tolerance of the NEB method; that is, the machine-learning
calculations are as valid as the DFT-alone calculations. From Fig. 4,
we see that the GC-ML replicates the DFT results to within about
0.03 eV, much less than the difference in NEB tolerances.
The computational savings are shown in Fig. 6. We see a very

large savings in the first potential (4.4 eV), when the system starts
far away from the optimal reaction path. Since this is the bulk of
the computational effort, this is the most important region for
savings, and we see a reduction from 141 to 15 DFT-calculated
band force calls. There is a much less dramatic reduction for the
subsequent potentials, largely because the initial guess is so good
in these bands already. On average, the standard DFT approach
takes 6.75 band force calls for each of these conditions, while ML
is slightly faster at 5.5 band force calls.

Charge partitioning
Although the partitioning of charge to atoms in an electronic
structure calculation is arbitrary—that is, it requires assumptions
about how to assign electron density to each atom—it is
nevertheless useful to understand if the ML and the ab initio
approaches are assigning charges in a similar manner. In the
training scheme, we only require that the total charge, or excess
electrons, of a system match the training data. Here, we examine if
the charge partitioning in the ML scheme is reasonable.
To do so, we partition the charge into two regions: (1) the slab,

or metal atoms, and (2) the water layer, including the excess
proton if present. In the case of the ab initio data, we use a sum of
per-atom Bader charges37, although other partitioning schemes
would also be valid. For the machine-learned implementation,
per-atom charges are predicted directly, which we sum for each
subsystem. Since atomic charge-partitioning schemes are inher-
ently arbitrary, here we focus solely on the differences in per-atom
charges as the potential is changed, which we expect to be less
sensitive to the particular choice of charge-partitioning scheme.
Examination of these charge differences can indicate if the
machine-learning model and the ab initio model are localizing the
excess electrons into similar locations within the simulation.
The initial state of the Volmer reaction on Au(111) was chosen

for this test, covering several different electrode potentials. All
results are reported in Fig. 7, referenced to the charge partitioning
at a work function of 4.4 eV. Here, we see that the machine-

learned partitioning of excess electrons between the slab and the
water layer matches the ab initio partitioning within reasonable
deviations, suggesting the machine-learning model is localizing
the charge in a similar manner to the ab initio model.

Extrapolation to larger solvent structures
A well-known limitation of DFT methods is the system size; it is
typical to only use one or two layers of explicit water near the
surface, although in the liquid phase many layers of explicit
solvent may contribute to the observed kinetics. This is due to
both the computational expense of DFT calculations (� OðN3Þ
scaling, where N is the number of electrons), and the many
degrees of freedom of such systems, such that the computational
expense precludes exploration of the potential energy surface.
Thus, an intriguing use of GC-ML methods is for extending length
scales; allowing both more layers of explicit water and greater
exploration of the configurational space of those layers. Here, we
explore the systematic ability of the GC-ML method to accom-
modate multiple water layers, and its ability to extrapolate.
Since electrochemical atomistic models are typically periodic

along the slab planes (the x and y directions of the unit cell), it is
natural that the ML calculator is transferable when the systems are
enlarged by repeating along x and y directions, because both the
chemical and electrostatic environments are similar for the
corresponding atoms in repeating unit cells. However, when the
systems are enlarged by adding more explicit water molecules—
that is, extending the solvent in the z direction—the ML
representation must be thoroughly tested.
We systematically explored the ability of GC-ML to make

extrapolative predictions of extra water layers. We created a data
set of 3647 images, comprised of images with 1, 2, 3, 4, and 5
water layers, at work functions of 3.8, 4.0, 4.2, 4.4, and 4.6 eV.
These images additionally had geometrical variations of different
layers of water and protonation of an arbitrary water molecule.
Moreover, the configuration of water layers are also relaxed for
more diverse in geometries. 124, 138, 197, 173, 30 training images
with 1, 2, 3, 4, and 5 water layers respectively are sampled
randomly with the remaining 250, 456, 741, 672, and 896 images
for testing purposes.
We first trained the data on images that contain only a single

water layer, and tested this model’s ability to make predictions on
systems with more water layers. The results are in the top row of
Fig. 8, which uses the bootstrap-uncertainty approach to produce
runeplots of the data. Here, we see that the one-layer testing
structures fit similarly to the one-layer training structures.
However, the bootstrap approach predicts a large uncertainty in
the 2- to 5-layer structures, and we also see that the predictions
are far from the true SJM-DFT results.

Fig. 7 Charge localization. Comparison between Bader analysis and ML on charge change in responding to electrode potentials varies on the
Au fcc(111) surface with one layer of water and one extra proton. All electron changes are reference to potential 4.4V. Left: ΔNe comparison
between DFT (solid red) and ML (open black). The upper triangles represent the number of excess electrons summed from slab side and lower
triangles represent that from water. Right: the parity comparison of the ΔNe of water (blue) and slab (green) calculated from DFT (x-axis) and
ML (y-axis), respectively.
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Next, we add training images from the two-layer system to our
model, and use it to make predictions. As shown in the second
row, now the one- and two-layer structures are fit well, but there
are still deviations in the three- to five-layer structures.
As we repeat this systematic process, we see that by the time

we reach four-layer training data, we are able to predict with
reasonable certainty the five-layer structures. This is understand-
able, since the water molecules within the water layers take on
three characteristic geometries: near the electrode surface, bulk-
like, and near the top (implicit) surface. As the number of layers
grows, examples of all of these water layers are present, and the
system can reasonably be expected to extrapolate to larger
numbers of water layers.

DISCUSSION
In the current work, we introduced a scheme for the machine-
learning emulation of electronically grand-canonical electronic-
structure calculations, of the type employed in studies of
electrochemical interfaces. The framework we developed employs
a dual-learning scheme where both the per-atom charge and the
per-atom electronegativity are used to both predict the system
charge and the system (grand-potential) energy. We showed that
a single well-trained model could nicely predict both the charge
and energy of a variety of structures from two different reactions
across a range of potentials spanning 0.8 V. We also showed that a
drop-in use of the existing bootstrap ensemble approach gives a
good, yet conservative prediction on the uncertainty of each
output quantity, as compared to the true deviations from grand-
canonical density functional theory.
We further showed that this method works well to accelerate

saddle-point searches within the grand-canonical framework, with
the largest benefit coming in the regions where the system starts
far from the optimal pathway. We also studied the ability to
extrapolate to larger sizes, specifically more layers of water, and
found that as more layers were added the extrapolation became
more reliable, but in all cases the uncertainty predictions were
able to identify unreliable predictions.

Like most machine-learning models, the current model has
physical limitations compared to the true electronic-structure
calculations and can be expected to fail in certain situations. In
particular, the current model does not contain long-range
Coulombic interactions, so if true long-range charge transfer
occurs then this model may not capture it. It is conceivable that
this model could be extended to account for such effects, but care
must be taken to deal with the divergent nature of periodic finite
charge summations.

DATA AVAILABILITY
A sample script for running Amp in the grand-canonical scheme is provided in the
supporting information, as are parameters used within this study. Specific training
sets are available from the corresponding author upon reasonable request.

CODE AVAILABILITY
The methods developed as part of the preparation of this manuscript are available as
part of Amp (the Atomistic Machine-learning Package), which is publicly available at
the following URL: https://bitbucket.org/andrewpeterson/amp/.
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